$SOLU ilde{COES}$ Teste 2 29/04/2011

1.	(a)	Os polinómios	$x^2 + x + 2$	$e x^{3} +$	$x^{2} + 3x$	+1 d	$e \mathbb{Q}[x]$	são	primos	entre si	
----	-----	---------------	---------------	-------------	--------------	------	-------------------	-----	--------	----------	--

(b) Se C é um corpo, $p_1(x), p_2(x) \in C[x]$ são do mesmo grau e $p_1(x) \mid p_2(x)$ então $p_1(x) = p_2(x)$.

(c) $x^6 - 3x^4 + 3x^2 + 6$ é irredutível sobre \mathbb{Q} .

×	

(d) $x^3 - 3x^2 + 3x - 9$ é irredutível sobre \mathbb{Q} .

[(a) Seguindo o Algoritmo de Euclides:

$$x^{3} + x^{2} + 3x + 1 = x(x^{2} + x + 2) + x + 1,$$

 $x^{2} + x + 2 = x(x + 1) + 2.$

Portanto, o máximo divisor comum de $x^2 + x + 2$ e $x^3 + x^2 + 3x + 1$ é o polinómio mónico associado do polinómio constante 2, isto é, 1. São assim primos entre si.

- (b) Contra-exemplo: $p_1(x)=x$ e $p_2(x)=2x$. De facto, o que se pode concluir das hipóteses enunciadas é que $p_1(x)$ e $p_2(x)$ são polinómios associados, não necessariamente iguais.
- (c) Critério de Eiseinstein (p=3): $p\mid 6,p\mid 3,p\nmid 1,p\nmid 6$.
- (d) Aqui já não é possível concluir nada pelo critério de Eiseinstein, teremos que usar o critério das raízes. As possíveis raízes racionais do polinómio dão $\pm 1, \pm 3, \pm 9$. Verificando obtemos a raiz 3.]
- 2. Seja θ uma raiz não racional do polinómio da alínea anterior (1.d).
 - (a) Determine a extensão $\mathbb{Q}(\theta)$.
 - (b) Qual é o inverso de $1 + \theta$ em $\mathbb{Q}(\theta)$?

Solução:

(a) Sabemos já que $x^3 - 3x^2 + 3x - 9 = (x - 3)(x^2 + 3)$. Então θ é raiz de $x^2 + 3$, que é claramente o polinómio mínimo de θ sobre \mathbb{Q} . Portanto $\mathbb{Q}(\theta) = \{a + b\theta \mid a, b \in \mathbb{Q}\}$.

(b)

[Método geral] Pelo algoritmo da divisão obtemos

$$x^{2} + 3 = (x - 1)(x + 1) + 4,$$

donde $4 = x^2 + 3 - (x - 1)(x + 1)$, isto é, $1 = \frac{x^2 + 3}{4} - \frac{(x - 1)(x + 1)}{4}$. Substituindo x por θ obtemos por fim $1 = -\frac{\theta - 1}{4}(\theta + 1)$, pelo que $(1 + \theta)^{-1} = \frac{1}{4} - \frac{1}{4}\theta$.

[Alternativa] Queremos determinar racionais a, b tais que $(1 + \theta)(a + b\theta) = 1$. Como $(1 + \theta)(a + b\theta) = a + b\theta + a\theta + b\theta^2 = a + b\theta + a\theta + -3b = (a - 3b) + (a + b)\theta$ e $\{1, \theta\}$

é uma base do espaço vectorial $\mathbb{Q}(\theta)$ sobre o corpo \mathbb{Q} , necessariamente a-3b=1 e a+b=0. Resolvendo este sistema de equações em \mathbb{Q} obtemos $a=\frac{1}{4}$ e $b=-\frac{1}{4}$. Portanto $(1+\theta)^{-1}=\frac{1}{4}-\frac{1}{4}\theta$.

[Alternativa 2: Como costuma calcular o inverso de um número complexo? Repare que o processo funciona em qualquer extensão $\mathbb{Q}(\theta)$ de grau 2]

$$(1+\theta)^{-1} = \frac{1}{1+\theta} = \frac{(1-\theta)}{(1+\theta)(1-\theta)} = \frac{1-\theta}{1-\theta^2} = \frac{1-\theta}{1+3} = \frac{1}{4} - \frac{1}{4}\theta.$$

- 3. (a) $\mathbb{R}[x]/\langle x^2 2x + 2 \rangle$ é um corpo? Porquê?
 - (b) Mostre que todo o elemento de $\mathbb{R}[x]/\langle x^2-2x+2\rangle$ é uma classe da forma $a+bx+\langle x^2-2x+2\rangle$.
 - (c) Determine uma fórmula para a multiplicação

$$\left(a+bx+\langle x^2-2x+2\rangle\right)\cdot\left(c+dx+\langle x^2-2x+2\rangle\right)$$
 em $\mathbb{R}[x]/\langle x^2-2x+2\rangle$.

Solução:

- (a) Sim, porque $x^2 2x + 2$ é irredutível sobre \mathbb{R} (o respectivo discriminante é negativo pelo que as suas duas raízes são imaginárias).
- (b) Seja $p(x) + \langle x^2 2x + 2 \rangle \in \mathbb{R}[x]/\langle x^2 2x + 2 \rangle$. Dividindo p(x) por $x^2 2x + 2$ obtém-se $p(x) = q(x)(x^2 2x + 2) + r(x)$

onde r(x) = ax + b para algum par de reais a, b. Portanto

$$p(x) + \langle x^2 - 2x + 2 \rangle = (q(x)(x^2 - 2x + 2) + ax + b) + \langle x^2 - 2x + 2 \rangle$$
$$= ax + b + \langle x^2 - 2x + 2 \rangle.$$

(c)
$$(a + bx + \langle x^2 - 2x + 2 \rangle) \cdot (c + dx + \langle x^2 - 2x + 2 \rangle) =$$

$$= (a + bx)(c + dx) + \langle x^2 - 2x + 2 \rangle$$

$$= (ac + (ad + bc)x + bdx^2) + \langle x^2 - 2x + 2 \rangle$$

$$= (ac - 2bd) + (ad + bc + 2bd)x + \langle x^2 - 2x + 2 \rangle$$
pois $bdx^2 = bd(x^2 - 2x + 2) + bd(2x - 2)$.

Nota: Denotando cada classe $a+bx+\langle x^2-2x+2\rangle$ abreviadamente por a+b+bi, reconhecemos aqui a fórmula da multiplicação de números complexos:

$$(a+b+bi)(c+d+di) = (ac-2bd+ad+bc+2bd) + (ad+bc+2bd)i = (ac+ad+bc) + (ad+bc+2bd)i.$$

De facto, a correspondência

$$a + bx + \langle x^2 - 2x + 2 \rangle \longmapsto a + b + bi$$

define um isomorfismo entre os corpos $\mathbb{R}[x]/\langle x^2-2x+2\rangle$ e \mathbb{C} .