5/7/07

Justifique convenientemente as suas respostas e indique os principais cálculos

Duração: 2h30m Soluções

1. Determine:

- (a) Uma parametrização da curva de nível definida pela equação cartesiana $\frac{x^2}{4} + \frac{y^2}{9} = 1$.
- (b) Para a espiral logarítmica $\gamma(t) = (e^t \cos t, e^t \sin t)$, o ângulo em cada t entre o vector $\gamma(t)$ e o vector tangente a γ no ponto $\gamma(t)$.
- (c) Uma reparametrização por comprimento de arco da hélice $\gamma(t)=(e^t\cos t,e^t\sin t,e^t),$ $t\in\mathbb{R}.$
- (d) O comprimento de arco da ciclóide $\gamma(t) = 2(t \sin t, 1 \cos t)$ correspondente a uma revolução completa da circunferência que a gera.

Solução

- 2. Sejam r, a, b, c constantes reais, com $r \neq 0$, e considere a curva $\gamma : \mathbb{R} \to \mathbb{R}^3$ definida por $\gamma(t) = (r\cos t, r\sin t, a\sin t + b\cos t + c)$.
 - (a) Prove que γ é uma curva plana.
 - (b) Será possível que $\gamma(\mathbb{R})$ seja circular?

Solução

- 3. Considere o conjunto $S = \{(x, y, z) \in \mathbb{R}^3 \mid y^3 + y 4z = 0\}.$
 - (a) Mostre que S é uma superfície.
 - (b) Determine os pontos de S onde o plano tangente é paralelo à recta definida pelas equações $x=0,\,y=z.$

Solução

4. Seja

$$\sigma: \mathbb{R} \times (-\pi, \pi) \longrightarrow \mathbb{R}^3$$

$$(u, v) \longmapsto (\cos v, \sin v, u)$$

uma parametrização do cilindro $C = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1\}$ e seja P a superfície plana $\{(x,y,z) \in \mathbb{R}^3 \mid x=1, -\pi < y < \pi\}$. Considere o difeomorfismo $f: C \to P$ que a cada ponto $\sigma(u,v)$ do cilindro faz corresponder o ponto (1,v,u) de P.

- (a) Mostre que f é uma isometria.
- (b) Qual é a distância, em C, entre os pontos $\left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, -2\right)$ e $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}, 3\right)$? Determine uma parametrização de uma curva em C, com esse comprimento, que os una.

5. Seja $\gamma:(0,1)\to\mathbb{R}^3$ uma curva regular, parametrizada por comprimento de arco, cuja curvatura nunca se anula, e considere a superfície S_γ parametrizada por

$$\sigma: (0,1) \times (0,1) \longrightarrow S_{\gamma}$$

$$(s,u) \longmapsto \gamma(s) + u T_{\gamma}(s).$$

- (a) Prove que, para cada $s_0 \in (0,1)$, todos os pontos $\sigma(s_0,u)$, com $u \in (0,1)$, admitem o mesmo plano tangente.
- (b) Seja $p = \sigma(s, u)$ um ponto arbitrário de S_{γ} . Mostre que K(p) = 0 e $H(p) = \frac{\tau_{\gamma}(s)}{2u \kappa_{\gamma}(s)}$. Classifique os pontos de S_{γ} .

Solução

Sugestão de resolução

1. (a) Numa parametrização $\gamma(t)=(\gamma_1(t),\gamma_2(t))$ da elipse $\left\{(x,y)\in\mathbb{R}^2\mid \frac{x^2}{4}+\frac{y^2}{9}=1\right\}$ as componentes γ_1 e γ_2 terão que satisfazer

$$\frac{\gamma_1(t)^2}{4} + \frac{\gamma_2(t)^2}{9} = 1$$

(para todos os valores de t no intervalo onde a curva está definida). Como

$$1 = \cos^2 t + \sin^2 t = \frac{(2\cos t)^2}{4} + \frac{(3\sin t)^2}{9},$$

uma solução óbvia será $\gamma_1(t) = 2\cos t$ e $\gamma_2(t) = 3\sin t$.

(b) Sendo $\theta(t)$ esse ângulo, temos

$$\cos \theta(t) = \frac{(\gamma(t) \mid T(t))}{\|\gamma(t)\|} = \frac{(\gamma(t) \mid \gamma'(t))}{\|\gamma(t)\| \|\gamma'(t)\|}$$

$$= \frac{((e^t \cos t, e^t \sin t) \mid (e^t (\cos t - \sin t), e^t (\cos t + \sin t)))}{e^t (e^t \sqrt{2})}$$

$$= \frac{e^{2t}}{\sqrt{2} e^{2t}} = \frac{\sqrt{2}}{2}.$$

Portanto, $\theta(t) = \frac{\pi}{4}$.

(c) Como $\gamma'(t) = (e^t \cos t - e^t \sin t, e^t \sin t + e^t \cos t, e^t)$, então

$$\|\gamma'(t)\|^2 = e^{2t}(\cos t - \sin t)^2 + e^{2t}(\cos t + \sin t)^2 + e^{2t} = e^{2t} + e^{2t} + e^{2t} = 3e^{2t}.$$

Portanto, a função comprimento de arco a partir de $\gamma(0)=(1,0,1)$ é dada por

$$s(t) = \int_0^t \|\gamma'(u)\| \, du = \int_0^t \sqrt{3} \, e^u \, du = \sqrt{3} \, [e^u]_{u=0}^{u=t} = \sqrt{3} \, (e^t - 1).$$

Trata-se de uma função estritamente crescente. Como $\lim_{t\to+\infty} s(t) = +\infty$ e $\lim_{t\to-\infty} s(t) = -\sqrt{3}$, então $s(\mathbb{R}) = (-\sqrt{3}, +\infty)$ e $s: \mathbb{R} \to (-\sqrt{3}, +\infty)$ é uma bijecção. Determinemos a sua função inversa. Como

$$\sqrt{3}(e^t - 1) = u \Leftrightarrow e^t = \frac{u}{\sqrt{3}} + 1 \Leftrightarrow t = \ln\left(\frac{u}{\sqrt{3}} + 1\right),$$

então $s^{-1}(u) = \ln\left(\frac{u}{\sqrt{3}} + 1\right)$.

Finalmente, a composição $\gamma \circ s^{-1}: (-\sqrt{3}, +\infty) \to \mathbb{R}$ é a reparametrização por comprimento de arco pedida:

$$(\gamma \circ s^{-1})(u) = \left(\left(\frac{u}{\sqrt{3}} + 1 \right) \cos(\ln(\frac{u}{\sqrt{3}} + 1)), \left(\frac{u}{\sqrt{3}} + 1 \right) \sin(\ln(\frac{u}{\sqrt{3}} + 1)), \frac{u}{\sqrt{3}} + 1 \right).$$

(d) O parâmetro t na parametrização $\gamma(t)=2(t-\sin t,1-\cos t)$ da ciclóide corresponde ao ângulo de rotação da circunferência geratriz desde o início do seu movimento. Assim, uma revolução completa corresponde a $t\in[0,2\pi]$. Como $\gamma'(t)=2(1-\cos t,\sin t)$, então $\|\gamma'(t)\|^2=4(2-2\cos t)=8(1-\cos t)$. Mas

$$\cos t = \cos \left(\frac{t}{2} + \frac{t}{2}\right) = \cos^2 \frac{t}{2} - \sin^2 \frac{t}{2} = \cos^2 \frac{t}{2} - \left(1 - \cos^2 \frac{t}{2}\right) = 2\cos^2 \frac{t}{2} - 1,$$

pelo que $\|\gamma'(t)\|^2 = 8\left(2 - 2\cos^2\frac{t}{2}\right) = 16\left(1 - \cos^2\frac{t}{2}\right) = 16\sin^2\frac{t}{2}$.

Então o comprimento de arco é igual a

$$\int_0^{2\pi} 4\sin\frac{t}{2} dt = \left[-8\cos\frac{t}{2} \right]_{t=0}^{t=2\pi} = 16.$$

2. (a) Calculemos a torsão de γ :

$$\tau_{\gamma}(t) = \frac{\left[\gamma'(t), \gamma''(t), \gamma'''(t)\right]}{\|\gamma'(t) \wedge \gamma''(t)\|^2} = \frac{\left(\gamma'(t) \wedge \gamma''(t) \mid \gamma'''(t)\right)}{\|\gamma'(t) \wedge \gamma''(t)\|^2}.$$

Como

$$\gamma'(t) = (-r\sin t, r\cos t, a\cos t - b\sin t),$$

$$\gamma''(t) = (-r\cos t, -r\sin t, -a\sin t - b\cos t)$$

$$\gamma'''(t) = (r\sin t, -r\cos t, -a\cos t + b\sin t),$$

então $\gamma'(t) \wedge \gamma''(t) = (-br, -ar, r^2)$. Portanto,

$$\tau_{\gamma}(t) = \frac{\left((-br, -ar, r^2) \mid (r\sin t, -r\cos t, -a\cos t + b\sin t) \right)}{\|(-br, -ar, r^2)\|^2} = 0,$$

o que garante que γ é plana.

(b) Sendo γ uma curva plana, a sua imagem será uma circunferência se e só se a sua curvatura for uma função constante, não nula. Determinemos então $\kappa_{\gamma}(t)$:

$$\kappa_{\gamma}(t) = \frac{\|\gamma'(t) \wedge \gamma''(t)\|}{\|\gamma'(t)\|^3} = \frac{\sqrt{b^2 r^2 + a^2 r^2 + r^4}}{\|\gamma'(t)\|^3}$$
$$= \frac{r\sqrt{a^2 + b^2 + r^2}}{(r^2 + a^2 \cos^2 t + b^2 \sin^2 t - 2ab \cos t \sin t)^{\frac{3}{2}}}.$$

É então evidente que, por exemplo, sempre que a=b=0 e $r\neq 0$, $\kappa_{\gamma}(t)=\frac{r^2}{(r^2)^{\frac{3}{2}}}=\frac{1}{r}$ e, consequentemente a imagem de γ é uma circunferência de raio r. Em conclusão, é possível que $\gamma(\mathbb{R})$ seja circular.

(Nota: se quisermos determinar exactamente todos os valores de r, a, b, c para os quais a imagem de γ é uma circunferência, bastará determinar quando é que a derivada de κ_{γ} é a função nula e simultaneamente κ_{γ} não se anula.)

3. (a) $S = \{(x, y, z) \in \mathbb{R}^3 \mid y^3 + y - 4z = 0\} = f^{-1}(\{0\})$, onde $f : \mathbb{R}^3 \to \mathbb{R}$ é a função suave dada por $f(x, y, z) = y^3 + y - 4z$. O gradiente $\nabla_f(x, y, z)$ de f no ponto (x, y, z) é o vector $(0, 3y^2 + 1, -4)$, que nunca se anula, pelo que 0 é um valor regular de f. Isto mostra que S é uma superfície.

(b) Como o espaço vectorial tangente em cada ponto $p \in S$ é dado por $\langle \nabla_f(p) \rangle^{\perp}$ então o plano tangente em $p = (p_1, p_2, p_3)$ será paralelo à recta x = 0, y = z precisamente quando o vector $\nabla_f(p)$ for ortogonal à recta x = 0, y = z, ou seja, quando o vector $\nabla_f(p)$ for ortogonal ao vector (0, 1, 1). Isso acontece quando

$$((0,3p_2^2+1,-4) \mid (0,1,1)) = 0 \Leftrightarrow 3p_2^2-3 = 0 \Leftrightarrow p_2^2 = 1.$$

Portanto, o plano tangente é paralelo à recta definida pelas equações x=0, y=z nos pontos $(p_1, \pm 1, p_3)$ de S, ou seja, nos pontos $(p_1, 1, \frac{1}{2})$ e $(p_1, -1, -\frac{1}{2}), p_1 \in \mathbb{R}$.

4. (a) Os mapas

$$\sigma: \mathbb{R} \times (-\pi, \pi) \longrightarrow \mathbb{R}^3 \qquad \tilde{\sigma}: \mathbb{R} \times (-\frac{\pi}{2}, \frac{\pi}{2}) \longrightarrow \mathbb{R}^3$$

$$(u, v) \longmapsto (\cos v, \sin v, u) \qquad (u, v) \longmapsto (\cos v, \sin v, u)$$

constituem um atlas de C e a sua primeira forma fundamental é a matriz identidade. De facto:

$$\frac{\partial \sigma}{\partial u}(u, v) = \frac{\partial \tilde{\sigma}}{\partial u}(u, v) = (0, 0, 1),$$
$$\frac{\partial \sigma}{\partial v}(u, v) = \frac{\partial \tilde{\sigma}}{\partial v}(u, v) = (-\sin v, \cos v, 0),$$

donde

$$E(u,v) = \tilde{E}(u,v) = ((0,0,1) \mid (0,0,1)) = 1,$$

$$F(u,v) = \tilde{F}(u,v) = ((0,0,1) \mid (-\sin v, \cos v, 0)) = 0$$

e

$$G(u, v) = \tilde{G}(u, v) = ((-\sin v, \cos v, 0) \mid (-\sin v, \cos v, 0)) = 1.$$

Por outro lado, $(f \circ \sigma)(u, v) = (f \circ \tilde{\sigma})(u, v) = (1, v, u)$ têm também como primeira forma fundamental a matriz identidade. Logo, f é uma isometria.

(b) Sejam $A=f(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2},-2)=f(\sigma(-2,-\frac{\pi}{4}))=(1,-\frac{\pi}{4},-2)$ e $B=f(-\frac{1}{2},\frac{\sqrt{3}}{2},3)=f(\sigma(3,\frac{2\pi}{3}))=(1,\frac{2\pi}{3},3)$. Como f é uma isometria, o comprimento do caminho mais curto em C entre os pontos $(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2},-2)$ e $(-\frac{1}{2},\frac{\sqrt{3}}{2},3)$ é igual à distância de A a B na superfície plana P, isto é, a $||B-A||=||(0,\frac{11\pi}{12},5)||=\sqrt{(\frac{11\pi}{12})^2+25}$. O caminho mais curto em P ligando A a B é o segmento de recta

$$\gamma_1(t) = A + t(B - A) = \left(1, -\frac{\pi}{4} + \frac{11\pi}{12}t, -2 + 5t\right) \quad t \in [0, 1],$$

pelo que o caminho mais curto em C ligando $(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2},-2)$ a $(-\frac{1}{2},\frac{\sqrt{3}}{2},3)$ é a curva parametrizada por

$$\gamma_2(t) = f^{-1}(\gamma_1(t)) = f^{-1}\left(1, -\frac{\pi}{4} + \frac{11\pi}{12}t, -2 + 5t\right)$$

$$= \sigma\left(-2 + 5t, -\frac{\pi}{4} + \frac{11\pi}{12}t\right)$$

$$= \left(\cos(-\frac{\pi}{4} + \frac{11\pi}{12}t), \sin(-\frac{\pi}{4} + \frac{11\pi}{12}t), -2 + 5t\right) \quad t \in [0, 1].$$

5. (a) Calculemos os dois vectores directores do plano tangente a S_{γ} num ponto genérico $\sigma(s,u)$:

$$\frac{\partial \sigma}{\partial s}(s, u) = T_{\gamma}(s) + u T_{\gamma}'(s) = T_{\gamma}(s) + u \kappa_{\gamma}(s) N_{\gamma}(s)$$

$$\frac{\partial \sigma}{\partial u}(s, u) = T_{\gamma}(s).$$

Portanto, fazendo $s=s_0$, para cada u em (0,1) o plano tangente passa pelo ponto $\sigma(s_0,u)=\gamma(s_0)+uT_\gamma(s_0)$ e tem a direcção dos vectores $T_\gamma(s_0)+u\,\kappa_\gamma(s_0)\,N_\gamma(s_0)$ e $T_\gamma(s_0)$. Como $\frac{\partial\sigma}{\partial s}(s_0,u)\wedge\frac{\partial\sigma}{\partial u}(s_0,u)=-u\,\kappa_\gamma(s_0)\,B_\gamma(s_0)$, então esse plano é o plano que passa pelo ponto $\sigma(s_0,u)$ e é ortogonal a $B_\gamma(s_0)$ (que não depende de u). Apesar dos pontos $\sigma(s_0,u)$ dependerem de $u\in(0,1)$, estes pontos percorrem o vector $T_\gamma(s_0)$ de uma extremidade à outra, que é um dos vectores directores do plano, ou seja, percorrem um segmento de recta paralelo a uma das direcções do plano. Portanto, para qualquer $u\in(0,1)$, o plano tangente em $\sigma(s_0,u)$ é sempre o mesmo: é o plano que passa pelo ponto $\gamma(s_0)$ e é ortogonal a $B_\gamma(s_0)$, ou seja, é precisamente o plano osculador à curva γ em $\gamma(s_0)$.

(b) Dos cálculos já realizados na alínea anterior obtemos imediatamente a primeira forma fundamental de σ :

$$E(s,u) = \left(\frac{\partial \sigma}{\partial s}(s,u) \mid \frac{\partial \sigma}{\partial s}(s,u)\right)$$

$$= (T_{\gamma}(s) \mid T_{\gamma}(s)) + u^{2}\kappa_{\gamma}(s)^{2}(N_{\gamma}(s) \mid N_{\gamma}(s)) = 1 + u^{2}\kappa_{\gamma}(s)^{2},$$

$$F(s,u) = \left(\frac{\partial \sigma}{\partial s}(s,u) \mid \frac{\partial \sigma}{\partial u}(s,u)\right) = (T_{\gamma}(s) \mid T_{\gamma}(s)) = 1,$$

$$G(s,u) = \left(\frac{\partial \sigma}{\partial u}(s,u) \mid \frac{\partial \sigma}{\partial u}(s,u)\right) = (T_{\gamma}(s) \mid T_{\gamma}(s)) = 1.$$

Por outro lado,

$$\frac{\partial \sigma}{\partial s}(s, u) \wedge \frac{\partial \sigma}{\partial u}(s, u) = (T_{\gamma}(s) \wedge T_{\gamma}(s)) + u \,\kappa_{\gamma}(s)(N_{\gamma}(s) \wedge T_{\gamma}(s))$$
$$= -u \,\kappa_{\gamma}(s) \,B_{\gamma}(s).$$

Então

$$N(s,u) = \frac{\frac{\partial \sigma}{\partial s}(s,u) \wedge \frac{\partial \sigma}{\partial u}(s,u)}{\|\frac{\partial \sigma}{\partial s}(s,u) \wedge \frac{\partial \sigma}{\partial u}(s,u)\|} = -B_{\gamma}(s).$$

Como

$$\frac{\partial^2 \sigma}{\partial s^2}(s, u) = T'_{\gamma}(s) + u \,\kappa'_{\gamma}(s) \,N_{\gamma}(s) + u \,\kappa_{\gamma}(s) \,N'_{\gamma}(s)
= -u \,\kappa_{\gamma}(s)^2 \,T_{\gamma}(s) + (\kappa_{\gamma}(s) + u \,\kappa'_{\gamma}(s)) \,N_{\gamma}(s) + u \,\kappa_{\gamma}(s) \,T_{\gamma}(s) \,B_{\gamma}(s),
\frac{\partial^2 \sigma}{\partial u \partial s}(s, u) = \kappa_{\gamma}(s) N_{\gamma}(s),
\frac{\partial^2 \sigma}{\partial u^2}(s, u) = 0,$$

então

$$e(s, u) = -\left(\frac{\partial^2 \sigma}{\partial s^2}(s, u) \mid N(s, u)\right) = u \,\kappa_{\gamma}(s) \,\tau_{\gamma}(s),$$

$$f(s,u) = -\left(\frac{\partial^2 \sigma}{\partial u \partial s}(s,u) \mid N(s,u)\right) = 0,$$

$$g(s,u) = -\left(\frac{\partial^2 \sigma}{\partial u^2}(s,u) \mid N(s,u)\right) = 0.$$

Finalmente,

$$K(s,u) = \frac{e(s,u)g(s,u) - f(s,u)^2}{E(s,u)G(s,u) - F(s,u)^2} = 0,$$

$$H(s,u) = \frac{E(s,u)g(s,u) - 2f(s,u)F(s,u) + G(s,u)e(s,u)}{2(E(s,u)G(s,u) - F(s,u)^2)}$$

$$= \frac{u\kappa_{\gamma}(s)\tau_{\gamma}(s)}{2u^2\kappa_{\gamma}(s)^2}$$

$$= \frac{\tau_{\gamma}(s)}{2u\kappa_{\gamma}(s)}.$$

Portanto, S_{γ} não possui pontos elípticos nem pontos hiperbólicos. Para qualquer $u \in (0,1)$,

- se $\tau_{\gamma}(s) = 0$, o ponto $\sigma(s, u)$ é planar;
- se $\tau_{\gamma}(s) \neq 0$, o ponto $\sigma(s, u)$ é parabólico.