Anéis e corpos

- 1. Averigúe se os seguintes conjuntos têm estrutura de anel para as operações indicadas. Em caso afirmativo, verifique se têm identidade, divisores de zero e estrutura de corpo.
 - (a) $(\mathbb{Z}_n, \oplus_n, \otimes_n)$ sendo $Z_n = \{0, 1, \dots, n-1\}$ com n número natural fixo, \oplus_n e \otimes_n adição e multiplicação módulo n.
 - (b) $(\mathcal{M}_n(\mathbb{K}), +, \times)$ sendo $\mathcal{M}_n(\mathbb{K})$, com n número natural fixo, o conjunto das matrizes quadradas de ordem n com elementos num corpo \mathbb{K} , + e \times adição e multiplicação usuais de matrizes.
 - (c) $(\mathfrak{P}(X), \Delta, \cap)$ sendo $\mathfrak{P}(X)$ o conjunto das partes de $X, X \neq \emptyset$ e $A\Delta B = (A \cup B) \setminus (A \cap B), \forall A, B \in \mathfrak{P}(X).$
 - (d) $(\mathcal{P}(X), \cup, \cap)$ sendo $\mathcal{P}(X)$ o conjunto das partes de X para $X \neq \emptyset$.
 - (e) $(\mathbb{Q} \setminus \{0\}, \times, +)$ sendo \times e + a multiplicação e adição usuais de números racionais.
 - (f) (A, \oplus, \otimes) sendo (A, +, .) um anel com identidade que designamos por 1 e

$$a \oplus b = a + b + 1, \forall a, b \in A,$$

$$a \otimes b = a + b + a.b, \forall a, b \in A.$$

- (g) $(G, +, \times)$ sendo $G = \{a + ib \mid a, b \in \mathbb{Z}\}$, o conjunto dos inteiros de Gauss, $+ e \times a$ adição e a multiplicação usuais de números complexos.
- 2. Quais das seguintes propriedades são válidas em qualquer anel A? E em qualquer anel comutativo?
 - (a) $a^m a^n = a^{m+n}, \forall a \in A, \forall m, n \in \mathbb{N}$
 - (b) $(a^m)^n = a^{mn}, \forall a \in A, \forall m, n \in \mathbb{N}$
 - (c) $(ab)^m = a^m b^m, \forall a, b \in A, \forall m \in \mathbb{N}$
- 3. Seja A um anel com identidade 1 e não tendo divisores de zero. Para $a,b\in A$ verifique que:
 - (a) ab = 1 se e só se ba = 1.
 - (b) Se $a^2 = 1$ então ou a = 1 ou a = -1.
- 4. Sejam a e b dois elementos de um anel comutativo R com identidade. Se $n \in \mathbb{Z}^+$, deduza a expressão binomial

$$(a+b)^n = \sum_{i=0}^n C_i^n a^{n-i} b^i,$$
 onde $C_i^n = \frac{n!}{i!(n-i)!}$.

5. Sendo Aum anel comutativo e $a\in A\setminus\{0\},$ prove que

$$(ab = ac \Rightarrow b = c) \Leftrightarrow a$$
 não é um divisor de zero.

- 6. Um elemento a de um anel R diz-se idempotente se $a^2=a$ e nilpotente se $a^n=0$ para algum $n\in\mathbb{N}$. Mostre que:
 - (a) Um elemento idempotente diferente de zero não pode ser nilpotente.
 - (b) Qualquer elemento nilpotente diferente de zero é um divisor de zero.
- 7. Seja (A, +, .) um anel. Suponha que existe $a \in A \setminus \{0\}$ tal que a não é divisor de zero e, além disso, $a^k = a$ para algum $k \in \mathbb{N} \setminus \{1\}$. Prove que o anel A tem identidade.
- 8. Averigue quais dos seguintes conjuntos são subanéis ou ideais dos anéis indicados. Sempre que possível determine o anel quociente.
 - (a) O conjunto dos inteiros pares em $(\mathbb{Z}, +, \times)$.
 - (b) O conjunto dos inteiros ímpares em $(\mathbb{Z}, +, \times)$.
 - (c) O conjunto dos números reais de forma $a + b\sqrt{2}$, com $a, b \in \mathbb{Z}$, em $(\mathbb{R}, +, \times)$.
 - (d) O conjunto dos números complexos da forma ib, com $b \in \mathbb{R}$, em $(\mathbb{C}, +, \times)$.
 - (e) O conjunto dos números inteiros em $(\mathbb{Q}, +, \times)$.

- 9. Chama-se centro de um anel A ao conjunto $\{x \in A \mid xa = ax, \forall a \in A\}$. Mostre que o centro de A é um subanel do anel A. Será um ideal?
- 10. Verifique que $\mathbb{Z} \times \{0\}$ é um subanel de $(\mathbb{Z} \times \mathbb{Z}, +, .)$ e que $\mathbb{Z} \times \{0\}$ tem identidade diferente da identidade de $(\mathbb{Z} \times \mathbb{Z}, +, .)$.
- 11. Seja A um anel. Dados dois ideais I e J de A, considere o conjunto $I + J = \{a + b : a \in I \text{ e } b \in J\}$.
 - (a) Mostre que I + J é um ideal de A.
 - (b) Prove que se N é um subanel de A que contém I e J, então N contém I+J.
- 12. Determine os ideais do anel \mathbb{Z}_n para
 - (a) n = 4; (b) n = 11; (c) n = 12; (d) n = 16.
- 13. Prove que a intersecção de qualquer família de subanéis (resp., ideais) de um anel A é um subanel (resp., ideal) de A.
- 14. (a) Qual é o menor subanel de \mathbb{Z} que contém o 3? E o menor ideal?
 - (b) Qual é o menor subanel de \mathbb{R} que contém o $\frac{1}{2}$? E o menor ideal?
- 15. Mostre que (a) + (b) = (a, b) para quaisquer dois elementos $a \in b$ de um anel.
- 16. (a) Mostre que $\mathcal{P}(S)$ é um ideal de $(\mathcal{P}(X), \Delta, \cap)$ (exercício 1.(c))para qualquer subconjunto S de X.
 - (b) Determine o anel quociente $\mathcal{P}(X)/\mathcal{P}(S)$ e compare-o com o anel com $(\mathcal{P}(X \setminus S), \Delta, \cap)$.
- 17. Averigúe quais das seguintes aplicações são homomorfismos de anéis.
 - $\begin{array}{cccc} \text{(a)} & f: & \mathbb{Z} & \longrightarrow & \mathbb{Z} \\ & a & \longmapsto & 5a \end{array}$
 - (b) $f: \mathbb{Z} \longrightarrow \mathbb{Z}_n$ $a \longmapsto \text{resto da divisão de } a \text{ por } n$
 - (c) $f: G \longrightarrow \mathbb{Z}$ $a+ib \longmapsto a^2+b^2$, sendo G o anel dos inteiros de Gauss (exercício 1.(g)).
- 18. Seja $f:A\longrightarrow B$ um homomorfismo de anéis. Prove que se I é um ideal de A então f(I) é um ideal de f(A).
- 19. Considere os seguintes subanéis de \mathbb{R} :

$$R = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$$
 e $S = \{a + b\sqrt{3} \mid a, b \in \mathbb{Q}\}.$

- (a) Verifique que $\theta: R \longrightarrow S$ definida por $\theta(a+b\sqrt{2}) = a+b\sqrt{3}$ não é um isomorfismo de anéis.
- (b) Mostre que os anéis R e S não são isomorfos.
- 20. Seja f um homomorfismo de um domínio de integridade D num domínio de integridade S. Prove que $f(D) = \{0\}$ ou $f(1_D) = 1_S$.
- 21. Determine a característica dos anéis com identidade do exercício 1.
- 22. Considere o anel \mathbb{Z} dos números inteiros.
 - (a) Prove que o ideal gerado por $p \in \mathbb{N} \setminus \{1\}$ é um ideal primo se e só se p é um número primo.
 - (b) Determine o ideal gerado por $\{a,b\} \subset \mathbb{N}$, com m.d.c.(a,b) = 1.
- 23. Sejam $A = \{ \frac{m}{n} \in \mathbb{Q} \mid m.d.c.(m,n) = 1 \text{ e } n \text{ \'e impar} \},$

$$B = \{ \tfrac{m}{n} \in \mathbb{Q} \mid m.d.c.(m,n) = 1, n \text{ \'e impar e } m \text{ \'e par} \}.$$

Prove que:

- (a) A é um anel para as operações usuais de adição e multiplicação de números racionais.
- (b) B é um ideal maximal de A.

- 24. Seja A um anel comutativo com identidade.
 - (a) Mostre que para qualquer ideal $I, 1 \in I$ se e só se A = I.
 - (b) Se I é um ideal de A, então $J_a = \{xa + y \mid x \in A, y \in I\}$ é um ideal de A.
- 25. Sejam D um domínio de integridade e a e b elementos de D. Mostre que $(ab) \subseteq (a)$ e indique uma condição necessária e suficiente para que (ab) = (a).
- 26. Considere no conjunto $F = \{0, 1, \alpha, \beta\}$ as operações $+ e \cdot$ definidas pelas seguintes tabelas:

_+	0	1	α	β	
0	0	1	α	β	
1	1	0	β	α	
α	α	β	0	1	
β	β	α	1	0	

	0	1	α	β	
0	0	0	0	0	
1	0	1	α	β	
α	0	α	β	1	
β	0	β	1	α	

- (a) Prove que $(F, +, \cdot)$ é um corpo.
- (b) Determine todos os subcorpos de F. Verifique se são ideais?
- (c) Indique a característica de F.
- 27. Considere o corpo $\mathbb{Q}(\sqrt{n}) = \{a + b\sqrt{n} \mid a, b \in \mathbb{Q}\}$ com $n \in \mathbb{N}$ fixo.

Averigúe se as seguintes aplicações estão bem definidas e, nesse caso, se são homomorfismos:

- 28. Seja A um anel comutativo com identidade.
 - (a) Mostre que se n1 = 0, então para qualquer $a \in A$, na = 0.
 - (b) Se A é um corpo, então, para todo o $a \in A$, n1 = 0 se e só se na = 0.
 - (c) Prove que se F é um corpo de característica $p \neq 0$ e a um elemento não nulo de F, então na = 0 se e só se n é um múltiplo de p.
- 29. Sejam a e b elementos de um anel comutativo com identidade de característica $p \neq 0$. Prove que:
 - (a) $(a+b)^{p^n} = a^{p^n} + b^{p^n}$;
 - (b) $(a-b)^{p^n} = a^{p^n} b^{p^n}$.
- 30. Seja A um anel comutativo com identidade de característica $n \neq 0$. Prove que a aplicação $\Pi: A \to A$, definida por $\Pi(x) = x^n$ para qualquer $x \in A$, é um homomorfismo.
- 31. Considere os ideais (2), (4), (5) do anel \mathbb{Z} . Determine o anel quociente respectivo e diga se é um corpo.
- 32. Seja f um homomorfismo não nulo de um anel comutativo A num domínio de integridade D. Prove que Nuc f é um ideal primo de A.
- 33. Considere o subconjunto $A = \{5n + 5mi \mid n, m \in \mathbb{Z}\}\$ dos inteiros de Gauss (ex. 1.(g)).
 - (a) Mostre que A é um ideal.
 - (b) Averigúe se A é principal, primo ou maximal.
- 34. Diga quais dos seguintes anéis quociente são corpos. Determine os elementos que os constituem e a sua característica.
 - (a) G/(5);
 - (b) G/(1-i);
 - (c) G/(2i).
- 35. Averigúe se os ideais (x) e (2,x) do domínio $\mathbb{Z}[x]$ são principais, primos ou maximais.

Anéis de polinómios

- 36. Determine o produto dos polinómios f e g do anel A[x], sendo:
 - (a) $f = 2x^5 + 1$, $g = 2x^5 + 1$ e $A = \mathbb{Z}_4$;
 - (b) $f = 2x^2 + 2x 2$, g = 3x 3 e $A = \mathbb{Z}_6$;
 - (c) $f = 2x^2 4x + 3$, g = 4x 5 e $A = \mathbb{Z}_8$.
- 37. Mostre que se A é subanel de B, então A[x] é subanel de B[x].
- 38. Prove que o conjunto dos polinómios homogéneos num anel A,

$$\{\sum_{i=1}^n a_i x^i \mid n \in \mathbb{N}, \ a_i \in A\}, \text{ \'e um ideal de } A[x].$$

39. Sejam A um anel comutativo e a um elemento fixo de A. Considere a aplicação

$$\phi_a: A[x] \longrightarrow A
f \longmapsto f(a) ,$$

denotando por f(a) o valor da função polinomial associada a f no ponto a.

- (a) Mostre que ϕ_a é um homomorfismo de anéis.
- (b) Determine o núcleo de ϕ_a .
- 40. (a) Sejam D um domínio de integridade e f um elemento não nulo de D[x]. Prove que f é invertível se e só se gr(f) = 0 e f for invertível considerado como elemento de D. Conclua que se \mathbb{K} for um corpo, então os únicos elementos invertíveis de $\mathbb{K}[x]$ são os polinómios de grau zero.
 - (b) O resultado da alínea anterior é válido se D for um anel comutativo qualquer?
- 41. Sendo f e g elementos de $\mathbb{K}[x]$, determine o quociente e o resto da divisão de f por g, para
 - (a) $f = x^4 + 4x^2 + 4$, $g = x^2 \in \mathbb{K} = \mathbb{Q}$;
 - (b) $f = x^3 + 2x^2 x + 2$, g = x + 2 e $\mathbb{K} = \mathbb{Z}_3$;
 - (c) $f = x^7 4x^6 + x^3 3x + 5$, $q = 2x^3 2$ e $\mathbb{K} = \mathbb{Z}_7$.
- 42. (a) Sendo f um elemento não nulo de $\mathbb{R}[x]$, indique os elementos associados a f.
 - (b) Determine d = m.d.c.(f,g) e também $u, v \in \mathbb{R}[x]$ tais que

$$d = uf + vg,$$

para

- $f = x^3 + 1$ e $g = x^4 + x^3 + 2x^2 + x + 1$;
- $f = x^3 + 2x^2 + 4x 5$ e $g = x^2 + x 2$;
- $f = x^3 + 3x^2 + 2x + 8$ e $g = x^4 4$.
- 43. Sejam p um inteiro positivo primo e f um polinómio irredutível de $\mathbb{Z}_p[x]$ de grau n. Prove que o corpo $\mathbb{Z}_p[x]/(f)$ tem exactamente p^n elementos.
- 44. Em $\mathbb{Z}_5[x]$ determine $c \in \mathbb{Z}_5$ de tal forma que x-2 seja um divisor de x^4+2x^2+c .
- 45. Sendo C um corpo, prove que se $f \in C[x]$ é de grau 2 ou 3 e não tem raízes em C então f é irredutível sobre C. Mostre que a recíproca é válida para polinómios de grau ≥ 2 .
- 46. Dê exemplos de polinómios redutíveis sobre um corpo mas que não tenham nenhuma raiz nesse corpo.
- 47. Seja C um corpo finito. Mostre que C[x] contém polinómios irredutíveis de grau tão grande quanto se queira.

(Sugestão: Imite a prova de Euclides da existência de um número infinito de primos).

48. Seja $f = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]$ com $a_0 \neq 0$. Mostre que, se $\frac{p}{q}$ (número racional expresso como quociente de inteiros primos entre si) for raiz de f, então $p \mid a_0 \in q \mid a_n$. Conclua que se f for mónico então as suas raízes racionais são inteiras e, além disso, dividem a_0 .

4

- 49. Averigúe quais dos seguintes polinómios de $\mathbb{Z}[x]$ são irredutíveis sobre \mathbb{Q} . Em caso negativo, factorize-os como produto de polinómios irredutíveis.
 - (a) $x^3 x + 1$;
 - (b) $x^3 2x 1$
 - (c) $x^3 2x^2 + x + 15$.
- 50. Determine todas as raízes racionais dos seguintes elementos de $\mathbb{Q}[x]$:
 - (a) $x^{50} x^{20} + x^{10} 1$;
 - (b) $2x^2 3x + 4$;
 - (c) $\frac{1}{2}x^3 5x + 2$;
 - (d) $x^3 7x + 3$.
- 51. Mostre que $A[x]/(x^4+x^3+x+1)$ não é um corpo, qualquer que seja o anel comutativo com identidade A que consideremos.
- 52. Determine $\mathbb{K}[x]/(f)$ e escreva as respectivas tabelas de anel para:
 - (a) $\mathbb{K} = \mathbb{Z}_2 \text{ e } f = x$;
 - (b) $\mathbb{K} = \mathbb{Z}_2 \text{ e } f = x^2 + x + 1;$
 - (c) $\mathbb{K} = \mathbb{Z}_3 \text{ e } f = x^2 + 2.$
- 53. Quais dos conjuntos $J \subseteq \mathbb{Q}[x]$ são ideais de $\mathbb{Q}[x]$. Em caso afirmativo, calcule p(x) mónico tal que J=(p(x)). Quais desses ideais são maximais?
 - (a) $J = \{ f(x) \in \mathbb{Q}[x] \mid f(1) = f(7) = 0 \};$
 - (b) $J = \{ f(x) \in \mathbb{Q}[x] \mid f(2) = 0 \text{ e } f(5) \neq 0 \};$
 - (c) $J = \{ f(x) \in \mathbb{Q}[x] \mid f(\sqrt{3}) = 0 \};$
 - (d) $J = \{ f(x) \in \mathbb{Q}[x] \mid f(4) = 0 \text{ e } f(0) = f(1) \}.$
- 54. Se p > 2 é um número primo, mostre que há exactamente dois elementos $a \in \mathbb{Z}_p$ tais que $a^2 = 1$.
- 55. Utilizando o critério de Eisenstein, investigue se são irredutíveis sobre Q os seguintes polinómios com coeficientes racionais:
 - (a) $x^7 + 11x^3 + 33x + 22$:
 - (b) $x^5 + 2$:
 - (c) $x^3 + 2x^2 + 10$:
 - (d) $2x^5 6x^3 + 9x^2 15$:
 - (e) $2x^2 + 27$;
 - (f) $\frac{2}{9}x^5 + \frac{5}{3}x^4 + \frac{1}{3}$.
- 56. Utilize o critério de Eisenstein para demonstrar que, se n>1 e p_1,p_2,\ldots,p_k são números primos distintos dois a dois, então $\sqrt[n]{p_1p_2\dots p_k}$ é um número irracional. Será indispensável exigir que os números p_1, p_2, \ldots, p_k sejam todos distintos?
- 57. Averigúe se $x^2 + 1$ é irredutível sobre:
 - (a) \mathbb{Z}_3 ; (b) \mathbb{Z}_2 .
- 58. Mostre que se $f \in \mathbb{Z}[x]$, f(0) e f(1) são impares, então f não tem raízes em \mathbb{Z} .
- 59. Prove que os polinómios de $\mathbb{Z}[x]$ (a) $f = x^3 x^2 + 1$ (b) $g = x^4 + 15x^3 + 7$ são irredutíveis sobre \mathbb{Q} . (Sugestão: Estude f sobre \mathbb{Z}_2 e g sobre \mathbb{Z}_5).
- 60. Resolva os seguintes sistemas de equações lineares

(a)
$$\left\{ \begin{array}{l} 2x+3y=1 \\ 4x+5y=3 \end{array} \right. \text{ sobre } \mathbb{Z}_7; \quad \text{(b) } \left\{ \begin{array}{l} x+iy=-i \\ ix-y=2 \end{array} \right. \text{ sobre } \mathbb{Z}[i]/(2+i).$$

Extensões de corpos e Teoria de Galois

- 61. Sejam F_1, F_2, F_3 três corpos tais que $F_1 \subseteq F_2 \subseteq F_3$ e $\theta \in F_3$. Verifique que se θ é algébrico sobre F_1 então é algébrico sobre F_2 . Mostre que a proposição recíproca é falsa.
- 62. Sejam F_1 um subcorpo de um corpo F e α, β elementos de F. Prove que $F_1(\alpha, \beta) = F_1(\alpha)(\beta)$. Generalize para o caso de n elementos $\alpha_1, \ldots, \alpha_n \in F$.
- 63. Sejam F_1 um subcorpo de um corpo F e α um elemento de F. Prove que:
 - (a) se α é algébrico sobre F_1 , o mesmo sucede a $\alpha + c$ e a $c\alpha$, qualquer que seja $c \in F_1$;
 - (b) se α é algébrico sobre F_1 , o mesmo sucede a α^2 e reciprocamente.

Conclua que $\mathbb C$ é uma extensão algébrica de $\mathbb R.$

- 64. Averigúe quais dos seguintes elementos são algébricos ou transcendentes sobre o corpo Q:
 - (a) $\sqrt{7}$
- (b) $\sqrt[3]{2}$
- (c) π^2
- (d) e + 3
- (e) 1 + i
- 65. Sejam F_1 um subcorpo de um corpo F e α um elemento de F. Prove que se α é algébrico sobre F_1 então $F_1(\alpha) = F_1[\alpha]$, justificando pormenorizadamente os seguintes passos:
 - (a) $F_1[\alpha]$ é um domínio de integridade.
 - (b) Sendo $f(\alpha)$ um elemento não nulo de $F_1[\alpha]$ e m o polinómio mínimo de α sobre F_1 , então: f não é múltiplo de m; existem $t, s \in F_1[x]$ tais que tf + sm = 1; $t(\alpha).f(\alpha) = 1$.
 - (c) $F_1[\alpha]$ é um corpo.
- 66. Averigúe se os seguintes anéis quociente são corpos e, nos casos afirmativos, determine os elementos que os constituem e a sua característica:
 - (a) $\mathbb{Z}_5[x]/(x^2+4)$;
 - (b) $\mathbb{Q}[x]/(x^3-2)$;
 - (c) $\mathbb{R}[x]/(x^2+1)$.
- 67. Determine o inverso de cada um dos seguintes elementos nas extensões simples $\mathbb{Q}(\alpha)$ indicadas:
 - (a) $1 2\alpha + 3\alpha^2$, com α raiz do polinómio $x^3 x + 1$;
 - (b) $-\alpha^2 + 2\alpha 3$, com $\alpha = \sqrt[3]{2}$;
 - (c) $\alpha + 1$ e $\alpha^2 6\alpha + 8$, com $\alpha \neq 0$ tal que $\alpha^4 6\alpha^3 + 9\alpha^2 + 3\alpha = 0$.
- 68. Sejam F e E dois corpos tais que $F \subseteq E$. Sabendo que, se α , $\beta \in E$ são elementos algébricos sobre F, $[F(\alpha, \beta) : F]$ é finita, prove que os elementos de E algébricos sobre F formam um subcorpo de E.
- 69. Seja F uma extensão dum corpo F_1 e $\alpha \in F$ um elemento algébrico de grau n sobre F_1 . Prove que todo o elemento de $F_1(\alpha)$ se pode exprimir de modo único na forma $a_0 + a_1\alpha + \cdots + a_{n-1}\alpha^{n-1}$ com $a_i \in F_1$ (i = 0, ..., n-1).
- 70. Exprima na forma referida no exercício anterior os seguintes elementos das extensões algébricas $\mathbb{Q}(\alpha)$ indicadas:
 - (a) α^4 , α^2 , α^5 e $\alpha^5 \alpha^4 + 2$, com α raíz do polinómio $x^3 6x^2 + 9x + 3$.
 - (b) $(\alpha^3+2)(\alpha^3+3\alpha)$, $\alpha^4(\alpha^4+3\alpha^2+7\alpha+5)$ e $\frac{\alpha+2}{\alpha^2+3}$, sendo α uma solução da equação $x^5+2x+2=0$.
- 71. Determine o polinómio mínimo sobre $\mathbb Q$ dos seguintes elementos:
 - (a) $2 + \sqrt{3}$
- (b) $\theta^2 1$, com $\theta^3 = 2\theta + 2$
- (c) $\theta^2 + \theta$, com $\theta^3 = -3\theta^2 + 3$.
- 72. Prove que $\sqrt{7} \notin \mathbb{Q}(\sqrt{3})$, $i \notin \mathbb{Q}(\sqrt{5})$ e $\sqrt{5} \notin \mathbb{Q}(i)$.
- 73. Seja F uma extensão finita de F_1 . Prove que:
 - (a) se $[F:F_1]$ é um número primo, então F é uma extensão simples de F_1 ;
 - (b) se $\theta \in F$, então o grau de θ é um divisor de $[F:F_1]$; conclua que se tem $F=F_1(\theta)$ se e só se o grau de θ coincidir com $[F:F_1]$;
 - (c) se $f \in F_1[x]$ é irredutível em $F_1[x]$ e o grau de f é um número primo com $[F:F_1]$ e maior do que 1, então f não tem raízes em F.

- 74. Seja p um número primo e c um elemento do corpo C. Prove que $x^p c$ é irredutível sobre C se e só se $x^p - c$ não tem raízes em C.
- 75. Sejam F, F_1 e F_2 corpos com $F \subseteq F_i$, para i=1,2. Se F_1 e F_2 são extensões finitas de F tais que $[F_1:F]$ e $[F_2:F]$ são primos entre si, então $F_1 \cap F_2 = F$.
- 76. Determine o grau sobre \mathbb{Q} e uma base de cada uma das seguintes extensões de \mathbb{Q} :
 - (a) $\mathbb{Q}(\sqrt{3},i)$;

- (b) $\mathbb{Q}(\sqrt{18}, \sqrt[4]{2});$
- (c) $\mathbb{Q}(\sqrt[3]{2}, \theta)$, com $\theta^4 + 6\theta + 2 = 0$;
- (d) $\mathbb{Q}(\sqrt{7}, \theta)$, com $\theta^3 + 3 = 0$;
- (e) $\mathbb{Q}(\alpha, \beta)$, com $\alpha^3 \alpha + 1 = 0$ e $\beta^2 \beta = 1$.
- 77. Determine o grau e uma base da extensão $\mathbb{Q}(\sqrt{\pi})$ de $\mathbb{Q}(\pi)$.
- 78. Sejam $\alpha^3 = 2$, w uma raiz cúbica da unidade e $\beta = w.\alpha$. Determine a dimensão e uma base de $\mathbb{Q}(\alpha, \beta)$ sobre \mathbb{O} .
- 79. Mostre que $x^2 + 1$ é irredutível sobre \mathbb{Z}_3 . Sendo u uma raíz deste polinómio determine o número de elementos de $\mathbb{Z}_3(u)$ e as tabelas de adição e multiplicação.
- 80. Averigúe se os seguintes polinómios são irredutíveis sobre o corpo indicado:
 - (a) $x^2 + 2$ sobre $\mathbb{Q}(\sqrt{5})$;
- (b) $x^2 2x + 2$ sobre $\mathbb{Q}(\sqrt{-3})$;
- (c) $x^3 3x + 3$ sobre $\mathbb{Q}(\sqrt[4]{2})$.
- 81. Determine para quais dos seguintes polinómios $f \in F[x]$ existem extensões $F(\alpha)$ tais que f é o polinómio mínimo de α :
 - (a) $x^2 4$, $F = \mathbb{Q}$;
- (b) $x^3 + x + 2$, $F = \mathbb{Z}_3$; (c) $x^2 + 1$, $F = \mathbb{Z}_5$.
- 82. Para cada uma das expressões de $\mathbb Q$ indicadas averigúe se θ gera a mesma extensão:
 - (a) $\theta = 2 + \sqrt[3]{4}$, $\mathbb{Q}(\sqrt[3]{2})$;
- (b) $\theta = \sqrt{2} + \sqrt{3}, \ \mathbb{Q}(\sqrt{2});$
- $(c)\theta = u^2 + u + 1$, $\mathbb{Q}(u)$, com $u^2 + 5u 5 = 0$.
- 83. Considere o polinómio $f = x^3 x + 1 \in \mathbb{Q}[x]$. Seja α uma raiz de f.
 - (a) Determine o inverso de $\alpha + 1$ em $\mathbb{Q}(\alpha)$, escrevendo-o como polinómio em α de coeficientes racionais.
 - (b) Considere $u = \alpha^2 + 1$. As extensões $\mathbb{Q}(u)$ e $\mathbb{Q}(\alpha)$ coincidem?
- 84. Determine o inverso de $2 + \sqrt[3]{4}$ em $\mathbb{Q}(\sqrt[3]{2})$.
- 85. Determine a dimensão e uma base da extensão:
 - (a) $\mathbb{Q}(\sqrt{2}, \alpha)$ sobre \mathbb{Q} , onde $3\alpha^3 + 7\alpha^2 = 14\alpha 56$;
 - (b) $\mathbb{Q}(\sqrt{7}, \theta)$ sendo θ uma raiz do polinómio $x^3 + 2x^2 + 2x 4$ tal que $[\mathbb{Q}(\theta) : \mathbb{Q}] > 1$.
- 86. Seja θ uma raiz não nula do polinómio $x^4 x^3 + x^2 2x \in \mathbb{Q}[x]$. Determine $\frac{\theta^2}{\theta^2 + 1}$ e exprima o resultado como combinação linear dos elementos duma base do espaço vectorial $\mathbb{Q}(\theta)$ sobre \mathbb{Q}
- 87. Considere $\mathbb{Z}_5(\alpha)$, sendo $\alpha^2 + 3 = 0$, e determine:
 - (a) a expressão geral dos elementos desse corpo e o seu cardinal;
 - (b) o polinómio mínimo de $\beta = \alpha + 1$;
 - (c) o inverso de β .
- 88. Mostre que é impossível construir com régua e compasso:
 - (a) um cubo com volume igual ao de uma esfera dada;
 - (b) o ponto $(\sqrt{5\sqrt{5}-3} + \sqrt{2-\sqrt[3]{2}}, 0)$ a partir dos pontos (0,0) e (1,0).

- 89. Observe que a fórmula de Cardano-Tartaglia não é conveniente para resolver as equações:
 - (a) $x^3 19x + 30 = 0$;
 - (b) $x^3 + 3x 14 = 0$.
- 90. Determine a extensão de decomposição de:
 - (a) $x^2 5$ sobre \mathbb{Q} ;
 - (b) $x^2 + 1$ sobre \mathbb{R} ;
 - (c) $x^5 2x^4 10x^3 + 20x^2 + 25x 50$ sobre \mathbb{Q} .
- 91. Seja L uma extensão de \mathbb{Q} . Determine os \mathbb{Q} -automorfismos de L para:
 - (a) $L = \mathbb{Q}(\sqrt{2});$
 - (b) $L = \mathbb{Q}(\alpha) \subseteq \mathbb{R}$, com $\alpha^5 = 7$;
 - (c) $L = \mathbb{Q}(\sqrt{2}, \sqrt{3});$
 - (d) L a extensão de decomposição de $t^4 4t^2 5$.
- 92. (a) Para as extensões do exercício anterior, calcule os respectivos grupos de Galois.
 - (b) Diga em quais dos casos é que a correspondência de Galois entre os subgrupos do grupo de Galois e as subextensões de L é uma bijecção.
- 93. Seja γ uma raiz de $x^2 + x + 1 \in \mathbb{Z}_2[x]$. Mostre que $\sigma : \mathbb{Z}_2(\gamma) \to \mathbb{Z}_2(\gamma)$ definida por $\sigma(a + b\gamma) = a + b + b\gamma$, com $a, b \in \mathbb{Z}_2$, é um \mathbb{Z}_2 -automorfismo de $\mathbb{Z}_2(\gamma)$.
- 94. Determine o grupo de Galois associado a cada uma das extensões do exercício 76.
- 95. Mostre que Gal(K; L) = 1 não implica K = L.

(Sugestão: Considere $L = \mathbb{Q}$ e K a extensão de L gerada pela única raiz real de um polinómio irredutível sobre \mathbb{Q}).

- 96. (a) Determine os corpos intermédios entre \mathbb{Q} e $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$.
 - (b) Calcule o respectivo grupo de Galois e compare os resultados.
- 97. Seja F uma extensão algébrica simples de K, $\alpha \in F K$ e σ um elemento do grupo de Galois. Mostre que α e $\sigma(\alpha)$ têm o mesmo polinómio mínimo sobre K.
- 98. Calcule o grupo de Galois do polinómio f(x) sobre o corpo K nos seguintes casos:
 - (a) $f(x) = x^2 + 1, K = \mathbb{R};$
 - (b) $f(x) = x^4 2,$ $K = \mathbb{Q};$
 - (c) $f(x) = x^3 x + 1$, $K = \mathbb{Q}$; (ver Ex.67)
 - (d) $f(x) = x^4 4x^2 5$, $K = \mathbb{Q}(i)$.
- 99. Calcule o grupo de Galois para os polinómios e os corpos considerados no Exercício 80.
- 100. Sejam C um corpo e E uma extensão de C. Prove que se $\alpha \in E$ é algébrico sobre C, de grau n, então $|Gal(C(\alpha);C)| \leq n$.
- 101. Sejam n um número natural e K um corpo que contém as raízes de índice n da unidade.
 - (a) Se n for primo e α raiz do polinómio $x^n a$, $a \in K$, então $Gal(K(\alpha); K)$ é um grupo cíclico de ordem 1 ou de ordem n.
 - (b) Se β é raiz de $x^n a$, $a \in K$, então $Gal(K(\beta); K)$ é cíclico.
- 102. (a) Sejam p um número primo e K um corpo que contém as raízes de índice p da unidade. Mostre que $x^p a$, $a \in K$, é irredutível sobre K se e só se não tem raízes sobre K.
 - (b) Prove que a hipótese de K conter as raízes de índice p da unidade não é necessária.
- 103. Seja C um corpo de característica diferente de 2, e K uma extensão de C tal que [K:C]=2. Mostre que $K=C(\sqrt{a})$ para algum $a\in C$ e que K é de Galois sobre C.

- 104. Mostre que se f é um polinómio irredutível de grau 3, então $Gal(f,\mathbb{Q}) \cong A_3$ ou $Gal(f,\mathbb{Q}) \cong S_3$.
- 105. Considere um polinómio irredutível de grau 3 escrito na sua forma reduzida $x^3 + px + q$, e as suas três raízes complexas distintas a, b, e c.
 - (a) Verifique que $\left\{ \begin{array}{l} a+b+c=0\\ ab+ac+bc=p\\ abc=-q \end{array} \right. .$
 - (b) A partir da alínea anterior, mostre que $((a-b)(a-c)(b-c))^2 = -4p^3 27q^2 = D$.
 - (c) Prove que se $\sqrt{D} \in \mathbb{Q}$ e $\varphi \in Gal(f, \mathbb{Q})$, então $\varphi(\sqrt{D}) = \sqrt{D}$ e portanto $Gal(f, \mathbb{Q}) \cong A_3$.
 - (d) Prove que se $\sqrt{D} \not\in \mathbb{Q}$, então $\mathbb{Q}(\sqrt{D})$ está na extensão de decomposição de f, e portanto $Gal(f, \mathbb{Q}) \cong S_3.$
- 106. Mostre que se os grupos A e B são resolúveis, então $A \times B$ também é resolúvel. Conclua que se os factores irredutíveis de um polinómio são resolúveis por radicais, então ele também é resolúvel por radicais.
- 107. Para cada um dos seguintes grupos, mostre que são resolúveis e indique um polinómio de coeficientes racionais cuja a resolubilidade por radicais resulte desse facto.
 - (a) $\mathbb{Z}_m \times \mathbb{Z}_m^*$.
- (b) \mathbb{Z}_2^n .
- (c) S_3 .
- (d) S_4 .
- (e) $\mathbb{Z}_2 \oplus \mathbb{S}_3$.
- 108. (a) Mostre que, se um grupo resolúvel não tem subgrupos normais próprios, então é um grupo cíclico de ordem prima.
 - (b) Sabendo que o grupo A_5 não tem subgrupos normais próprios, conclua que ele é resolúvel.
 - (c) A partir da alínea anterior, mostre que S_n não é resolúvel para $n \geq 5$.
- 109. Sejam p um número primo, e $f \in \mathbb{Q}[x]$ um polinómio irredutível de grau p. Mostre que:
 - (a) se f tem exactamente duas raízes complexas, então o grupo de Galois de f sobre $\mathbb Q$ é o grupo simétrico S_p e portanto não é resolúvel por radicais;
 - (b) se f tem exactamente quatro raízes complexas, então não é resolúvel por radicais.
- 110. Mostre que os seguintes polinómios $f \in \mathbb{Q}[x]$ não são resolúveis por radicais:
 - (a) $f = 2x^5 10x + 5$;

(c) $f = x^5 - 6x^2 + 5$;

(b) $f = 2x^5 - 5x^4 + 20$;

- (d) $f = x^7 10x^5 + 15x + 5$.
- 111. Resolva as equações por meio de radicais.
 - (a) $x^5 5x^4 + 10x^3 10x^2 + 5x 8 = 0$. (Sugestão: y = x 1.) (b) $x^3 + 2x^2 5x + 9 \frac{5}{x} + \frac{2}{x^2} + \frac{1}{x^3} = 0$. (Sugestão: $y = x + \frac{1}{x}$.)

- 112. Determine a extensão a radical sobre $\mathbb Q$ que contém os seguintes elementos de $\mathbb C$:
 - (a) $\sqrt[3]{8} + \sqrt{2}$;

- (b) $\frac{\sqrt[7]{13+\sqrt{2}}}{\sqrt[3]{5}}$.
- 113. Verifique que apesar de $x^3 3x + 1$ ser resolúvel por radicais, a sua extensão de decomposição não é uma extensão radical. (ver Exercício 105)

Corpos finitos

- 114. Seja F a extensão de decomposição de $x^2 2 \in \mathbb{Z}_3[x]$.
 - (a) Descreva o corpo F e indique um gerador de $F^* = F \setminus \{0\}$.
 - (b) Qual \acute{e} o subcorpo primo de F?
- 115. Seja F a extensão de decomposição de $f = x^{p^n} x$ sobre \mathbb{F}_p .
 - (a) Mostre que $R = \{a \in F \mid a^{p^n} = a\}$, o conjunto das raízes de f, é um subcorpo de F.
 - (b) Prove directamente, a partir a definição de raiz dupla, que todas as raízes de f são simples.
 - (c) Conclua que R = F.

- 116. Seja C um corpo com 81 elementos.
 - (a) Determine a característica de C, indique o seu o corpo primo e determine $[C:\mathbb{Z}_p]$.
 - (b) Justifique a afirmação O único subcorpo próprio de C é o seu subcorpo primo.
- 117. Construa um corpo finito de ordem 16 e determine todos os geradores do seu grupo multiplicativo.
- 118. Indique, justificando, o número de corpos não isomorfos de ordem inferior a 100.
- 119. Determine todos os subcorpos de um corpo com 32 e 64 elementos, respectivamente.
- 120. Usando resultados sobre corpos finitos, mostre que se p é um número primo e r divide n, então $p^r 1$ divide $p^n 1$.
- 121. Através de um comando à distância de uma televisão podem ser efectuadas 20 operações: escolher entre 18 canais diferentes (0–17), aumentar (A) ou diminuir (D) o volume. A tabela indica três códigos decimais para transmitir essa informação.

	0	1	2	 9	10	11	 17	Α	D
C_1	00	01	02	 09	10	11	 17	18	19
C_2	0000	0101	0202	 0909	1010	1111	 1717	1818	1919
C_3	00000	01011	02022	 09099	10109	11118	 17172	18181	19190

- (a) Determine a distância mínima de cada um dos três códigos.
- (b) Diga quais dos códigos detectam e/ou corrigem erros singulares.
- (c) Um receptor de televisão recebe informação do comando utilizando o terceiro código. Sempre que possível diga o efeito gerado pela recepção das seguintes mensagens: 15154, 13144, 19191.
- 122. As matrizes H_1 , H_2 e H_3 determinam três códigos lineares binários.

$$H_1 = \left[egin{array}{ccccc} 1 & 1 & 1 & 0 & 0 \ 1 & 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 & 1 \end{array}
ight] \hspace{5mm} H_2 = \left[egin{array}{ccccc} 1 & 0 & 0 & 0 & 1 \ 0 & 1 & 0 & 1 & 1 \ 0 & 0 & 1 & 1 & 1 \end{array}
ight] \hspace{5mm} H_3 = \left[egin{array}{ccccccc} 1 & 0 & 0 & 0 & 1 & 1 & 0 \ 0 & 1 & 0 & 0 & 1 & 1 & 1 \ 0 & 0 & 1 & 0 & 1 & 1 & 0 \ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{array}
ight]$$

Para cada um deles responda às perguntas.

- (a) Determine o comprimento do código e o número de dígitos de controlo.
- (b) Calcule a distância mínima e descreva o conjunto das mensagens.
- (c) Poderão estes códigos ser usados para detectar e/ou corrigir erros singulares?
- (d) Supondo que os três últimos dígitos da mensagem são 011. Diga se esta mensagem pode pertencer ao código e determine a mensagem completa.
- 123. Calcule a matriz dos códigos do Exercício 121.
- 124. Usando os códigos do Exercício 122, determine os sintomas e, se possível, corrija os erros das mensagens.
 - (a) Código 1; mensagens: 00000, 11111, 01010.
 - (b) Código 2; mensagens: 11011, 10011.
 - (c) Código 3; mensagens: 1000000, 1110101.
- 125. Considere $\mathbb{F}_{16} = \mathbb{F}_2(\alpha)$, com $\alpha^4 = \alpha + 1$, e a matriz do código BCF

- (a) Faça uma estimativa para a distância mínima deste código.
- (b) Codifique a mensagem 1010101 e descodifique 110010110100110 e 100111000000000.
- (c) Mostre que se uma mensagem recebida r tem apenas um erro e esse erro é na posição i então $H.r = [\alpha^{(i-1)} \ \alpha^{3(i-1)}]^t$.

10