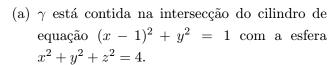
Duração: 2h30m 5/7/06

Justifique convenientemente as suas respostas e indique os principais cálculos

1. Considere a curva de Viviani $\gamma:[0,4\pi]\to\mathbb{R}^3$ definida por $\gamma(t)=(1+\cos t,\sin t,2\sin\frac t2)$. Mostre que:



(b)
$$\gamma$$
 tem curvatura $\kappa(t) = \frac{\sqrt{13+3\cos t}}{(3+\cos t)^{\frac{3}{2}}}$ e torsão $\tau(t) = \frac{6\cos\frac{t}{2}}{13+3\cos t}$.

2. Diga, justificando convenientemente a sua resposta, quais das seguintes afirmações são verdadeiras ou falsas. (Atenção: resposta sem a devida justificação não será cotada.)

(a) O comprimento da espiral $\gamma(t) = (e^{-t}\cos t, e^{-t}\sin t)$ em $[0, +\infty)$ é igual a $\sqrt{2}$.

(b) O traço da curva $\gamma: \mathbb{R} \to \mathbb{R}^3$, definida por $\gamma(t) = (\frac{4}{5}\cos t, 1 - \sin t, -\frac{3}{5}\cos t)$, é uma circunferência de raio 1.

(c) Para quaisquer $r \in \mathbb{R}^+$ e $a \in \mathbb{R}$, as rectas normais à hélice $h_{a,r} : \mathbb{R} \to \mathbb{R}^3$ definida por $h_{a,r} = (r \cos t, r \sin t, at)$ são ortogonais ao eixo OZ.

(d) 0 é um valor regular da função $f: \mathbb{R}^3 \to \mathbb{R}$ definida por $f(x, y, z) = x^2 - y^2$.

(e) $S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 - y^2 = 0\}$ é uma superfície.

3. (a) Seja $\sigma: U \to \mathbb{R}^3$ um mapa da superfície S contendo o ponto p. Justifique que, sendo (u_0, v_0) as coordenadas de p em U, todo o vector tangente a S em p é gerado pelos vectores $\frac{\partial \sigma}{\partial u}(u_0, v_0)$ e $\frac{\partial \sigma}{\partial v}(u_0, v_0)$.

(b) Seja $\sigma: (0,2) \times (-\pi,\pi) \to \mathbb{R}^3$, $\sigma(u,v) = (u\cos v, u\sin v, u)$, um mapa de uma superfície cónica S contendo o ponto p = (1,0,1). O vector (-1,-1,1) é tangente a S no ponto p?

4. Dada uma aplicação suave $f:U\subseteq\mathbb{R}^2\to\mathbb{R}$ (onde U é um conjunto aberto), considere a superfície $G_f=\{(x,y,z)\in\mathbb{R}^3\mid z=f(x,y)\}.$

(a) Classifique os pontos de G_f relativamente a $f_x = \frac{\partial f}{\partial x}(x,y)$ e $f_y = \frac{\partial f}{\partial y}(x,y)$.

(b) O parabolóide hiperbólico $S=\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2<1,z=x^2-y^2\}$ contém pontos que não sejam hiperbólicos?

(c) Mostre que a área de G_f é igual a $\int \int_U \sqrt{1+f_x^2+f_y^2} \ dx \ dy.$

