O facto de, no caso de A ser um corpo, o algoritmo da divisão em A[x] ser sempre aplicável, tem, como em \mathbb{Z} , outra consequência importante:

Teorema. Seja C um corpo. Em C[x] todo o ideal é principal.

Demonstração. Seja I um ideal de C[x]. Se $I = \{0\}$, então I = (0) é um ideal principal. Podemos pois admitir que $I \neq \{0\}$. Neste caso, provaremos mais do que é exigido no enunciado do resultado, nomeadamente que existe um polinómio mónico $m(x) \in C[x]$, único, tal que I = (m(x)).

Consideremos então o conjunto

$$N = \{ n \in \mathbb{N}_0 \mid \text{ existe } s(\boldsymbol{x}) \in I, gr(s(\boldsymbol{x})) = n \}.$$

É claro que, como $I \neq \{0\}$, N é não-vazio, pelo que tem um mínimo. Seja $m(\boldsymbol{x})$ um polinómio em I de grau igual a esse mínimo (podemos supor que $m(\boldsymbol{x})$ é mónico; com efeito, se não fosse, isto é, se o coeficiente do termo de maior grau fosse igual a $a \neq 1$, poderíamos sempre considerar o polinómio $n(\boldsymbol{x}) = a^{-1}m(\boldsymbol{x}) \in I$).

Provemos que $I = (m(\mathbf{x}))$. Como $m(\mathbf{x}) \in I$, é óbvio que $(m(\mathbf{x})) \subseteq I$. Por outro lado, se $p(\mathbf{x}) \in I$, usando o algoritmo de divisão temos $p(\mathbf{x}) = q(\mathbf{x})m(\mathbf{x}) + r(\mathbf{x})$, onde $gr(r(\mathbf{x})) < gr(m(\mathbf{x}))$. Dado que I é um ideal, podemos concluir que $r(\mathbf{x}) = p(\mathbf{x}) - q(\mathbf{x})m(\mathbf{x}) \in I$. Mas então $r(\mathbf{x})$ só pode ser igual a 0 pois, com excepção do polinómio nulo, não pode haver nenhum polinómio em I de grau inferior a $gr(m(\mathbf{x}))$. Assim, $p(\mathbf{x})$ é um múltiplo de $m(\mathbf{x})$ pelo que pertence ao ideal $(m(\mathbf{x}))$.

Para provar a unicidade de $m(\mathbf{x})$, suponhamos $I = (n(\mathbf{x}))$, onde $n(\mathbf{x}) \in C[x]$ é mónico. Da igualdade $(m(\mathbf{x})) = (n(\mathbf{x}))$ segue

$$\begin{cases} m(\mathbf{x}) = p_1(\mathbf{x}) n(\mathbf{x}) \\ n(\mathbf{x}) = p_2(\mathbf{x}) m(\mathbf{x}) \end{cases}$$
(*)

para alguns polinómios $p_1(\mathbf{x}), p_2(\mathbf{x})$, donde $m(\mathbf{x}) = p_1(\mathbf{x})p_2(\mathbf{x})m(\mathbf{x})$. Como C[x] é um domínio de integridade, podemos cancelar $m(\mathbf{x}) \neq 0$ à esquerda e concluir que $p_1(\mathbf{x})p_2(\mathbf{x}) = 1$.

[Num domínio de integridade, a lei do cancelamento para o produto vale para elementos $\neq 0$: se ba=ca ou ab=ac, com $a\neq 0$, então b=c (pois $ba=ca\Leftrightarrow (b-c)a=0\Rightarrow b-c=0\Leftrightarrow b=c$)]

Então $gr(p_1(\boldsymbol{x}))+gr(p_2(\boldsymbol{x}))=0$ e, consequentemente, $p_1(\boldsymbol{x})$ e $p_2(\boldsymbol{x})$ são polinómios constantes. Como $m(\boldsymbol{x})$ e $n(\boldsymbol{x})$ são mónicos, então de (*) segue $p_1(\boldsymbol{x})=p_2(\boldsymbol{x})=1$ e $n(\boldsymbol{x})=m(\boldsymbol{x})$.

[Observe mais esta analogia entre os anéis C[x] e \mathbb{Z} : C[x] é, tal como \mathbb{Z} , um domínio de ideais principais]

Exemplos: $\mathbb{Z}[x]$ não é um domínio de ideais principais; por exemplo, o ideal $(2, \boldsymbol{x})$ não é principal.

[Verifique]

Mais geralmente, se A é um anel comutativo com identidade, a demonstração acima de que um ideal I de A[x] é principal consegue fazer-se desde que o coeficiente do termo de maior grau do polinómio m(x) (que agora não é necessariamente mónico) seja invertível em A. Este não é o caso do ideal (2, x) em $\mathbb{Z}[x]$: qualquer polinómio $m(x) \in (2, x)$ de grau mínimo é uma constante $\neq 1, -1$.

Corolário. Sejam $p_1(\mathbf{x}), \ldots, p_n(\mathbf{x})$ polinómios em $C[\mathbf{x}]$, onde pelo menos um é não-nulo. Então existe um único polinómio mónico $d(\mathbf{x}) \in C[x]$ tal que:

- (1) $d(\mathbf{x}) \mid p_i(\mathbf{x}) \ (i = 1, 2, ..., n).$
- (2) Se $c(x) \in C[x]$ e $c(x) | p_i(x)$ (i = 1, 2, ..., n) então c(x) | d(x).

Além disso, d(x) pode ser escrito na forma

$$d(\mathbf{x}) = r_1(\mathbf{x})p_1(\mathbf{x}) + \dots + r_n(\mathbf{x})p_n(\mathbf{x}) \tag{*}$$

 $com \ r_1(\boldsymbol{x}), \ldots, r_n(\boldsymbol{x}) \in C[x].$

Demonstração. Consideremos o ideal $(p_1(\mathbf{x}), \dots, p_n(\mathbf{x}))$, que é não-nulo. Pela demonstração do Teorema, existe um polinómio mónico $d(\mathbf{x})$, único, tal que

$$(p_1(\boldsymbol{x}),\ldots,p_n(\boldsymbol{x}))=(d(\boldsymbol{x})).$$

Como cada $p_i(\mathbf{x}) \in (d(\mathbf{x}))$, a condição (1) é óbvia, enquanto (*) é consequência imediata do facto de $d(\mathbf{x})$ pertencer a $(p_1(\mathbf{x}), \dots, p_n(\mathbf{x}))$. Quanto a (2), é consequência de (*).

Por outras palavras, $d(\mathbf{x})$ é um divisor comum de $p_1(\mathbf{x}), \dots, p_n(\mathbf{x})$, e é múltiplo de qualquer outro divisor comum destes n polinómios.

MÁXIMO DIVISOR COMUM

O polinómio $d(\mathbf{x})$ diz-se o máximo divisor comum de $p_1(\mathbf{x}), \dots, p_n(\mathbf{x})$ e escreve-se $d(\mathbf{x}) = \text{mdc}(p_1(\mathbf{x}), \dots, p_n(\mathbf{x})).$

Analogamente, também existe um único polinómio mónico m(x) tal que

$$(p_1(\boldsymbol{x})) \cap \cdots \cap (p_n(\boldsymbol{x})) = m(\boldsymbol{x}).$$

Neste caso:

- (1) $p_i(\mathbf{x}) \mid m(\mathbf{x}) \ (i = 1, 2, ..., n).$
- (2) Se $c(x) \in C[x]$ e $p_i(x) | c(x) (i = 1, 2, ..., n)$ então m(x) | c(x).

Portanto, $m(\mathbf{x})$ é múltiplo comum de $p_1(\mathbf{x}), \dots, p_n(\mathbf{x})$, e é divisor de qualquer outro polinómio que seja múltiplo comum destes n polinómios.

MÍNIMO MÚLTIPLO COMUM

O polinómio $m(\mathbf{x})$ diz-se o mínimo múltiplo comum de $p_1(\mathbf{x}), \dots, p_n(\mathbf{x})$ e escreve-se $m(\mathbf{x}) = \text{mmc}(p_1(\mathbf{x}), \dots, p_n(\mathbf{x})).$

Uma vez que, tal como nos inteiros,

$$p_1(x) = q(x)p_2(x) + r(x) \Rightarrow (p_1(x), p_2(x)) = (p_2(x), r(x)),$$

o algoritmo de Euclides para o cálculo do máximo divisor comum mantém a sua validade em C[x].

ALGORITMO DE EUCLIDES

Sejam $p_1(\boldsymbol{x}), p_2(\boldsymbol{x}) \in C[x], \text{ com } p_2(\boldsymbol{x}) \neq 0.$

Se $p_2(\boldsymbol{x}) \mid p_1(\boldsymbol{x})$, então mdc $(p_1(\boldsymbol{x}), p_2(\boldsymbol{x})) = p_1(\boldsymbol{x})$.

Se $p_2(x) \nmid p_1(x)$, usamos o algoritmo da divisão repetidamente do seguinte modo:

$$p_{1}(\mathbf{x}) = q_{1}(\mathbf{x})p_{2}(\mathbf{x}) + r_{1}(\mathbf{x}) \qquad 0 \leq gr(r_{1}(\mathbf{x})) < gr(p_{2}(\mathbf{x}))$$

$$p_{2}(\mathbf{x}) = q_{2}(\mathbf{x})r_{1}(\mathbf{x}) + r_{2}(\mathbf{x}) \qquad 0 \leq gr(r_{2}(\mathbf{x})) < gr(r_{1}(\mathbf{x}))$$

$$r_{1}(\mathbf{x}) = q_{3}(\mathbf{x})r_{2}(\mathbf{x}) + r_{3}(\mathbf{x}) \qquad 0 \leq gr(r_{3}(\mathbf{x})) < gr(r_{2}(\mathbf{x}))$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$r_{t-2}(\mathbf{x}) = q_{t}(\mathbf{x})r_{t-1}(\mathbf{x}) + r_{t}(\mathbf{x}) \qquad 0 \leq gr(r_{t}(\mathbf{x})) < gr(r_{t-1}(\mathbf{x}))$$

$$r_{t-1}(\mathbf{x}) = q_{t+1}(\mathbf{x})r_{t}(\mathbf{x}).$$

Como $gr(p_2(\boldsymbol{x}))$ é finito, o processo terá que parar ao cabo de um número finito de passos. Seja a o coeficiente de maior grau do último resto não-nulo $r_t(\boldsymbol{x})$. Então $\operatorname{mdc}(p_1(\boldsymbol{x}), p_2(\boldsymbol{x})) = a^{-1}r_t(\boldsymbol{x})$.

Aula 8 - Álgebra II

Exemplo: O algoritmo de Euclides aplicado aos polinómios

$$p_1(x) = 2x^6 + x^3 + x^2 + 2 \in \mathbb{F}_3[x], \qquad p_2(x) = x^4 + x^2 + 2x \in \mathbb{F}_3[x]$$

dá:

$$2x^{6} + x^{3} + x^{2} + 2 = (2x^{2} + 1)(x^{4} + x^{2} + 2x) + x + 2$$
$$x^{4} + x^{2} + 2x = (x^{3} + x^{2} + 2x + 1)(x + 2) + 1$$
$$x + 2 = (x + 2)1.$$

Portanto $\operatorname{mdc}(p_1(\boldsymbol{x}), p_2(\boldsymbol{x})) = 1$ e $p_1(\boldsymbol{x})$ e $p_2(\boldsymbol{x})$ são primos entre si. Além disso, a partir da penúltima divisão, obtemos sucessivamente:

$$1 = (x^{4} + x^{2} + 2x) - (x^{3} + x^{2} + 2x + 1)(x + 2)$$

$$= p_{2}(x) - (x^{3} + x^{2} + 2x + 1)(p_{1}(x) - (2x^{2} + 1)p_{2}(x))$$

$$= -(x^{3} + x^{2} + 2x + 1)p_{1}(x) + (1 + 2x^{2} + 1)p_{2}(x)$$

$$= (2x^{3} + 2x^{2} + x + 2)p_{1}(x) + (2x^{2} + 2)p_{2}(x).$$