Duração: 1h15m Exame de Recurso (parte 1)

22/06/2020

Justifique convenientemente as suas respostas e indique os principais cálculos.

1. Considere o anel

$$M_2(\mathbb{Z}) = \{ [a_{ij}] \mid a_{i,j} \in \mathbb{Z}, i, j = 1, 2 \}$$

das matrizes 2×2 em \mathbb{Z} , com as operações usuais + e \times de adição e multiplicação de matrizes.

- (a) Mostre que $(M_2(\mathbb{Z}), +)$ é um grupo.
- (b) Prove que $P = \{[a_{ij}] \in M_2(\mathbb{Z}) \mid a_{ij} \notin par\} \notin um ideal de <math>M_2(\mathbb{Z})$.
- (c) Defina ideal primo. O ideal P da alínea anterior é primo?
- (d) Quantos elementos terá o anel quociente $M_2(\mathbb{Z})/P$?
- 2. (a) Determine a factorização de $x^5 + 9x^4 + 18x^3 + 12x + 3$ em elementos irredutíveis em $\mathbb{Q}[x]$ e em $\mathbb{Z}_2[x]$.
 - (b) No anel de polinómios $\mathbb{Z}_{16}[x]$, descreva os polinómios d(x) para os quais é possível dividir qualquer polinómio a(x) por d(x).
- 3. Sejam $A \in B$ anéis e $f: A \to B$ uma função de A em B.
 - (a) Quando é que se diz que f é um homomorfismo de anéis? Mostre que, nesse caso, $f(0_A) = 0_B$.
 - (b) Suponha que A e B são domínios de integridade. Prove que necessariamente f é a aplicação nula (isto é, $\{f(a) \mid a \in A\} = \{0_B\}$) ou então $f(1_A) = 1_B$.

Duração: 1h15m

Exame de Recurso (parte 2)

22/06/2020

Justifique convenientemente as suas respostas e indique os principais cálculos.

- 1. Seja θ uma raiz não nula do polinómio $x^4 x^3 + x^2 2x \in \mathbb{Q}[x]$. Determine:
 - (a) $\frac{\theta^2}{\theta^2+1}$ e exprima o resultado como combinação linear dos elementos duma base do espaço vectorial $\mathbb{Q}(\theta)$ sobre \mathbb{Q} .
 - (b) O polinómio mínimo de θ^2 sobre \mathbb{Q} .
- 2. Sejam K um subcorpo de um corpo L e $\theta \in L$ um elemento algébrico sobre K. Prove que

$$K[\theta] = \{ p(\theta) \mid p(x) \in K[x] \}$$

é um corpo, justificando os seguintes passos:

- (a) $K[\theta]$ é um domínio de integridade.
- (b) Sendo $p(\theta)$ um elemento não nulo de $K[\theta]$ e m(x) o polinómio mínimo de θ sobre K, então
 - (b1) p(x) não é múltiplo de m(x);
 - (b2) existem $t(x), s(x) \in K[x]$ tais que t(x) p(x) + s(x) m(x) = 1;
 - (b3) $t(\theta) p(\theta) = 1$.
- 3. Seja $\mathcal C$ o código binário de comprimento 7, com distância mínima 3, definido pela matriz

- (a) Qual é a eficácia de \mathcal{C} na detecção de erros? E na correcção de erros?
- (b) Supondo que, no máximo, só erros singulares podem ocorrer na transmissão, corrija os erros nas mensagens $M_1=0101001$ e $M_2=0010100$.