Folha 6 - TP

## Contagem

- 1. Quantas cadeias de bits de comprimento sete existem?
- 2. Quantas funções existem de um conjunto com m elementos para um conjunto de n elementos? Quantas delas são injectivas?
- 3. Qual é o valor de k após o seguinte algoritmo ter sido executado?

```
k := 0
for i_1 := 1 to 10
for i_2 := 1 to 100
for i_3 := 1 to 1000
k := k + 1
```

- 4. Numa determinada linguagem de computação, o nome das variáveis é uma palavra com um ou dois caracteres alfanuméricos, onde as letras maiúsculas e minúsculas não são distinguidas (um caracter alfanumérico é uma das 26 letras do alfabeto inglês ou um dos 10 algarismos). Além disso, o nome deve começar por uma letra e deve ser diferente de cinco cadeias de dois caracteres reservados para comandos de programação. Com quantas variáveis diferentes poderemos trabalhar?
- 5. A *password* de um computador é formada por uma letra seguida de 3 ou 4 algarismos. Qual é o número total de *passwords* que é possível formar?
- 6. Dizemos que um número é *equilibrado* caso um dos seus algarismos seja a média dos outros. Quantos números equilibrados de 3 algarismos existem?
- 7. A um número como 19977991, que lido da direita para a esquerda, coincide com o número original, chama-se *capicua*. Quantas capicuas de 7 algarismos, com 4 algarismos diferentes, existem?
- 8. Chamemos *número simples* a um número inteiro positivo formado apenas pelos algarismos 1 ou 2 (ou ambos). Quantos números simples existem, inferiores a um milhão?
- 9. De quantas maneiras podemos seleccionar 4 jogadores, a partir de uma equipa de 10 jogadores, para jogarem 4 jogos de ténis, sendo os jogos ordenados?
- 10. Calcule o número de equipas de 8 jogadores que é possível formar com 3 portugueses e não mais do que 2 brasileiros, escolhidos entre 10 portugueses, 10 brasileiros e 10 espanhóis.
- 11. Dados n pontos numa circunferência, quantos polígonos de p lados ( $p \le n$ ) é possível formar com tais pontos?
- 12. Quantos números de 3 algarismos se podem formar com os algarismo 1,2,3,4,5,6:
  - (a) sem repetição de algarismos? (b) podendo haver repetição de algarismos?
  - (c) de modo que sejam pares? (d) de modo que sejam pares e constituídos por algarismos distintos?
- 13. Se os conjuntos A e B têm, respectivamente, 6909 e 1107 elementos, e  $A \cap B$  tem 225 elementos, quantos elementos possui  $A \cup B$ ?
- 14. Calcule o cardinal do conjunto S, sabendo que os conjuntos  $S \cup T$ , T e  $S \cap T$  têm, respectivamente, 36, 19 e 8 elementos.

- 15. O Clube Pitágoras tem 100 sócios do sexo feminino e 80 sócios do sexo masculino. O Clube Euclides tem 80 sócios do sexo feminino e 100 sócios do sexo masculino. Existem exactamente 60 raparigas que são sócias de ambos os clubes. O número total de pessoas que pertencem a pelo menos um dos clubes é igual a 230. Quantos rapazes são sócios do Clube Pitágoras e não são sócios do Clube Euclides?
- 16. Qual é a probabilidade de um inteiro entre 1 e 10000, escolhido ao acaso, não ser quadrado perfeito nem cubo perfeito?
- 17. Uma pessoa escreveu 5 cartas diferentes a 5 amigos e fechou-as nos envelopes sem reparar que os envelopes já tinham os endereços escritos. Qual é a probabilidade de:
  - (a) nenhuma carta corresponder ao envelope onde foi colocada?
  - (b) exactamente 2 amigos receberem as cartas que lhes eram destinadas?
- 18. Seja  $a_{n+1}-ca_n=0$   $(n \ge 0)$  uma relação de recorrência. Sabendo que  $a_3=153/49$  e  $a_5=1377/2401$ , determine c.
- 19. Suponha que tem um robô capaz de dar passos de um ou de dois metros. Exprima por meio de uma relação de recorrência o número  $p_n$  de modos diferentes que o robô possui para percorrer n metros.
- 20. Uma pessoa deposita 1000 Euros numa conta a prazo, com juro anual de 4%.
  - (a) Determine uma relação de recorrência para o valor existente na conta ao fim de n anos.
  - (b) Determine uma fórmula explícita para esse valor.
  - (c) Quanto dinheiro terá a conta ao fim de 100 anos?
- 21. Recorde que a sucessão de Fibonacci se define recursivamente por: f(0) = 0, f(1) = 1, e f(n) = f(n-1) + f(n-2) para  $n \ge 2$ .
  - (a) Determine f(3).
  - (b) Mostre que para todo o  $n \ge 1$  se verifica a igualdade f(4n) = 3f(4n-3) + 2f(4n-4).
  - (c) Prove, usando o princípio de indução matemática, que f(4n) é múltiplo de 3 para qualquer  $n \in \mathbb{N}$ .
- 22. Num determinado algoritmo, o valor de uma variável s vai variando de acordo com a seguinte regra: em cada passo n ( $n \ge 2$ ), o valor de s (que denotamos por  $s_n$ ) é igual ao dobro do valor de s dois passos antes menos o valor de s no passo anterior.
  - (a) Sabendo que  $s_0 = 1$  e  $s_1 = 2$ , enumere os primeiros 6 valores da sequência  $(s_n)_{n \in \mathbb{N}_0}$ .
  - (b) Determine (de forma explícita) o valor de  $s_n$  para qualquer n.
  - (c) E se  $s_0 = s_1 = 1$ , qual é o valor de  $s_n$ ?
- 23. Determine a solução de cada uma das seguintes relações de recorrência:
  - (a)  $a_{n+1} 1.5a_n = 0, n \ge 0.$
  - (b)  $3a_{n+1} 4a_n = 0, n \ge 0, a_1 = 5.$
  - (c)  $a_n = 7a_{n-1}, n \ge 1, a_2 = 98.$
  - (d)  $2a_n 3a_{n-1} = 0$ , n > 1,  $a_4 = 81$ .
  - (e)  $a_n = 3a_{n-2} + 2a_{n-3}, n \ge 3, a_0 = 1, a_1 = 3, a_2 = 7.$
  - (f)  $a_n 6a_{n-1} + 9a_{n-2} = 0$ ,  $n \ge 2$ ,  $a_0 = 5$ ,  $a_1 = 12$ .
- 24. Para cada  $n \in \mathbb{N}$ , seja  $a_n$  o número de sequências ordenadas com elementos iguais a 1 ou 2 cuja soma é igual a n. Determine  $a_n$  para qualquer  $n \in \mathbb{N}$ .