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Preface

Point-free topology is a general discipline of geometry exploiting the algebraic
properties of natural pieces of spaces. It originated in individual results in the late
1930s and early 1940s, developed to the current concept system in the 1960s and
1970s, and flourishes ever since. The reader can learn the basics (and certainly
more than just that) in several monographs and chapters in handbooks and similar
publications. There is, however, no systematic comprehensive presentation of
special properties needed when treating concrete special problems. The aim of this
book is to fill in this gap.

Similarly like in classical topology, when dealing with special problems the
scope of the quite general concepts has to be restricted by specific conditions. In the
classical theory, the most significant role in this respect is played by the so-called
separation axioms of various strength. In the point-free context, the need to delimit
and specify the objects suitable for particular purposes is perhaps even stronger,
and it is natural to borrow and imitate the classical requirements (already in the
early times of the theory, one discovered the benefits of the condition of regularity
corresponding precisely to the homonymous axiom of classical topology; also, we
should not forget to note the use of the so-called disjunctivity replacing the T1-axiom
in the point-free prehistory). Although the points seem to be crucial in the classical
formulations of separation axioms and similar conditions, it has turned out that one
can either produce exact counterparts or at least mimic them to advantage. And
sometimes one discovers very useful conditions of essentially point-free nature.

This book bids a systematic study of this area. We present as much as possible
of the broad range of separation type conditions, from very weak ones (in among
of which the reader might be surprised by the benefits of the so far underestimated
subfitness), over the pleiad of the Hausdorff type conditions, to very strong ones (the
particularly strong scatteredness may be surprising to be found in this company, but
in the point-free context it belongs, and plays a very interesting role). We discuss
their interrelations and point out consequences.

We would like to acknowledge the support, excellent conditions and the active
and friendly atmosphere in the institutions we are happy to work in—the Depart-
ment of Mathematics and the Centre for Mathematics of the University of Coimbra
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and the Department of Applied Mathematics and IUUK of the Charles University
in Prague. Further, our thanks go to our colleagues and collaborators and numer-
ous members of the international community of categorical topology, point-free
topology and related topics for their kind interest and encouragement. And we
wish to express most warmly our thanks to our families for invaluable support,
understanding and patience.

Coimbra, Portugal Jorge Picado
Prague, Czech Republic Aleš Pultr
April 2020



Introduction

1

In the nineteenth century, mathematical analysis flourished. The correct formulation
of newly discovered facts needed precise thinking about phenomena like conver-
gence, continuity (and different types of continuity) or approximation. A space was
not any more just the Euclidean space or a part of it. More or less explicitly, people
started to think in terms of fairly general metric spaces. This was a great progress,
and this is how we treat with advantage a lot of questions of analysis (and not only
of analysis) since.

But it did not take long to observe that for some basic notions, notably in
particular for the most fundamental concept of continuity, the concrete metric
structure was unimportant: although the definitions were naturally expressed in
terms of distance (metric), replacing a concrete metric by others gave the same
results. What, then, is the structure that makes a set to a space? The attempts to
solve this problem culminated in Hausdorff’s ingenious idea published in 1914
(Grundzüge der Mengenlehre, Leipzig) that laid the foundation for (set-theoretic)
topology, the generalized geometry as we know it today. The idea is very transparent
and intuitive: for an element (point) of a set, one has to make the difference between
being surrounded by the set (like a boat in the middle of a lake, surrounded by water
from all sides) or just being in the set, possible on the border (like a boat landed,
still in water, but already bordering the shore). It turned out, perhaps surprisingly,
that for understanding continuity and related phenomena, it suffices to understand a
space as a set X with the additional information whether a subset U Ď X containing
an element x surrounds it (one speaks of being a neighbourhood of x) or not, with
a few very simple and very intuitive axioms.
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x Introduction

2

Instead of taking the idea of neighbourhood for the primitive concept, one can,
equivalently, start with the concept of an open set. In a space defined as above,
an open set is a set that is a neighbourhood of each of its points; conversely, if
we start with open sets, we can define a neighbourhood V of x as a set such that
there is an open U between x and V , that is, such that x P U Ď V . This variant
of the definition of a (topological) space was used very shortly after introducing
the neighbourhood idea. The system of axioms needed here is even simpler than
specifying the properties of neighbourhoods: it is only a simple property of a
sublattice of the lattice of all subsets of the set of points. While it may be slightly
less intuitive, it is technically much more expedient, and it is the definition mostly
used.

In fact, it is less intuitive only from the point of view of a space as a suitably
structured set of points. We can think of a space from another angle, though, and
then the concept will become very natural. Points are constructs, not very realistic
entities without extent. Forget about them and think of a space as about a system
of places, spots of a typically nontrivial extent. They join to make bigger spots, and
they “hold together” if they meet. This is all the geometry we need to start with,
and this is the pivotal idea of point-free topology. The reader certainly knows that
what we are speaking about is the so-called frame (or locale)—see [161, 220] or
the Appendix below—the generalized space some aspects of which are the main
topic of this book. Good and typical models of such generalized spaces are the
lattices �pXq of open sets of topological spaces.1 There are other frames, and the
theory is a considerable extension of the classical one (we will speak of the point-
based topological spaces as of the classical ones), but we will relate the explanatory
examples in this Introduction mostly to the �pXq. Just keep in mind that in the
spaces one usually works with, the open sets are models of such realistic nontrivially
extended easily understandable places, and that in the general theory such places
have their own existence and do not have to consist of points.

3

Now, let us return to the classical topological spaces. The general concept is
indeed very general, for many purposes too general (in one respect, however,
the Hausdorff’s axiomatics was not general enough; we will come to it shortly).
Therefore, one often restricts the scope of spaces in question by various extra
conditions, among which a particular role is played by the so-called separation

1The spaces X of a very broad class are determined and well represented by the lattice �pXq.
Therefore, one often speaks of the lattices as of the spaces.
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axioms. Already the original Hausdorff’s system of axioms contained such a
separation condition, requiring that

(H) any two distinct points have disjoint neighbourhoods

(in other words, any two distinct points are separated by neighbourhoods). This is
what we call today the Hausdorff axiom.

In the first years of topology, the interest was predominantly focused to spaces
that were more and more geometric (or, rather, more and more like spaces with the
structure determined by a metric). Thus, one considered the regularity requiring that

(reg) any point x and a closed set A S x have disjoint neighbourhoods

(a point not contained in a closed set and the closed set can be separated by
neighbourhoods), complete regularity where one separates such a pair of a point
and a closed set by a continuous real function f (in the sense that f pxq “ 1 and
f rAs “ t0u), or the normality requiring that

(norm) any two disjoint closed subsets have disjoint neighbourhoods.

Further, there are stronger types of normality like the complete normality where one
assumes that every subspace of the given one is normal (for the plain normality this
is not generally the case, unlike for the Hausdorff property or regularity) or perfect
normality where one assumes that any two disjoint closed subsets A,B can be
separated by a continuous real function f such that f´1rt0us “ A and f´1rt1us “
B (spaces satisfying this condition are already very similar to metrizable ones) or
full normality where every open cover has a star refinement (in normality this holds
for finite open covers).

Conversely, it turned out that there are applications of topology where the
Hausdorff axiom is too strong. This led to the weaker assumption that

(T1) any point can be separated from any other by a neighbourhood

or the even weaker (T0) where for any two distinct points, at least one can be
separated from the other.2

This is of course not an exhaustive list of separation axioms. Some more will be
presented in Chap. I, for instance, the very important TD , or the symmetry, and also
the particularly important sobriety (which is in fact an axiom of a different nature,
sometimes included into the separation area for quite good reasons), but the reader
has certainly already an idea what we have in mind when speaking of conditions of
this type.

4

In point-free topology, the need to specify the objects suitable for particular
purposes is perhaps even stronger than in the realm of classical spaces. First, of

2For the Tk notation, see Chap. I (Sect. 4.4); T1 is sometimes referred to as the Fréchet axiom.
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course, there are the questions whether that or other classical result has a point-
free counterpart. The spaces in such classical facts are mostly subjected to special
conditions that have to be somehow satisfied also in the extended situation. But
there are also (and often) phenomena that have no classical background or that are
more interesting in the point-free context. Such facts very rarely hold in absolute
generality. Hence, what are the (hopefully natural) conditions under which they do
hold? All this calls for studying the point-free separation.

This need was obvious from the very beginning of the theory. In particular,
already in the founding years of point-free topology, the role of regularity and
complete regularity was recognized,3 and very useful results on (completely) regular
frames were obtained (to name just one, the choice-free variant of the Stone–Čech
compactification presented in [43, 44]). Soon there also appeared an article [81]
showing that one can formulate separation axioms or suitable replacements in the
point-free setting. In [152], Isbell introduced and discussed important separation
conditions specific for the point-free spaces.

In the recent decades, separation was studied with a growing intensity. It
turned out, a.o., that some conditions (and some of them neglected for years, e.g.,
subfitness) play a much more important role than had been expected. Therefore, we
think that the subject deserves a comprehensive treatment. It will be the main topic
of this book.

Thus, what topics we wish to discuss? First of all, we will have to analyse the
conditions that extend or mimic the standard ones from classical theory. Their
adaptability to the point-free situation varies. Some of them can be directly or
almost directly translated (such as normality and also regularity). Then there are
translations based on a necessary and sufficient condition, not obvious, but better
suited for the point-free context. And there are also such that are translated only
seemingly: they can lead to very good analogues or sometimes to something quite
different. We will also meet cases where the translation is precise but not very useful,
because at a closer scrutiny they reduce to speaking on classical spaces only.

Secondly, but about this we will speak later, there are separation conditions
specific for the point-free context, not making much sense for classical spaces but
very useful in the general situation.

We will be interested, even in the case of spaces, only in the facts that can have a
point-free interpretation. Therefore,we will mostly ignore the axiom T0. Two points
that cannot be distinguished (that is, separated) by an open set have to be treated,
in our perspective, as one. Therefore, for trivial reasons, there will be made no
attempt to find an analogue of this axiom for frames, and, however, when speaking
of classical spaces, the axiom T0 will be automatically assumed (perhaps now and
then recalled, only not to be forgotten).

Before discussing concrete examples: let us agree to call an extension of a
concept conservative if, when applied to the frame �pXq, it coincides with the

3We speak of the 1960s and later; a very important separation condition was discovered and used
in 1938 (by Wallman [282]) and then neglected for decades, see paragraphs 7 and 8 below.
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homonymous property of X. It can sometimes happen that a definition is not
conservative, but so useful that it deserves keeping the name; however, there are
also cases of conservative extensions that are practically useless.

5

From the conditions above, only one, namely normality, has an absolutely straight-
forward translation into the language of open sets. Replacing the closed sets A,B

by their open complements C,D, we can reformulate the axiom (norm) for a space
X by requiring that

for any two open sets C,D such that C Y D “ X, there are disjoint opens
U,V such that C Y U “ X “ D Y V .

But also the regularity condition is very simple. For open sets, define the rather
below relation

V ă U ”df V Ď U

(in the language of the lattice of open sets, V Ď U can be expressed, using the
pseudocomplement V ˚ “ intpX � V q of V , as V ˚ Y U “ X). Then it is easy
to see that a space is regular if and only if every open U is equal to the unionŤtV | V ă Uu.

This formula is an example of an almost direct translation mentioned above.
Note that it comes immediately from a (very straightforward) characterization of
regularity standardly used in classical topology, namely that regular spaces are those
in which every neighbourhood of a point contains a closed one. (Complete regularity
can be expressed similarly, with a variant of the relation ă.4 It needs however some
more reasoning (see Chap. VI, Sects. 1 and 2) which brings a useful insight into the
classical spatial condition as well.)

To give an example of a not quite straightforward characterization yielding
a conservative extension, here is the Johnstone–Paseka–Šmarda–Sun Shu–Hao
formula for the Hausdorff property (why so many authors: the formula merged from
very differently motivated approaches by Johnstone and Sun Shu-Hao [171] and by
Paseka and Šmarda [216]):

for any two open sets A,B such that X ‰ A Ę B, there are disjoint opens
U,V such that U Ę A, V Ę B.

4Namely, the completely below relation ăă introduced by Banaschewski in his 1953 doctoral
dissertation [19], replacing a notion Alexandroff had introduced using real-valued continuous
functions [2].
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(It is very easy to prove that this is equivalent to the separation of points as in
(H) above, one has only to reason just a bit. Note that incomparability of A and B

would not do the job.)

6

The Hausdorff axiom, a point-free formulation of which we have presented in the
previous paragraph, is fairly instructive. There are several approaches, two of them
merging in the conservative formula we have recalled above.

Another one (Isbell [152]) was based on the following elegant (and obvious)
classical characterization: a (T0) topological space is Hausdorff if and only if the
diagonal Δ “ tpx, xq | x P Xu is closed in the product X ˆ X. Now this is
nice: we know what the products L ‘ L in the category of locales are, a diagonal
subobject is well defined and well understood, and also closedness of subobjects
is a straightforward concept (precisely corresponding to classical closedness of
subspaces). Thus, we can say that a locale L is Hausdorff if the diagonal in the
square L ‘ L is a closed sublocale (generalized subspace). But beware: we have
forgotten that the product in the category of locales does not quite correspond to
the classical one: the category is bigger and hence the universality of the product is
checked by many more objects than in the category of topological spaces, resulting
in the fact that the product of locales �pXq ‘�pXq does not necessarily correspond
to the product of spaces X ˆ X. This is an example of a definition that is translated
only seemingly. And indeed thus defined Hausdorff property (call it (sH)) is not
conservative, that is, a space can be classically Hausdorff while �pXq is not (sH).
But it would be wrong to dismiss it. The situation is strange: locales satisfying this
non-conservative definition behave like Hausdorff objects should. In many respects,
they behave better than those with the conservative property (just to give an example,
(sH) combined with compactness yields regularity, the conservative one does not).
This shows that sometimes it can be advisable to mimic a classical property by
something that is just analogous and not necessarily a precise extension.

There are several interesting facets of the Hausdorff property in the point-free
context. Another one is an example of a contingency that was not mentioned yet.
When extending a concept we may have a choice between two necessary and
sufficient conditions that are (of course) equivalent for spaces but may diverge in
the broader situation. Both the extended notions are then conservative, but different
(see Chaps. III, 3.4 and 4.1).

7

We have seen that there are sometimes reasons for preferring a non-conservative
analogue for a definition of an extended concept, even if we have a perfectly
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correct conservative one. The axiom T1 will be an even better example. Consider
the following necessary and sufficient condition:

A (sober5) space X is T1 if and only if all the prime elements in �pXq are
maximal.

Here we have a nice statement in the language of open sets. Primeness is a
lattice concept, not to speak of maximality. Yet, taking it for a definition of a
frame separation axiom (“a frame is said to be T1 if each of its prime elements is
maximal”), which is sometimes done, is not particularly helpful. Why? It is because
the primes represent the points of the spectrum (see A.3.4) so that one actually
speaks only about the spectrum �L, the spatial part of L. Defining a property rP for
a frame L by requiring P for �L is somewhat cheap, but first of all it is practically
useless: it cannot say anything new in the extended point-free area.6

This leads to an example of a separation condition that is inherently point-free
(although it does make perfect sense for spaces as well). Consider the following
requirement on a (complete) lattice L:

@a, b P L pif a ę b then there is a c P L such that a _ c “ 1 ‰ b _ cq.

This property is called subfitness. It appeared, as a suitable substitute for T1 already
in 1938, in one of the first papers using point-free reasoning (Wallman [282]), under
another name, long before point-free topology started to be cultivated. (It obviously
holds in T1-spaces: If A Ę B takes an x P A � B; then, we have the open C “
X � txu with A Y C “ X ‰ B Y C. Moreover, under a very weak condition TD , it
is equivalent with T1.)

Subfitness is strictly weaker than T1 in classical spaces (see II.2.2). For frames
it is extremely useful. It is not only a very good replacement of T1; we will meet
it again and again as a sufficient (often, necessary and sufficient) condition for
important point-free facts.

8

Although subfitness makes a good sense in classical topological spaces (see Sect. 2.1
in Chap. II), we cannot view it as a translation of a classical property. It appeared in
the aforementioned Wallman’s article [282] as an inherent lattice theoretic concept

5For sobriety see I.7. We think now of the typical primes X� txu; if txu ‰ txu, we have two such
open sets, both prime, comparable.
6Admittedly, this is a rather harsh rebuff. Thus defined T1 has its role in analysing analogues C of
stronger classical properties. The question whether such C implies T1 is certainly legitimate (see,
e.g., IV.1). But we are speaking on the property in se.
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(called disjunctivity7) that could serve as a helpful replacement of T1. When it
reappeared after more than three decades, in a different but equivalent form, it was
as a specific property of point-free spaces, already studied as objects in their own
right.

Indeed, in 1972, Isbell [152] defined subfitness as the property that

(sfit) every open sublocale (generalized subspace) is a join of closed ones,

together with the fitness where he required that

(fit) every closed sublocale (generalized subspace) is a meet of open ones.

These two properties look, deceptively, as being somehow dual to each other.
They are not. Actually, the latter can be characterized as hereditary subfitness
(subfitness itself is not inherited by subobjects) and it is much stronger. While in
spaces subfitness is weaker than T1, fitness is almost as strong as regularity. The
discrepancy may be surprising, but keep in mind that in the point-free context a
space can have a lot of new sublocales, and requiring a given property for all of
them is a rather strong claim.

The open-closed formulas for subfitness and fitness are good examples of
conditions that look like translations from the classical theory but are indeed not so.
In fact, requiring in spaces that every open subset is a union of closed ones makes
a good, but different, sense (namely, it is equivalent with the so-called symmetry,
which the subfitness is not), and by De Morgan formula the same is obtained
requiring that every closed subset is an intersection of open ones. (Although open
resp. closed sublocales are in perfect correspondence with open and closed subsets,
the lattice structure of the system of sublocales is more complex; also, one has just
a one-sided De Morgan formula.)

The formula for fitness is, perhaps surprisingly, equivalent with the formally
stronger

(fit’) every sublocale whatsoever is a meet of open ones.

We have already stated that fitness and subfitness are, despite the appearance, far
from being dual to each other. Hence, one can hardly expect that the equivalence
of fitness with (fit’) should have a full analogue for subfitness. And indeed the
condition that

every sublocale whatsoever is a join of closed ones

is much stronger than subfitness (actually, even much stronger than fitness). It turns
out that it is equivalent with the well-known scatteredness, a property that is perhaps
more important in point-free topology than in the classical one (in particular,
scattered spaces are precisely those for which subspaces and sublocales coincide).

7Wallman had in mind the lattice of closed sets. Much later, when the opposite perspective of
open sets was already firmly established, the authors of, e.g., [192, 254, 255] started to speak of
conjunctivity.
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Note that the analogous claims about spaces and subspaces as above are again the
same, every subset is a union of closed ones if and only if every open subset is an
intersection of open ones, and it is nothing else but T1. Here we can see the pitfalls
of extending notions by analogy: we have two necessary and sufficient conditions
for T1 and if we extend them with general subobjects instead of subspaces, we
eventually obtain two very strong (distinct) conditions.

We have got acquainted with the setting. Now we can briefly outline the contents.
In Chap. I, we summarize the well-known separation axioms in classical topo-

logical spaces. We add some more: symmetry, the very important TD , and sobriety.
We start to think in terms of the lattice of open sets.

Chapter II is devoted to the basics of subfitness and fitness. It starts with T1 and
the point-free TU (which differs from the spatial case where it coincides with sym-
metry). Some consequences of subfitness are presented: in particular, a somewhat
surprising useful formula for the Heyting operation (and pseudocomplement) and
a spatialization theorem. Isbell’s formulas for subfitness and fitness are introduced,
and fitness is shown to be the hereditarily modified subfitness. Specific properties of
congruences under these conditions are presented.

In Chap. III, we turn to axioms of Hausdorff type. We introduce five different
approaches one encounters in literature and discuss the resulting four concepts (two
of the approaches merge) and show how they relate. Then, after introducing the
necessary techniques, we prove some particularly nice properties of the “strong
Hausdorff axiom” (the closed diagonal one) in which the others fail or most
probably fail: the density theorem, the facts that under this condition compact
sublocales are closed, and that strongly Hausdorff compact frames have stronger
separation properties.

Chapter IV summarizes the “low separation properties”. First, relations between
T1, TU and subfitness are briefly discussed. Then, two more characterizations of the
strong Hausdorff property are introduced, and the merits of the individual variants
of point-free Hausdorff axioms are pointed out. After presenting some implications
and (sometimes surprising) non-implications, we outline the tangle of relations in
the low separation world.

In Chap. V, we discuss regularity, the first separation axiom that had been widely
technically used in point-free theory and also the previously defined fitness from
the perspective of its closedness to regularity. We show that regularity implies the
strong Hausdorff property and all the lower separation properties. The historical
role is emphasized and proofs originally used when regularity substituted weaker
assumptions recalled. Some properties of fitness presenting this property as a
relaxed regularity are proved, together with discussing other related assumptions.
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In [220], we had an incorrect proof of reflexivity of fitness; we pay the debt now by
rendering a correct one.

Chapter VI is concerned with complete regularity. First, we briefly discuss the
relation “completely below” (to the analysis of which we return at the end of
the chapter). Complete regularity is compared with regularity; we recall examples
proving it is strictly stronger. The role of complete regularity in uniformization is
recalled. The structure of cozero elements is discussed, and a Lindelöf reflection (a
specifically point-free phenomenon) is presented. Finally, a choice-free variant of
complete regularity is introduced (an application of which is, e.g., the choice-free
Stone–Čech compactification).

In Chaps. VII and VIII, we treat the question of normality and various stronger
properties (omitting paracompactness, also known as full normality, which had its
own chapter in [220]). We start with plain normality and its basic properties. Next,
we discuss the behaviour of finite covers and present the Wallman compactification
of a subfit frame, showing that, under normality, it coincides with the Stone–Čech
compactification. We conclude Chap. VII with a discussion of complete normality,
the hereditary version of normality.

In Chap. VIII, we have two more variants of normality. There is the perfect
normality, which turns out to be a conjunction of the classical perfectness (that
is slightly different in the point-free context due to the different behaviour of
sublocales and subspaces) and normality. Next, we deal with the technically
important collectionwise normality, weaker than paracompactness. Then we present
point-free real-valued functions and prove, in the penultimate section, the Katětov–
Tong insertion theorem, using to advantage the techniques of the point-free real line.
We finish with a unified view of several weaker variants of normality and a glimpse
of the parallel between normality and extremal disconnectedness.

When comparing fitness and subfitness in 8 above, we mentioned that unlike
fitness, where we can think of all sublocales as intersections of open ones, arbitrary
sublocales being joins of closed ones is a property much stronger than subfitness.
This and the theory of an ensuing envelope is the topic of Chap. IX. First, we recall
the concept of scatteredness, both in the point-free and in the classical contexts, and
show that for frames it coincides with the stronger formula from 8. For spaces, we
present the Simmons (and Niefield–Rosenthal) theorems on sublocales in scattered
spaces and frames. The frame of joins of closed sublocales ScpLq is introduced. It
is shown that for subfit frames it is a Boolean algebra, and more (for instance, that
it is the maximal essential extension).

The last chapter contains some facts that did not exactly fit into the individual
chapters.

For the convenience of the reader, we add a concise appendix containing some
definitions and facts they may prefer to have at hand rather than having to look for
them elsewhere. Besides repeating facts from our previous monograph [220], it also
presents facts that are not quite so easy to look for in the literature (like, e.g., the
frame coproduct ‘ as a tensor product) and simpler proofs of known facts.
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