Seja $L\supseteq K$ uma extensão de L e seja $\theta\in L$ um elemento algébrico sobre K. Consideremos o conjunto

$$I = \{ p(\mathbf{x}) \in K[x] : p(\theta) = 0 \}.$$

[Exercício: I é um ideal de K[x]]

Como I é um ideal de K[x], pela demonstração do teorema da Aula 8, podemos concluir que existe um polinómio mónico $m_{\theta}(\mathbf{x}) \in K[x]$, único, tal que $I = (m_{\theta}(\mathbf{x}))$.

Este polinómio satisfaz as seguintes propriedades:

Proposição. Seja $\theta \in L$ um elemento algébrico sobre K. Então:

- (1) $m_{\theta}(\mathbf{x})$ é irredutível sobre K.
- (2) Para cada $p(\mathbf{x}) \in K[x]$, $p(\theta) = 0$ se e só se $m_{\theta}(\mathbf{x}) \mid p(\mathbf{x})$.
- (3) $m_{\theta}(\mathbf{x})$ é o polinómio mónico não-nulo em K[x] de menor grau que tem θ por raiz.

Demonstração. (1) Como $m_{\theta}(\mathbf{x})$ tem uma raiz, tem de ser de grau ≥ 1 necessariamente. Suponhamos que $m_{\theta}(\mathbf{x})$ era redutível, isto é, que $m_{\theta}(\mathbf{x}) = p_1(\mathbf{x})p_2(\mathbf{x})$, com

$$1 \le gr(p_1(\boldsymbol{x})), gr(p_2(\boldsymbol{x})) < gr(m_{\theta}(\boldsymbol{x})). \tag{A}$$

Então $0 = m_{\theta}(\theta) = p_1(\theta)p_2(\theta)$, donde $p_1(\theta) = 0$ ou $p_2(\theta) = 0$. Qualquer uma destas possibilidades contradiz (A): se $p_i(\theta) = 0$ (i = 1 ou i = 2), então $p_i(\mathbf{x}) \in I$, ou seja, $m_{\theta}(\mathbf{x}) \mid p_i(\mathbf{x})$, donde $gr(p_i(\mathbf{x})) \geq gr(m_{\theta}(\mathbf{x}))$.

- (2) É evidente: $m_{\theta}(\boldsymbol{x}) \mid p(\boldsymbol{x}) \Leftrightarrow p(\boldsymbol{x}) \in (m_{\theta}(\boldsymbol{x})) = I \Leftrightarrow p(\theta) = 0.$
- (3) É consequência imediata de (2): seja $p(\mathbf{x})$ mónico; se $p(\theta) = 0$ então $m_{\theta}(\mathbf{x}) \mid p(\mathbf{x})$, logo $p(\mathbf{x}) = m_{\theta}(\mathbf{x})$ ou $gr(p(\mathbf{x})) > gr(m_{\theta}(\mathbf{x}))$.

POLINÓMIO MÍNIMO

O polinómio $m_{\theta}(\mathbf{x})$ chama-se o polinómio mínimo de θ sobre K.

Exemplos: $x^2 + 1$ é o polinómio mínimo de i sobre \mathbb{R} , $x^2 - 2$ é o polinómio mínimo de $\sqrt{2}$ sobre \mathbb{Q} e $x - \sqrt{2}$ é o polinómio mínimo de $\sqrt{2}$ sobre \mathbb{R} .

Teorema. Seja θ algébrico sobre K, com polinómio mínimo $m_{\theta}(\mathbf{x})$ sobre K. Então cada elemento $\lambda \in K(\theta)$ tem uma expressão única na forma $\lambda = p(\theta)$ onde $p(\mathbf{x}) \in K[x]$ é tal que $gr(p(\mathbf{x})) < gr(m_{\theta}(\mathbf{x}))$.

[Por outras palavras: se
$$gr(m_{\theta}(\boldsymbol{x})) = n$$
 então existem únicos $a_0, a_1, \ldots, a_{n-1} \in K$ tais que $\lambda = a_0 + a_1\theta + \cdots + a_{n-1}\theta^{n-1}$]

Demonstração. Comecemos por provar que todo o elemento λ de $K(\theta)$ se pode escrever na forma $p(\theta)$ para algum $p(\boldsymbol{x}) \in K[x]$ tal que $gr(p(\boldsymbol{x})) < n$. É evidente que

$$K \cup \{\theta\} \subseteq \{p(\theta) : p(\mathbf{x}) \in K[x]\} \subseteq K(\theta).$$

Mas $S := \{p(\theta) : p(\mathbf{x}) \in K[x]\}$ é um subcorpo de $K(\theta)$:

- Se $p(\theta), q(\theta) \in \mathcal{S}$, é evidente que $p(\theta) q(\theta) \in \mathcal{S}$, pois $p(x) q(x) \in K[x]$.
- Se $p(\theta), q(\theta) \in \mathcal{S}$, com $q(\theta \neq 0 \text{ então})$, como θ não é raiz de $q(\boldsymbol{x})$, pela propriedade (2) na Proposição, $m_{\theta}(\boldsymbol{x}) \nmid q(\boldsymbol{x})$, donde $\mathrm{mdc}(m_{\theta}(\boldsymbol{x}), q(\boldsymbol{x})) = 1$, uma vez que $m_{\theta}(\boldsymbol{x})$ é irredutível sobre K. Isto significa que existem polinómios $a(\boldsymbol{x}), b(\boldsymbol{x}) \in K[x]$ tais que $1 = a(\boldsymbol{x})m_{\theta}(\boldsymbol{x}) + b(\boldsymbol{x})q(\boldsymbol{x})$. Mas então $1 = a(\theta)m_{\theta}(\theta) + b(\theta)q(\theta) = b(\theta)q(\theta)$, o que mostra que $b(\theta)$ é o inverso de $q(\theta)$ em $K(\theta)$. Portanto, $p(\theta)q(\theta)^{-1} = p(\theta)b(\theta)$, que ainda pertence a \mathcal{S} , porque $p(\boldsymbol{x})q(\boldsymbol{x}) \in K[x]$.

Logo, $\{p(\theta) : p(\boldsymbol{x}) \in K[x]\} = K(\theta).$

Observemos agora que

$${p(\theta): p(x) \in K[x]} = {p(\theta): p(x) \in K[x], gr(p(x)) < n},$$

uma vez que, para cada $p(\mathbf{x}) \in K[x]$, $p(\mathbf{x}) = q(\mathbf{x})m_{\theta}(\mathbf{x}) + r(\mathbf{x})$, com $gr(r(\mathbf{x})) < gr(m_{\theta}(\mathbf{x}))$, donde $p(\theta) = q(\theta)m_{\theta}(\theta) + r(\theta) = r(\theta)$.

Em conclusão, $K(\theta) = \{p(\theta) : p(\boldsymbol{x}) \in K[x], gr(p(\boldsymbol{x})) < n\}$, o que mostra que todo o elemento se pode escrever na forma desejada. Finalmente, provemos a unicidade: se $\lambda = p(\theta) = q(\theta)$, com $p(\boldsymbol{x}), q(\boldsymbol{x}) \in K[x]$ ambos de grau < n, então $gr(p(\boldsymbol{x}) - q(\boldsymbol{x})) < n$. Mas $p(\theta) - q(\theta) = 0$. Se $p(\boldsymbol{x}) \neq q(\boldsymbol{x})$, o polinómio $p(\boldsymbol{x}) - q(\boldsymbol{x})$ seria um polinómio não-nulo de grau < n com a raiz θ , o que contradiz a propriedade (3) da Proposição.

Daqui decorre imediatamente que toda a extensão algébrica simples é finita:

Corolário. Se θ é algébrico sobre K e $gr(m_{\theta}(\boldsymbol{x})) = n$, então $[K(\theta) : K] = n$ e $\{1, \theta, \theta^2, \dots, \theta^{n-1}\}$ é uma base do espaço vectorial $K(\theta)$ sobre K.

[Agora entende-se porque se chama grau da extensão à dimensão $[K(\theta):K]$: este número coincide com o grau do polinómio mínimo $m_{\theta}(x)$]

Exemplos: (1) O que fizemos nos exemplos da aula anterior pode agora ser feito de modo muito mais rápido: por este corolário, segue imediatamente que, para qualquer inteiro primo p, $[\mathbb{Q}(\sqrt{p}):\mathbb{Q}]=2$ e $\{1,\sqrt{p}\}$ é uma base de $\mathbb{Q}(\sqrt{p})$ sobre \mathbb{Q} ; basta para isso observar que x^2-p é o polinómio mínimo de \sqrt{p} sobre \mathbb{Q} .

(2) Consideremos a extensão $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ de \mathbb{Q} . Podemos olhar para $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ como a extensão simples $\mathbb{Q}(\sqrt{2})(\sqrt{3})$ de $\mathbb{Q}(\sqrt{2})$. Pelo Teorema da Torre,

$$[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}] = [\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}(\sqrt{2})] [\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = 2[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}(\sqrt{2})].$$

Qual é o polinómio mínimo de $\sqrt{3}$ sobre $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$? $\sqrt{3}$ é raiz de $x^2 - 3 \in \mathbb{Q}[x] \subset \mathbb{Q}(\sqrt{2})[x]$. Será que este polinómio é irredutível sobre $\mathbb{Q}(\sqrt{2})$? Sim, pois as suas duas raízes $\pm \sqrt{3}$ não pertencem a $\mathbb{Q}(\sqrt{2})$:

Com efeito, $\pm\sqrt{3}=a+b\sqrt{2}$ para algum par a,b de racionais implicaria $3=a^2+2b^2+2ab\sqrt{2}$, ou seja,

$$\sqrt{2} = \frac{3 - a^2 - 2b^2}{2ab} \in \mathbb{Q} \quad (\text{no caso } a, b \neq 0)$$

ou $3=2b^2$ (no caso a=0) ou $3=a^2$ (no caso b=0), uma contradição, em qualquer um dos três casos.

Portanto, $x^2 - 3$ é o polinómio mínimo de $\sqrt{3}$ sobre $\mathbb{Q}(\sqrt{2})$, pelo que

$$[\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}(\sqrt{2})] = 2,$$

sendo $\{1, \sqrt{3}\}$ uma base de $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ sobre $\mathbb{Q}(\sqrt{2})$.

Em conclusão, $[\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}] = 4$ e, pela demonstração do Teorema da Torre, $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ constitui uma base de $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ sobre \mathbb{Q} . Assim,

$$\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \{ a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} \mid a, b, c, d \in \mathbb{Q} \}.$$

[Por vezes, uma extensão está escrita de tal maneira que ''esconde" a sua simplicidade. Por exemplo, a extensão $\mathbb{Q}(\sqrt{2},\sqrt{3})$ é simples porque coincide com $\mathbb{Q}(\sqrt{2}+\sqrt{3})$, como facilmente se pode verificar]