Aplicações: Teoria Algébrica dos Códigos

Consideremos o seguinte código binário, a que chamaremos C_1 , que permite dar as instruções de comando a um leitor de DVD, através de um comando à distância:

Suponhamos que carregamos na tecla PLAY do comando, a que corresponde a palavra 00 do código; o comando transmite esta palavra ao leitor de DVD mas se, porventura, nessa comunicação ocorrer o erro

o leitor receberá a palavra 10, e como esta faz parte de C_1 (corresponde à instrução FORWARD), aquele não terá nenhuma maneira de detectar o erro e executará a instrução FORWARD!

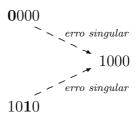
O código C_1 é um exemplo de *código binário*, ou seja, um código definido sobre o alfabeto (corpo) \mathbb{F}_2 , constituído por todas as palavras de comprimento 2 nesse alfabeto. Trata-se de um código muito pobre, pois nem sequer detecta erros *simples* (*singulares*) como o do exemplo acima.

O que fazemos habitualmente quando não entendemos o que outra pessoa nos quer dizer? Pedimos que repita a mensagem. Façamos isso no código C_1 , isto é, pensemos no código C_2 que se obtem de C_1 repetindo a informação em cada palavra uma vez:

Agora, ao ser transmitida a instrução PLAY (ou seja, a palavra 0000), se ocorrer o mesmo erro singular de há pouco,

como a palavra recebida não faz parte de C_2 , o leitor de DVD pode concluir imediatamente que ocorreu algum erro na transmissão. Neste caso, o código C_2 já detecta este erro singular (e é fácil de ver que detecta qualquer outro erro singular). Terá maneira de corrigir esse erro, isto é, de identificar a palavra original (assumindo que na transmissão só poderão ocorrer, quando muito, erros singulares)? Não; de facto, há duas palavras em C_2 que poderiam ser as originais:

Aula 25 - Álgebra II



Consideremos, finalmente, o código C_3 , definido pela tabela

PLAY	REW	FORWARD	STOP
000000	010101	101010	111111

Agora, além de qualquer erro singular ser detectável, também pode ser corrigido automaticamente (assumindo novamente que *na transmissão só poderão ocorrer*, quando muito, erros singulares). Por exemplo, o erro singular

é evidentemente detectado e corrigido; a única palavra de C_3 que poderia ter dado origem à palavra 100000, na assumpção que só ocorreram erros singulares, é a palavra 000000:

Palavra de \mathcal{C}_3	000000	010101	101010	111111
Palavra recebida	1 00000	10 0000	10 0 000	100000
Número de erros	1	4	2	5

É claro que se puderem ocorrer erros duplos no canal de comunicação, C_3 já não corrige o erro singular acima: a palavra original poderia muito bem ser a palavra 101010.

Assim, esta ideia de construir códigos correctores de erros só funciona se conhecermos *a priori* um limite para o número de erros que pode ocorrer no respectivo canal de comunicação. Ou, então, se adoptarmos o seguinte princípio de bom senso (o chamado *princípio do vizinho mais próximo*):

A palavra original correspondente a uma palavra recebida com erros deve ser a palavra do código "mais próxima" da palavra recebida

(isto é, assumimos que é mais provável que o menor número de erros possível tenha ocorrido na transmissão).

Daqui em diante, assumimos sempre este princípio. (mais adiante, tornaremos precisa a noção de proximidade implícita no termo "mais próxima".)

Os códigos C_1 , C_2 e C_3 são exemplos do tipo de códigos que vamos estudar, e que podem ser formalizados do seguinte modo:

CÓDIGOS SOBRE UM CORPO FINITO \mathbb{F}_q . CÓDIGOS LINEARES

Um código de comprimento n sobre o corpo \mathbb{F}_q é um subconjunto \mathcal{C} de $(\mathbb{F}_q)^n$. Portanto, \mathcal{C} é formado por palavras de comprimento n, $a_1a_2...a_n$, formadas com o alfabeto \mathbb{F}_q (isto é, cada $a_i \in \mathbb{F}_q$).

Note que \mathbb{F}_q^n é um espaço vectorial sobre \mathbb{F}_q , de dimensão n. Assim, as palavras de \mathcal{C} são simplesmente vectores deste espaço. Quando \mathcal{C} é um subespaço linear de \mathbb{F}_q^n , de dimensão k, diz-se que \mathcal{C} é um c'odigo linear ou (n,k)-c'odigo sobre \mathbb{F}_q .

Exemplos: $C_1 = \mathbb{F}_2^2$, pelo que C_1 é um (2,2)-código sobre \mathbb{F}_2 . Os códigos C_2 e C_3 também são códigos lineares sobre \mathbb{F}_2 (binários), como é fácil de ver: C_2 é um (4,2)-código enquanto C_3 é um (6,2)-código.

Os (n,k)-códigos sobre o corpo \mathbb{F}_2 foram o tipo de códigos utilizados pelas sondas que viajaram até Marte, na transmissão das fotografias para a Terra. No caso dos CDs de música, utiliza-se o corpo $\mathbb{F}_{256} = \mathbb{F}_{28}$.

Precisemos agora a noção de distância entre duas palavras de $\mathbb{F}_q^n.$

DISTÂNCIA DE HAMMING

A distância de Hamming entre duas palavras $\vec{a} = a_1 a_2 \dots a_n$ e $\vec{b} = b_1 b_2 \dots b_n$ é o número de índices $i \in \{1, 2, \dots, n\}$ tais que $a_i \neq b_i$.

Note que $d(\vec{a}, \vec{b})$ indica o número de erros ocorridos se \vec{a} é a palavra transmitida e \vec{b} é a palavra recebida.

Por exemplo, d(1101, 0111) = 2.

É muito fácil de ver que a distância de Hamming é uma métrica em \mathbb{F}_q^n , isto é, para quaisquer $\vec{a}, \vec{b}, \vec{c} \in \mathbb{F}_q^n$, tem-se:

- (1) $d(\vec{a}, \vec{b}) \ge 0$; $d(\vec{a}, \vec{b}) = 0$ se e só se $\vec{a} = \vec{b}$.
- (2) $d(\vec{a}, \vec{b}) = d(\vec{b}, \vec{a}).$
- (3) $d(\vec{a}, \vec{b}) \le d(\vec{a}, \vec{c}) + d(\vec{c}, \vec{b}).$

DISTÂNCIA MÍNIMA

Chama-se distância mínima de um código C, que se denota por $\delta(C)$, ao número

$$\min_{\vec{a}, \vec{b} \in \mathcal{C}, \vec{a} \neq \vec{b}} d(\vec{a}, \vec{b}).$$

Este número mede o grau de vizinhança das palavras em \mathcal{C} . Por exemplo, $\delta(\mathcal{C}_1) = 1$, $\delta(\mathcal{C}_2) = 2$ e $\delta(\mathcal{C}_3) = 3$.

Quanto maior é o valor de $\delta(\mathcal{C})$, mais eficiente é o código. Portanto, um dos objectivos na construção de um código é que tenha as palavras o mais afastadas entre si. Por outro lado, isto limita o número de palavras do código, logo limita a sua capacidade de armazenar e transmitir informação. Reconciliar estes dois objectivos (isto é, procurar o ponto de equilíbrio entre eles) é um dos problemas da teoria dos códigos.

CÓDIGOS t-DETECTORES E t-CORRECTORES DE ERROS

Seja $t \in \mathbb{N}$. Diz-se que um código \mathcal{C} é t-detector de erros se detecta qualquer combinação de t erros em qualquer palavra.

Diz-se que \mathcal{C} é t-corrector de erros se corrige qualquer combinação de t erros em qualquer palavra.

Teorema. Seja C um código com distância mínima $\delta(C)$.

- (a) Se $t \leq \delta(\mathcal{C}) 1$, então \mathcal{C} é t-detector de erros.
- (b) Se $t \leq \frac{\delta(\mathcal{C})-1}{2}$, então \mathcal{C} é t-corrector de erros.

Demonstração. (a) Suponhamos que na transmissão de uma palavra $\vec{a} \in \mathcal{C}$ ocorreram t erros, resultando na palavra recebida \vec{b} :

$$\vec{a} \xrightarrow[erros]{t} \vec{b}$$

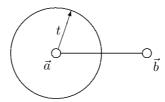
(portanto, $d(\vec{a}, \vec{b}) = t$). Para provarmos que o código terá a capacidade de detectar o erro, teremos que garantir que $\vec{b} \notin \mathcal{C}$, o que é fácil: como $d(\vec{a}, \vec{b}) = t < \delta(\mathcal{C})$ e $\vec{a} \in \mathcal{C}$ então $\vec{b} \notin \mathcal{C}$.

(b) Suponhamos que na transmissão de uma palavra $\vec{a} \in \mathcal{C}$ ocorreram t erros, resultando na palavra recebida \vec{b} (portanto, $d(\vec{a}, \vec{b}) = t$). Agora, para provarmos que

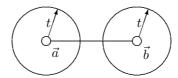
o código terá a capacidade de corrigir o erro, bastará garantir que mais nenhuma palavra em \mathcal{C} além de \vec{a} pode ter dado origem à palavra errada \vec{b} , ou seja, que qualquer outra palavra $\vec{c} \in \mathcal{C}$ está a uma distância de \vec{b} maior do que t, o que também é fácil: pela desigualdade triangular da distância,

$$d(\vec{b}, \vec{c}) \ge d(\vec{a}, \vec{c}) - d(\vec{a}, \vec{b}) \ge \delta(\mathcal{C}) - t \ge 2t + 1 - t = t + 1.$$

Portanto, um código consegue detectar t erros se quaisquer duas palavras do código estiverem a uma distância de Hamming pelo menos t+1:



Por sua vez, um código consegue corrigir t erros se quaisquer duas palavras do código estiverem a uma distância de Hamming pelo menos 2t + 1:



Nos exemplos que vimos anteriormente, tem-se:

Código	$\delta(\mathcal{C})$	No. erros que detecta	No. erros que corrige
\mathcal{C}_1	1	0	0
\mathcal{C}_2	2	1	0
\mathcal{C}_3	3	2	1

Portanto C_2 é 1-detector de erros e C_3 é 1-corrector de erros e 2-detector de erros.

A definição de código t-corrector implica que quaisquer bolas de raio t, centradas em palavras distintas, sejam disjuntas. Se, além disso, estas bolas cobrirem a totalidade do espaço (uma propriedade rara mas interessante), o código diz-se perfeito. Assim, um código t-corrector $\mathcal C$ sobre $\mathbb F_q$ diz-se perfeito se

$$\bigcup_{\vec{a} \in \mathcal{C}} B(\vec{a}, t) = \mathbb{F}_q^n.$$