Duração: 1h30m

1ª Frequência

25/03/2019

Justifique convenientemente as suas respostas e indique os principais cálculos.

1. (a) Indique, para cada um dos seguintes polinómios, se são ou não irredutíveis em $\mathbb{R}[x]$:

$$6x + 6$$
, $x^2 + 4$, $x^3 + 1$.

(b) Indique, para cada um dos seguintes polinómios, se são ou não irredutíveis em $\mathbb{Q}[x]$:

$$5x^5 - 6x^4 - 3x^2 + 9x - 15$$
, $3x^5 - 4x^3 - 6x^2 + 6$, $x^3 + 1$.

(c) Indique, para cada um dos seguintes polinómios, se são ou não irredutíveis em $\mathbb{Z}[x]$:

$$2x^2 + 2$$
, $x^2 - 1$.

- 2. Seja $p(x) = x^5 6x^4 + 15x^3 20x^2 + 14x 4 \in \mathbb{Q}[x].$
 - (a) Sabendo que 1+i é raiz de p(x), determine a factorização de p(x) em factores irredutíveis de $\mathbb{Q}[x]$.
 - (b) Enumere os divisores (a menos de associados) de p(x) em $\mathbb{Q}[x]$.
- 3. Considere o ideal $I = \langle x^3 + x + 1 \rangle$ no anel $A = \mathbb{Z}_2[x]$.
 - (a) Quantos elementos tem A/I? Enumere-os, representando cada p(x) + I simplesmente por p(x).
 - (b) A/I é um corpo?
 - (c) Determine o inverso de $x^2 + x$ em A/I.
- 4. (a) Seja C um corpo. Prove que todo o ideal de C[x] é principal.
 - (b) No caso $C=\mathbb{Q}$, determine m(x) tal que $\langle x^2-2x+1 \ , \ x^3-6x^2+11x-6 \rangle = \langle m(x) \rangle$.