Duração: 40m Teste 1 26/02/08

NOME DO ALUNO: _

(Justifique convenientemente as suas respostas.)

- Considere o anel $A = (\mathbb{Z}_6, \oplus_6, \otimes_6)$.
 - (1) Determine, em A, os elementos -2 e 5^{-1} .
 - (2) A tem divisores de zero? Em caso afirmativo, liste-os.
 - (3) Para que elementos $a \in A$ é válida a lei do corte

$$\forall b, c \in A (ab = ac \Rightarrow b = c)$$
?

• Seja $(\mathcal{F}, +, \cdot)$ o anel das funções $f : \mathbb{Z}_6 \to \mathbb{Z}_6$ com a adição e multiplicação definidas do seguinte modo:

$$\forall f, g \in \mathcal{F} \ \forall x \in \mathbb{Z}_6 \ (f+g)(x) = f(x) \oplus_6 g(x), \quad (f \cdot g)(x) = f(x) \otimes_6 g(x).$$

- (4) Qual é a identidade deste anel? E os divisores de zero?
- (5) Calcule o inverso (para a multiplicação) do elemento $f: \mathbb{Z}_6 \to \mathbb{Z}_6$ definido por f(n) = 1 para $n \leq 1$ e f(n) = 5 para n > 1.
- (6) Quais são os elementos invertíveis de \mathcal{F} ?
- Para cada par $(a, b) \in \mathbb{Z}_6 \times \mathbb{Z}_6$ considere o conjunto $\mathcal{F}_{(a,b)} = \{ f \in \mathcal{F} \mid f(a) = b \}.$
 - (7) Para que valores de a e b é que $\mathcal{F}_{(a,b)}$ é um subanel de \mathcal{F} ?
 - (8) Mostre que, para qualquer $a \in \mathbb{Z}_6$, $\mathcal{F}_{(a,0)}$ é um ideal de \mathcal{F} . É primo?
 - (9) O anel quociente $\mathcal{F}/\mathcal{F}_{(a,0)}$ é isomorfo a \mathbb{Z}_6 ?