$SOLU\tilde{COES}$ Teste 3 13/05/08

1. Determine o inverso de $2 + 2\sqrt{3}$ em $\mathbb{Q}(\sqrt{3})$.

Solução:

[Método geral] Queremos calcular o inverso de $2\sqrt{3} + 2$ em $\mathbb{Q}(\sqrt{3}) = \{a + b\sqrt{3} \mid a, b \in \mathbb{Q}\}$. Como $x^2 - 3$ é um polinómio que tem $\sqrt{3}$ por raiz e

$$x^{2} - 3 = (2x + 2)(\frac{1}{2}x - \frac{1}{2}) - 2$$

$$\Leftrightarrow (x^{2} - 3) - (2x + 2)(\frac{1}{2}x - \frac{1}{2}) = -2$$

$$\Leftrightarrow -\frac{1}{2}(x^{2} - 3) + (2x + 2)(\frac{1}{4}x - \frac{1}{4}) = 1$$

então fazendo $x = \sqrt{3}$ nesta última identidade obtemos

$$(2\sqrt{3}+2)(\frac{1}{4}\sqrt{3}-\frac{1}{4})=1.$$

Portanto

$$(2\sqrt{3}+2)^{-1} = \frac{1}{4}\sqrt{3} - \frac{1}{4}.$$

[Alternativa: Como costuma calcular o inverso de um número complexo? Repare que o processo funciona em qualquer extensão $\mathbb{Q}(\theta)$ de grau 2]

$$\frac{1}{2+2\sqrt{3}} = \frac{1}{2+2\sqrt{3}} \ \frac{2-2\sqrt{3}}{2-2\sqrt{3}} = \frac{2-2\sqrt{3}}{4-12} = \frac{1}{4}\sqrt{3} - \frac{1}{4}.$$

2. Determine a extensão $\mathbb{Q}(\sqrt{3},i)$. Qual é o grau sobre \mathbb{Q} desta extensão?

Solução: Consideremos a extensão $\mathbb{Q}(\sqrt{3},i)$ de \mathbb{Q} . Pelo Teorema da Torre,

$$[\mathbb{Q}(\sqrt{3},i):\mathbb{Q}] = [\mathbb{Q}(\sqrt{3},i):\mathbb{Q}(\sqrt{3})] \ [\mathbb{Q}(\sqrt{3}):\mathbb{Q}] = [\mathbb{Q}(\sqrt{3},i):\mathbb{Q}(\sqrt{3})] \times 2$$

pois x^2-3 é o polinómio mínimo de $\sqrt{3}$ sobre \mathbb{Q} . Qual é o polinómio mínimo de i sobre $\mathbb{Q}(\sqrt{3})$? i é raiz de $x^2+1\in\mathbb{Q}[x]\subseteq\mathbb{Q}(\sqrt{3})[x]$. Será que este polinómio é irredutível sobre $\mathbb{Q}(\sqrt{3})$? Sim, pois as suas duas raízes $\pm i$ não pertencem a $\mathbb{Q}(\sqrt{3})\subseteq\mathbb{R}$.

Portanto, $x^2 + 1$ é o polinómio mínimo de i sobre $\mathbb{Q}(\sqrt{3})$, pelo que

$$[\mathbb{Q}(\sqrt{3}, i) : \mathbb{Q}(\sqrt{3})] = 2,$$

sendo $\{1, i\}$ uma base de $\mathbb{Q}(\sqrt{3}, i)$ sobre $\mathbb{Q}(\sqrt{3})$.

Em conclusão, $[\mathbb{Q}(\sqrt{3},i):\mathbb{Q}]=4$ e $\{1,\sqrt{3},i,\sqrt{3}\,i\}$ constitui uma base de $\mathbb{Q}(\sqrt{3},i)$ sobre \mathbb{Q} . Assim,

$$\mathbb{Q}(\sqrt{3},i) = \{a+b\sqrt{3}+ci+d\sqrt{3}\,i\mid a,b,c,d\in\mathbb{Q}\}.$$

3. Supondo que $\theta^2 = -3\theta + 3$, determine o polinómio mínimo de θ sobre \mathbb{Q} . Qual é o polinómio mínimo de θ^2 sobre \mathbb{Q} ?

Solução: θ é raiz de $p(x) = x^2 + 3x - 3 \in \mathbb{Q}[x]$, que é mónico e irredutível sobre \mathbb{Q} (pelo critério de Eisenstein, p = 3). Portanto p(x) é o polinómio mínimo de θ sobre \mathbb{Q} . Quanto a θ^2 :

[Método geral] Como $[\mathbb{Q}(\theta):\mathbb{Q}]=2$, os elementos 1, θ^2 e θ^4 são linearmente dependentes pelo que existem escalares racionais não todos nulos, a_0, a_1, a_2 , tais que $a_0 + a_1\theta^2 + a_2\theta^4 = 0$. Uma vez que $\theta^2 = -3\theta + 3$, podemos escrever

$$0 = a_0 + a_1(-3\theta + 3) + a_2(-3\theta + 3)^2$$

$$= a_0 + a_1(-3\theta + 3) + a_2(9 - 18\theta + 9\theta^2)$$

$$= a_0 - 3a_1\theta + 3a_1 + 9a_2 - 18a_2\theta + 9a_2(-3\theta + 3)$$

$$= a_0 + 3a_1 + 36a_2 + (-3a_1 - 45a_2)\theta.$$

Por sua vez $\{1,\theta\}$ constitui uma base de $\mathbb{Q}(\theta)$ donde

$$\begin{cases} a_0 + 3a_1 + 36a_2 = 0 \\ 3a_1 + 45a_2 = 0. \end{cases} \Leftrightarrow \begin{cases} a_0 = 9a_2 \\ a_1 = -15a_2. \end{cases}$$

Fazendo $a_2 = 1$ obtemos $a_1 = -15$ e $a_0 = 9$ e concluímos que $9 - 15\theta^2 + \theta^4 = 0$, isto é, θ^2 é raiz do polinómio $x^2 - 15x + 9$. Este polinómio é mónico e irredutível sobre \mathbb{Q} (as suas duas raízes, que podem ser calculadas pela fórmula resolvente, são irracionais) pelo que é o polinómio mínimo de θ^2 sobre \mathbb{Q} .

[Alternativa] Se θ é raiz de $p(x) = x^2 + 3x - 3$ e $\theta^2 = -3\theta + 3$ (isto é, $\theta = \frac{\theta^2 - 3}{-3}$), então $0 = p(\theta) = p\left(\frac{\theta^2 - 3}{-3}\right)$. Portanto θ^2 é raiz de

$$p\left(\frac{x-3}{-3}\right) = \left(\frac{x-3}{-3}\right)^2 + 3\left(\frac{x-3}{-3}\right) - 3 = \dots = x^2 - 15x + 9.$$