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This chapter is an introduction to the basic concepts, constructions, and results
concerning locales. Locales (frames) are the object of study of the so called point-
free topology. They sufficiently resemble the lattices of open sets of topological
spaces to allow the treatment of many topological questions. One motivation for
the theory of locales is building topology on the intuition of “places of non-trivial
extent” rather than on points. Not the only one; hence it is not surprising that
the theory has developed beyond the purely geometric scope. Still, we can think
of a locale as of a kind of space, more general than the classical one, allowing us to
see topological phenomena in a new perspective. Other aspects are, for instance,
connections with domain theory [53, 52], continuous lattices [5, 31], logic [65, 20]
and topos theory [42, 20].

Modern topology originates, in principle, from Hausdorff’s “Mengenlehre” [30]
in 1914. One year earlier there was a paper by Caratheodory [23] containing the
idea of a point as an entity localized by a special system of diminishing sets; this
is also of relevance for the modern point-free thinking. In the twenties and thir-
ties the importance of (the lattice of) open sets (which are, typically, “places of
non-trivial extent”) became gradually more and more apparent (see e.g. Alexan-
droff [1] or Sierpinski [54]). In [57] and [58], Stone presented his famous duality
theorem from which it followed that compact zero-dimensional spaces and contin-
uous maps are well represented by the Boolean algebras of closed open sets and
lattice homomorphisms. This was certainly an encouragement for those who en-
deavoured to treat topology other than as a structure on a given system of points
(Wallman [66] in 1938, Menger [45] in 1940, McKinsey and Tarski [44] in 1944).
In the Ehresmann seminar of the late fifties [28, 19, 46], we encounter the the-
ory of frames (introduced as “local lattices”) already in the form that we know
today (it should be noted that almost at the same time there appeared indepen-
dently two important papers, by Bruns [22] and Thron [59], on homeomorphism
of spaces with isomorphic lattices of open sets, under weak separation axioms).
Then many authors got interested (C.H. Dowker, D. Papert (Strauss), J. Isbell,
B. Banaschewski, etc.) and the field started to develop rapidly. The pioneering
paper by Isbell [32], which opened several topics and placed specific emphasis on
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the dual of the category of frames, introducing the term “locale”, merits particu-
lar mentioning. In 1982, Johnstone published his monograph [34] which is still a
primary source of reference.

The notion of a locale can be viewed as an extension of the notion of a (topo-
logical) space. Extending or generalizing a notion calls for justification (as John-
stone says in [35], “there remains the question: why study locales at all?”). Several
questions naturally arise: When abandoning points, do we not lose too much in-
formation? Is the broader range of “spaces” we now have desirable at all? That is,
is the theory in this context, in whatever sense, more satisfactory? And is it not so
that the new techniques obscure the geometric contents? Here are some answers:

1. Starting with very low separation axioms (sobriety, TD) the point-free repre-
sentation contains all the information of the original space.

2. The class of Hausdorff locally compact spaces is represented equivalently by
distributive continuous lattices, also a very satisfactory fact.

3. The broader context does yield, in some areas, better theory. For instance, the
passage from sober spaces to locales is a full embedding of categories which, in
general, does not preserve products. This discrepancy between the two prod-
ucts is, however, beneficial in some respects, as it was firstly observed by Isbell
in [32]. If one recalls how badly the notion of paracompactness (which is very
important in applications of topology) behaves under constructions in the clas-
sical context, one starts to be quite happy about the product being changed
sometimes: products of paracompact and metric spaces are not necessarily
paracompact but this is not the case in the point-free context (the category of
paracompact locales is reflective in the category of locales).

Subobjects in this broader context also behave differently, again with
advantages for locales. This is clear from the fact that the intersection of any
family of dense sublocales of a given locale is again dense. In the words of
Johnstone [35],

“...the single most important fact which distinguishes locales
from spaces: the fact that every locale has a smallest dense
sublocale. If you want to ‘sell’ locale theory to a classical topol-
ogist, it’s a good idea to begin by asking him to imagine a world
in which any intersection of dense subspaces would always be
dense; once he has contemplated some of the wonderful conse-
quences that would flow from this result, you can tell him that
that world is exactly the category of locales.

(...) It is certainly clear that in order to achieve such a
world, we have to abandon the idea of a space as a set of points
equipped with some kind of structure; for there will be examples
in any category of this type of pairs of dense subspaces of a
nontrivial space having no points in common.”
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4. The techniques are sometimes less intuitive than the classical ones; but it can
be argued that they are very often simpler. And, perhaps surprisingly, they
often yield constructive results where the classical counterparts cannot. For
instance, the Tychonoff product theorem is fully constructive (meaning: no
choice principle and no excluded middle, see [33, 6]).

So, locales have characteristics that go beyond the interest they may
deserve as generalized topological spaces. In many situations, certain spaces
are non-trivial only by virtue of some choice principle, whereas their lattices
of open sets already have previous existence, before such assumptions. This
means that, in some sense, we always see the lattice of opens, but to see their
points may require some additional tool in the form of some choice principle.
This idea was nicely expressed by Banaschewski, with the following slogan [7]:

choice-free localic argument
+

suitable choice principle
classical result on spaces

5. In many of the localic constructions that precede certain familiar spaces, in
more general contexts than classical set theory, the aforementioned spaces
are not sufficient and the corresponding lattices of open sets take over their
place. A typical example is the Gelfand Duality: classically, it is a duality
between the category of commutative C∗-algebras and the category of compact
Hausdorff spaces; within the constructive context of a Grothendieck topos, the
Gelfand Duality takes the form of a dual equivalence between the category
of commutative C∗-algebras and the category of compact completely regular
locales [15, 16]. This is the real version of Gelfand’s Duality, its classical version
being an accidental consequence because of the special assumptions assumed:
the category of compact regular locales is, in the presence of the Boolean
Ultrafilter Theorem, equivalent to the category of compact Hausdorff spaces.

Thus, locales play an important role in a constructive approach to topol-
ogy, allowing us to develop topology in an arbitrary topos and other non-
classical contexts (see e.g. [14, 16, 61]).

For more information on the history and development of point-free topology
we advise the reader to see the excellent survey in Johnstone’s [35] or [36] (see also
the introduction to [34]).

We assume that the reader is acquainted with basic categorical notions such
as adjunctions, limits, colimits, and factorization systems. We also assume that
the reader is familiar with the basics of lattice theory. A general reference for
categorical concepts is [20] and for lattice theoretical concepts we refer to Chapter
I of this volume.



52 II. Locales

1. Spaces, frames, and locales

1.1. From topological spaces to frames. Take a topological space X viewed as a
set |X| endowed with a system OX ⊆ {M | M ⊆ |X|} of open sets. The system
(OX,⊆) is a complete lattice since the union of any family of open sets is again
open; evidently the infinite distributive law

U ∧
∨
i∈I

Vi =
∨
i∈I

(U ∧ Vi)

is valid in OX, since finite meet ∧ and supremum
∨

in OX are given by the usual
set theoretical operations of intersection ∩ and union

⋃
, respectively (note that

arbitrary meet
∧

i∈I Vi is given by the interior, int(
⋂

i∈I Vi), of the intersection⋂
i∈I Vi).
The question naturally arises how much information of the space X is contained

in this lattice considered as an algebraic object (that is, ignoring the fact that and
how the elements U ∈ OX consist of the points x ∈ |X|).

On the other hand, a continuous mapping f : X → Y induces a lattice ho-
momorphism h : OY → OX, defined by h(U) = f−1[U ], which clearly preserves
arbitrary joins and finite meets; again, one may naturally ask how accurately the
homomorphism h represents the original continuous map f .

Suppose the answers to these questions are satisfactory. Then we might treat
topology, or a considerable part of it, as a part of algebra (perhaps with some
advantages of a handy calculus).

Now the answers are indeed fairly pleasing. For instance, if the spaces in ques-
tion are sober (a separation axiom considerably weaker than the Hausdorff one, see
1.3 below), they can be reconstructed from the lattices OX, and the continuous
map f can be reconstructed from the homomorphism h above. (And it turns out
that the ensuing calculus does bring surprising advantages.)

Abstracting the properties of the latticesOX and the mappings (U 7→ f−1[U ]) :
OY → OX, one defines a frame A as a complete lattice satisfying the infinite
distributive law

a ∧
∨

S =
∨
{a ∧ s | s ∈ S} (1.1.1)

for all a ∈ A and S ⊆ A, and a frame homomorphism h : A → B as a mapping
preserving all joins, including the least element 0, and finite meets, including the
largest element 1. The resulting category will be denoted by

Frm.

Besides the latticesOX of open subsets of a topological space, obvious examples
of frames are the finite distributive lattices, the complete Boolean algebras and
the complete chains.
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Remarks. (1) Recall from Chapter I that (1.1.1) makes a frame a Heyting algebra.
In fact, the frame distributivity law says that for each a ∈ A the map

− ∧ a : A → A
c 7→ c ∧ a

preserves suprema. Consequently, by a standard fact on posetal categories (Corol-
lary I.3.3), it has a right adjoint; denoting it by a → − we see that a frame is
a complete Heyting algebra, that is, a complete lattice endowed with an extra
operation→ satisfying

c ∧ a ≤ b if and only if c ≤ a→b.

Using the distributivity rule in the frame we immediately see that a → b =∨
{x ∈ A | x ∧ a ≤ b}. In particular,

ac =
∨
{x ∈ A | x ∧ a = 0}

is the pseudo-complement a→ 0 of a (also called negation in Chapter I), that is,
one has

x ∧ a = 0 if and only if x ≤ ac. (1.1.2)

The following are the standard basic properties of pseudo-complements:

(C1) a 7→ ac is antitone, 0c = 1 and 1c = 0.
(C2) a ≤ acc.
(C3) ac = accc.
(C4) a ∧ b = 0 iff acc ∧ b = 0.
(C5) (

∨
ai)c =

∧
(ac

i ).
(C6) (a ∧ b)cc = acc ∧ bcc.

(2) It should be noted right away that not every frame A is isomorphic to an OX
(see 1.8 and 2.14 below for such examples). Thus, viewing frames as representations
of spaces, we have “more spaces than before”. Such an extension of the scope of
the objects considered as spaces may be seen as becoming, and again, it may
not. During the development of point-free topology it has turned out that it is
unequivocally of advantage.

Exercises.

1. Prove formulas (C1)-(C6) of Remark 1 (cf. Proposition I.3.7).
2. Show that in OX we have:

(a) U→V = int((X \ U) ∪ V );

(b) Ucc = int(U), the interior of the closure of U .
(Compare this with classical logic, where p→q ⇔ ¬p ∨ q and ¬¬p ⇔ p.)

3. Show that in a frame, a∧ ac = 0. Find an example in the locale OR of open subsets
of the real line, provided with its usual topology, for which a ∨ ac 6= 1.

4. Show that the locale OR does not satisfy the de Morgan Law (a ∧ b)c = ac ∨ bc.
5. Show that the lattice OX of open sets of a topological space X need not satisfy the

dual of the infinite distributive law (1.1.1).
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6. Give examples to show that the frame homomorphism f−1 : OY → OX need not
preserve infinite meets, nor the Heyting implication →, and not even the pseudo-
complements Uc.

7. Prove that if f : X → Y is any open continuous map, then f−1 : OY → OX
preserves infinite meets and the Heyting implication.

1.2. Locales. Let Top denote the category of topological spaces and continuous
maps. Sending X to OX and f to f−1 yields a contravariant functor Top → Frm.
To obtain a category which is extending (in a way) that of spaces (we will see
shortly that we can think at least of generalized sober spaces) we consider the
dual category of Frm. It will be denoted by

Loc

and called the category of locales. The functor Top → Frm mentioned above be-
comes now a covariant functor

Lc : Top → Loc.

Thus, a locale X (that is, an object of Loc thought of as a space) is the same
thing as a frame, but if we wish to emphasize the algebraic (lattice) aspects we
often write OX for the same object (as if it would be the “lattice of open sets”
of the “generalized space” X). A morphism of locales (localic map) is thought of
as represented by a frame homomorphism in the opposite direction. If f : X → Y
is a localic map, the corresponding frame homomorphism will be indicated by
f∗ : OY → OX, as if it were a left Galois adjoint of f (see I.2.2)—which point of
view has a certain substantiation, see 1.5 below. This notation will make it clear
whether we wish to think of a given object as sitting in Loc or in Frm. Notice
that since f∗ preserves arbitrary joins it has a right adjoint. This right adjoint is
denoted by f∗ and is given by the formula

f∗ : OX → OY
a 7→

∨
{b | f∗(b) ≤ a}.

Exercise. Let f : X → Y be a continuous map between topological spaces and let f∗ :
OX → OY be the right adjoint of f−1 : OY → OX.

(a) Show that f∗(U) = Y \ f(X \ U), for every U ∈ OX.
(b) Give an example to show that f∗ need not preserve joins.

1.3. Sober spaces. An element a 6= 1 of a lattice is meet-irreducible if x ∧ y ≤ a
implies x ≤ a or y ≤ a (or, equivalently, if x ∧ y = a implies x = a or y = a). A
topological space X is sober if it is T0 and if there are no other meet-irreducibles
U ∈ OX but the X \ {x}.
Exercises.

1. Let X be a topological space, x ∈ X. Show that:

(a) X \ {x} is a meet-irreducible of OX;

(b) X is sober if and only if each meet-irreducible U 6= X in OX is X \ {x} for a
unique x ∈ X.
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2. Prove that each Hausdorff space is sober.
3. Give examples to show that not every T1-space is sober, nor is every sober space T1.
4. Prove that:

(a) an open subset of a sober space is a sober space;
(b) a closed subset of a sober space is a sober space.

5. Construct a sober space with a non-sober subspace. (Hint: consider N = N ∪ {∞}
with [n,∞] as open subsets.)

Lemma. Let X, Y be topological spaces, Y sober. Then, for each frame homomor-
phism h : OY → OX, there is exactly one continuous map f : X → Y such that
h = f−1.

Proof. For x ∈ X consider Fx = {U ∈ OY | x /∈ h(U)}. Since h preserves unions,
Fx =

⋃
Fx ∈ Fx, hence it is the largest element in Fx and we have

U ∈ Fx if and only if U ⊆ Fx. (1.3.1)

Each Fx is meet-irreducible: if Fx = U ∩ V , we have h(Fx) = h(U)∩ h(V ); but
then, say x /∈ h(U) and U ⊆ Fx ⊆ U . Thus, Fx = Y \ {y} with uniquely defined y
(since Y is T0). Denoting this y by f(x) we obtain, from (1.3.1),

x ∈ h(U) ⇔ U * Y \ {f(x)}
⇔ f(x) ∈ U

⇔ x ∈ f−1[U ].

Thus, the mapping f : X → Y is continuous (f−1[U ] = h(U) ∈ OX) and we have
h = f−1. �

Denote by Sob the full subcategory of Top defined by sober spaces. Then:

Corollary. The restriction Lc : Sob → Loc is a full embedding.

1.4. The points of a locale. Using Lemma 1.3 we can easily reconstruct a sober
space X from the lattice A = OX. The one-point space is the terminal object T
in Top, and a point of X can be viewed as a continuous map T → X. Since the
two-element Boolean algebra 2 = {0, 1}, 0 6= 1, is (isomorphic to) OT , we have by
Lemma 1.3 the points of X in a natural one-one correspondence with the frame
homomorphisms A → 2; the open sets U from the original X are then seen as the
Ũ ⊆ {h | h : A → 2 in Frm} defined by h ∈ Ũ if and only if h(U) = 1 (such a h
is f−1

x for fx sending the sole point of T to x, and x ∈ U if and only if f−1
x [U ] is

non-void).
This construction may be generalized as follows. For any locale X define a

point of X to be a localic map T → X from the terminal object of Loc to X (cf.
Definition 1.3 of [41]). Equivalently, in frame terms, set

Pt(X) =
(
{h | h : OX → 2 in Frm}, {Σa | a ∈ OX}

)
where Σa = {h | h(a) = 1}. The following is straightforward:



56 II. Locales

Remark. Σ0 = ∅, Σ1 = Pt(X), Σa∧b = Σa ∩ Σb and Σ∨
ai

=
⋃

Σai
. Thus, in

particular, {Σa | a ∈ OX} is a topology on {h | h : OX → 2}.
The space Pt(X) is often referred to as the spectrum of the locale X.
For a localic map f : X → Y define Pt(f) : Pt(X) → Pt(Y ) by setting

Pt(f)(h) = h · f∗.
Lemma. We have (Pt(f))−1[Σa] = Σf∗(a). Thus Pt(f) is a continuous mapping.

Proof. (Pt(f))−1[Σa] = {h | h · f∗ ∈ Σa} = {h | h(f∗(a)) = 1}. �

Obviously, Pt(1X) = 1Pt(X) and Pt(f · g) = Pt(f) · Pt(g). Therefore we have a
functor

Pt : Loc → Top.

Exercise. Let B be a complete Boolean algebra. Show that frame homomorphisms B → 2

correspond bijectively to atoms in B.

1.5. Two alternative representations of the spectrum Pt.

(1) Recall that a completely prime filter (briefly, complete filter) in a lattice A is a
proper filter F ⊆ A such that for any system {ai | i ∈ I},∨

i∈I

ai ∈ F ⇒ ∃i, ai ∈ F.

Complete filters are in a obvious one-one correspondence with frame homomor-
phisms h : A → 2 (h(a) = 1 if and only if a ∈ F ) and thus we can represent Pt(X)
as (

{F | F complete filter in OX}, {Σa | a ∈ OX}
)
,

where F ∈ Σa if and only if a ∈ F . The mapping Pt(f) sends F to (f∗)−1(F ).

(2) A slightly less obvious translation of the Pt construction is based on the fol-
lowing result:

Proposition. The formulas

h 7→ a =
∨
{x | h(x) = 0}

a 7→ h, where h(x) = 1 iff x � a

constitute a one-one correspondence between the set of all frame homomorphisms
h : A → 2 and the set irr(A) of all meet-irreducible elements in A.

Proof. Checking that
∨
{x | h(x) = 0} is meet-irreducible and that the above

defined h is a homomorphism is immediate. If h is sent to a and a is sent to k as
above we have k(y) = 1 iff y �

∨
{x | h(x) = 0} iff h(y) = 1. Finally if a 7→ h 7→ b

we have b =
∨
{x | x ≤ a} = a. �

Now we can represent Pt(X) as(
irr(OX), {Σa | a ∈ OX}

)
,

with Σa = {x ∈ irr(OX) | a � x}.



1. Spaces, frames, and locales 57

Lemma. Let h : A → B be a frame homomorphism. Then h∗[irr(B)] ⊆ irr(A).

Proof. If a ∈ irr(B) and x ∧ y ≤ h∗(a) then h(x) ∧ h(y) ≤ a and hence, say,
h(x) ≤ a and x ≤ h∗(a). �

In the original description of Pt we had Pt(f)(h) = h·f∗. Represent a ∈ irr(OX)
by the h∗ above. Then the resulting Pt(f)(h) corresponds to∨

{x | h(f∗(x)) = 0} =
∨
{x | f∗(x) ≤ a} = (f∗)∗(a).

Thus, if we think, just for the moment, of the localic morphisms as of the right
adjoints of f∗, we have now Pt(f) represented simply as the restriction of f . Note
that this is one of the reasons for denoting the algebraic (frame) correspondent of
the localic map f by f∗.

1.6. Pt is right adjoint to Lc.

Proposition. Each Pt(X) is sober.

Proof. We will use the representation from 1.5(2). First, note that we have, since
Σa = {x | a � x},

x ∈ {y} ⇔ (a � x ⇒ a � y) ⇔ y ≤ x. (1.6.1)

Now let Σa be meet-irreducible in O(Pt(X)). Set b =
∨
{c | Σc ⊆ Σa}. Then,

obviously, Σb = Σa, and b is meet-irreducible; indeed, if x∧ y ≤ b then Σx ∩Σy =
Σx∧y ⊆ Σb = Σa and hence, say, Σx ⊆ Σa and x ≤ b. We have

x ∈ Σb ⇔ b � x ⇔ x /∈ {b} ⇔ x ∈ Pt(X) \ {b},

thus Σa = Σb = Pt(X) \ {b}. By (1.6.1), Pt(X) is T0. �

Define morphisms ηX : X → PtLc(X) and εY : LcPt(Y ) → Y by setting
ηX(x)(U) = 1 if and only if x ∈ U and ε∗Y (a) = Σa, respectively. It is easy to
check that each ηX(x) is indeed a homomorphism Lc(X) → 2. Since

η−1
X [ΣU ] = {x | ηX(x)(U) = 1} = U, (1.6.2)

ηX is a continuous mapping. On the other hand, εY is a homomorphism by 1.5.

Lemma. The systems η = (ηX)X∈Top and ε = (εY )Y ∈Loc are natural transforma-
tions η : 1Top

·→ PtLc and ε : LcPt
·→ 1Loc, respectively.

Proof. If f : X → Y is a continuous mapping we have

(PtLc(f) · ηX)(x)(U) = (ηX(x) · Lc(f))(U) = ηX(x)(Lc(f)(U)).

Therefore

1 = (PtLc(f) · ηX)(x)(U) ⇔ x ∈ Lc(f)(U)
⇔ f(x) ∈ U

⇔ (ηY · f)(x)(U) = 1.
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If f : X → Y is a localic map we have, by 1.5,

(εX · LcPt(f))∗(a) = (LcPt(f))∗(ε∗X(a)) = (Pt(f))−1[Σa]
= Σf∗(a) = ε∗Y (f∗(a)) = (f · εY )∗(a). �

Theorem. Pt : Loc → Top is right adjoint to Lc : Top → Loc, with unit η and
co-unit ε as above.

Proof. Consider the composition

Lc(X)
Lc(ηX)// LcPtLc(X)

εLc(X) // Lc(X).

We have

(εLc(X) · Lc(ηX))∗(U) = η−1
X [ε−1

Lc(X)(U)] = η−1
X [ΣU ] = {x | ηX(x)(U) = 1} = U

so that
εLc(X) · Lc(ηX) = 1Lc(X). (1.6.3)

Consider the composition

Pt(Y )
ηPt(Y ) // PtLcPt(Y )

Pt(εY ) // Pt(Y ).

We have

((Pt(εY ) · ηPt(Y ))(h))(U) = (ηPt(Y )(h) · ε∗Y )(U) = ηPt(Y )(h)[ΣU ],

thus
1 = ((Pt(εY ) · ηPt(Y ))(h))(U) ⇔ h ∈ ΣU ⇔ h(U) = 1,

and again Pt(εY ) · ηPt(Y ) = 1Pt(Y ). �

1.7. A reflection of Top onto Sob. The natural transformation η yields a reflection
of the category Top onto the subcategory Sob:

Theorem. The following statements on a space X are equivalent:
(i) X is sober;
(ii) ηX is one-one and onto;
(iii) ηX is a homeomorphism.

Proof. (i)⇒(ii) is an immediate consequence of Lemma 1.3, (ii)⇒(iii) follows from
(1.6.2) (which yields, for an invertible ηX , ηX [U ] = ΣU ), and (iii)⇒(i) follows from
Proposition 1.6. �

1.8. Spatial locales. A locale X is said to be spatial if it is (isomorphic to) Lc(Y )
for some space Y . Here is an easy criterion of spatiality:

Theorem. The following statements on a locale X are equivalent:
(i) X is spatial;
(ii) ε∗X is one-one;
(iii) ε∗X is an isomorphism;
(iv) each a ∈ OX is a meet of meet-irreducible elements.
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Proof. (i)⇒(ii) since, by (1.6.3),

(Lc(ηY ))∗ · ε∗Lc(Y ) = (εLc(Y ) · Lc(ηY ))∗ = 1Lc(Y )

for X = Lc(Y ) and therefore ε∗X = ε∗Lc(Y ) is one-one. (ii)⇒(iii) since each ε∗X is
onto, and (iii)⇒(i) is trivial. Assertion (iv) is just a reformulation of (ii) in the
representation from 1.5(2). �

All finite distributive lattices and all complete chains are spatial but, by way of
contrast, not every Boolean algebra is spatial, showing that locales “considerably
transcend topology”. In fact the intersection of the class of spatial locales and that
of Boolean algebras are only the discrete spaces. We have:

Proposition. Each meet-irreducible element of a Boolean algebra is a co-atom.
Consequently, each spatial Boolean algebra is atomic.

Proof. Let a be meet-irreducible and let a < x. Since a = (a∨x)∧ (a∨xc), where
xc is the complement of x, we have to have a = a∨xc and hence xc ≤ a < x. Then
x = xcc ≥ ac and hence 1 = a ∨ ac ≤ x and x = 1. �

1.9. The “maximal” equivalence induced by the adjunction Lc a Pt. Every ad-
junction induces a “maximal” equivalence between a pair of full subcategories.
Here the adjunction Lc a Pt gives:

Theorem. The category of spatial locales is equivalent to the category of sober
topological spaces.

Proof. If X is a topological space, the locale Lc(X) is spatial. Therefore, by
Proposition 1.6, the adjunction of Theorem 1.6 between Top and Loc restricts to
the full subcategories of sober spaces and spatial locales. By definition of spatial
locale, εX is an isomorphism. By Theorem 1.7, if a space X is sober, ηX is an
isomorphism. Therefore we get the required equivalence. �

The results in this section show that the category of locales is an appropriate
environment in which to develop topology (for more motivation consult [11, 34,
35, 36]). From now on we develop locale theory in this perspective. The topological
intuition will be apparent from the use of topological adjectives to describe localic
concepts.

2. Sublocales

2.1. Epimorphisms. Consider the frame S = {0 < s < 1}. Obviously, for every
frame A and every a ∈ A the mapping σa : S → A, sending 0 to 0, 1 to 1 and s to
a, is a frame homomorphism. Consequently, if a frame homomorphism h : A → B
is a monomorphism, it must be one-one (if h(a) = h(b) then h · σa = h · σb). Thus:

Proposition. The epimorphisms in Loc are exactly the f such that f∗ is one-one.

Usually epimorphisms in Loc are called surjections.
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2.2. Extremal monomorphisms. Recall that a monomorphism µ in a category is
said to be extremal if, for each factorization µ = ν · ε with ε an epimorphism, ε is
an isomorphism.

Proposition. The extremal monomorphisms in Loc are precisely the f such that f∗

is onto.

Proof. In other words, we should prove that the extremal epimorphisms in Frm
are exactly the homomorphisms h : A → B that are onto. If h : A → B is an
extremal epimorphism and we factor it through its image h[A], the embedding
h[A] ↪→ B must be an isomorphism, and h is onto. On the other hand, every
onto homomorphism h : A → B is obviously an epimorphism, and if we have a
factorization h = m ·h′ with a monomorphism m, then m is one-one and onto and
hence an isomorphism in Frm. �

The structure of general monomorphisms in Loc is by far not so transparent
(see [34, 43]). For instance, there is a locale X such that for each cardinal number
α there is a monomorphism f : Y → X with |Y | ≥ α (see 3.9 below).

2.3. Decomposition of morphisms. Every localic map f : X → Y decomposes as

Z
�� m

��?
??

?

X

e ?? ??����

f
// Y

with OZ = f∗[OY ], e∗ : OZ ↪→ OX and m∗ = (y 7→ f∗(y)) : OY � OZ. Thus,
every localic map can be factored as an epimorphism followed by an extremal
monomorphism.

We point out that, furthermore, it can be proved that the classes E of epimor-
phisms and M of extremal monomorphisms constitute a factorization system (see
III.1.2) in Loc.

2.4. Sublocales. In many everyday life categories (like that of topological spaces,
graphs, posets, or general relational systems), extremal monomorphisms represent
well the subobjects (as opposed to plain monomorphisms m : A → B that may
not — like for instance the one-one continuous maps — relate the structure of
A closely enough to that of B). This point of view is also adopted in Loc and a
sublocale j : Y � X of X is defined as a localic map such that the corresponding
frame homomorphism j∗ : OX → OY is onto (recall 2.2). It should be noted that
in many other categories (like that of Hausdorff spaces, rings, small categories,
etc.) choosing extremal monomorphisms for subobjects would be too restrictive.
But our situation is closer to that of general spaces, and the definition is also
supported by the notion of a subspace Y of a topological space X, where the
topology OY is defined as {U ∩ Y | U ∈ OX}, making j−1 : OX → OY , for
j : Y ↪→ X, an onto homomorphism.

On the class of sublocales of X we have the natural preorder j1 v j2 if and
only if there is a j such that j2 · j = j1 (note that this j is necessarily again a
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sublocale). Sublocales ji : Yi � X (i = 1, 2) are equivalent if j1 v j2 and j2 v j1
or, equivalently, if there is an isomorphism j : Y1 → Y2 such that j2 · j = j1. The
ensuing partially ordered set will be denoted by S(X).

We will use the symbol v also for the corresponding frame homomorphisms.
Thus, for frame homomorphisms hi : A � Bi (i = 1, 2), h1 v h2 if there is an
h such that h · h1 = h2, and h1 and h2 are considered equivalent if h1 v h2 and
h2 v h1. So, for j1, j2 ∈ S(X),

j1 v j2 iff j∗2 v j∗1 . (2.4.1)

2.5. Frame congruences. We have the natural correspondence between surjective
frame homomorphisms h : A � B and congruences (with respect to finite meets
and general joins) on A. More precisely, the formulas

h 7→ Ch = {(a, b) | h(a) = h(b)}, C 7→ hC = {a 7→ aC} : A → A/C (2.5.1)

constitute a one-one correspondence between the set of (the equivalence classes
of) the onto homomorphisms h : A � B and the set C(A) of all congruences on A.

The following is an immediate observation:

In the correspondence (2.5.1) above, we have h1 v h2iff Ch1 ⊆ Ch2 . (2.5.2)

Since any intersection of congruences is a congruence, C(A) is a complete lattice.
Therefore, by (2.4.1) and (2.5.2), S(X) is also a complete lattice, isomorphic to
C(OX)op. The meets and joins in S(X) will be denoted by

j u k,
i∈I

ji, etc., resp. j t k,
⊔
i∈I

ji, etc.

These symbols will be also used when dealing with the associated frame homo-
morphisms. Note that j u k is represented by the pullback

·

��

//

juk
=

=

��=
=

·

k

��
·

j
// ·

in Loc.
The initial object in Loc will be denoted by 0; this is the locale that corresponds

to the frame {0 = 1} (that we denote by 1 in analogy with the definition of 2).
The unique localic map 0X : 0 � X is the bottom of S(X). The top element of
S(X) is the (equivalence class of the) identity morphism 1X : X → X and will be
denoted by 1X or simply by X.

2.6. Open and closed sublocales. We consider now some simple examples of sublo-
cales which resemble open and closed subspaces of a topological space. We have
the sublocales given by the frame homomorphisms

â : OX −→ ↓a := {x ∈ OX | x ≤ a}
x 7−→ x ∧ a,

(2.6.1)
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for every a ∈ OX, and the sublocales given by the frame homomorphisms

ǎ : OX −→ ↑a := {x ∈ OX | x ≥ a}
x 7−→ x ∨ a,

(2.6.2)

for every a ∈ OX. The former will be referred to as open sublocales and the latter
as closed ones. The â (resp. ǎ) will also be referred to as open (resp. closed), and
similarly one speaks of the corresponding congruences

∆a := {(x, y) | x ∧ a = y ∧ b} and ∇a := {(x, y) | x ∨ a = y ∨ b}.
We write Xa for the locale given by the frame ↓a and X-Xa for the locale given

by ↑a. Then (2.6.1) describes a sublocale

Xa � X

and (2.6.2) describes a sublocale

X-Xa � X.

Spatially, when we write X-Xa � X we are thinking of the closed subspace
corresponding to the set theoretic complement of the open a.

Exercises.

1. Prove that a localic map f : X → Y factors through the open sublocale Ya � Y
generated by a ∈ OY if and only if f∗(a) = 1.

2. Prove that a localic map f : X → Y factors through the closed sublocale Y -Ya � Y
if and only if f∗(a) = 0.

We list some properties of open and closed congruences:

Proposition.

(1) a ≤ b ⇔ ∆b ⊆ ∆a ⇔ ∇a ⊆ ∇b.
(2) ∇0 = 0 = ∆1 and ∇1 = 1 = ∆0.
(3) ∇a ∩∇b = ∇a∧b.
(4)

∨
∇ai

= ∇∨
ai

.
(5) ∆a ∨∆b = ∆a∧b.
(6)

⋂
∆ai = ∆∨

ai
.

Proof. (1) If ∇a ⊆ ∇b we have, in particular, (a, 0) ∈ ∇b and hence a ∨ b = b.
Similarly, if ∆b ⊆ ∆a then (b, 1) ∈ ∆a and a ∧ b = a. Obviously, if a ≤ b then
x ∨ a = y ∨ a implies x ∨ b = y ∨ b, and similarly with the meet.
(2), (3) and (6) are immediate; we show (4) and (5):

By (1), ∆a∧b ⊇ ∆a,∆b and ∇∨
ai
⊇ ∇ai

for all i. If C is a congruence such
that C ⊇ ∆a,∆b and x ∧ a ∧ b = y ∧ a ∧ b, then (x ∧ a, y ∧ a) ∈ C, since C ⊇ ∆b,
and xCx ∧ aCy ∧ aCy, since C ⊇ ∆a. Thus, C ⊇ ∆a∧b. If C ⊇ ∇ai

for each i, we
have (0, ai) ∈ C for each i, hence (0,

∨
ai) ∈ C. Thus, if x ∨

∨
ai = y ∨

∨
ai, we

have (x, y) = (x ∨ 0, y ∨
∨

ai) = (x ∨ 0, x ∨
∨

ai) ∈ C. �

As a consequence, we have:
(1) a ≤ b ⇔ Xa v Xb ⇔ X-Xb v X-Xa;
(2) X-X0 = X1 = 1X and X-X1 = X0 = 0X ;
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(3) X-Xa tX-Xb = X-Xa∧b;
(4) X-Xai = X-X∨

ai
;

(5) Xa uXb = Xa∧b;
(6)

⊔
Xai

= X∨
ai

.

2.7. Open and closed sublocales are complemented in S(X). Open and closed
sublocales, corresponding to the same element a ∈ OX, are complements in S(X):

Proposition. Xa tX-Xa = 1X and Xa uX-Xa = 0X .

Proof. The proof will be done in terms of congruences.
If a ∧ x = a ∧ y and a ∨ x = a ∨ y, then x = x ∧ (a ∨ x) = x ∧ (a ∨ y) =

(x∧a)∨ (x∧y) = (y∧a)∨ (y∧x) = y∧ (a∨x) = y∧ (a∨y) = y. Thus, ∆a∩∇a =
{(x, x) | x ∈ OX}, the bottom of C(OX). If C ⊇ ∇a,∆a we have (a, 0) ∈ C and
(a, 1) ∈ C, thus (0, 1) ∈ C and hence x = x∧ 1Cx∧ 0 = y ∧ 0Cy ∧ 1 = y for every
(x, y). Thus, C = OX ×OX. �

Remark. Unlike subspaces of spaces, however, not every sublocale is complemented
in S(X) (not even the sublocales of spaces that are subspaces).

2.8. A representation of a general sublocale.

Proposition. Let j : Y � X be a sublocale of X. Then

j = {Xa tX-Xb | j∗(a) = j∗(b)}.
In the language of frame congruences: for any congruence C on OX we have

C =
∨
{∆a ∩∇b | (a, b) ∈ C}.

Proof. The proof will be done for the congruences.
Let (a, b) ∈ C. Then ∆a ∩ ∇b ⊆ C; indeed, if (x, y) ∈ ∆a ∩ ∇b, that is,

if x ∧ a = y ∧ a and x ∨ b = y ∨ b, we have x = x ∧ (y ∨ b)Cx ∧ (y ∨ a) =
(x∧ y)∨ (x∧ a) = (x∧ y)∨ (y ∧ a) = y ∧ (x∨ a)Cy ∧ (x∨ b) = y; thus, (x, y) ∈ C.

On the other hand, let D ⊇ ∆a ∩ ∇b for all (a, b) ∈ C. In particular, we have
(a, a ∨ b) ∈ ∆a ∩ ∇b and (b, a ∨ b) ∈ ∆a ∩ ∇b, hence aDa ∨ bDb and (a, b) ∈ D.

�

2.9. Closure. For a localic map f : Y → X set

cf =
∨
{a ∈ OX | f∗(a) = 0}.

Proposition. Let j : Y � X be a sublocale. Then the sublocale X-Xcj
� X is the

smallest closed sublocale k such that j v k.

Proof. Define h :↑cj → OY by setting h(x) = j∗(x). Since j∗(cj) = 0, h is a
frame homomorphism (preserving non-void joins and finite meets being trivial),
and we have (h · čj)(x) = j∗(cj ∨ x) = j∗(x). Thus, čj v j∗, that is, j v X-Xcj

.
If j v X-Xa there is a ϕ :↑a → OY such that j∗(x) = ϕ(x ∨ a) and hence, in
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particular, j∗(a) = ϕ(a) = 0 and a ≤ cj so that X-Xcj
v X-Xa by property (1)

of 2.6. �

The sublocale map X-Xcj � X will be denoted by j and called the closure of
the sublocale j.

2.10. Closure behaves like in spaces ... We list some properties of the closure:

Proposition.

(1) 0X = 0X .
(2) j v k ⇒ j v k.

(3) j = j.
(4) j t k = j t k.

Proof. (1) 0X = (1X )̌ . (2) and (3) follow immediately from Proposition 2.9. By
(2), j t k w j t k. By Proposition 2.6, the join of two closed sublocales is closed
and hence, by Proposition 2.9, j t k v j t k and (4) follows. �

2.11. ... but not in all respects. In spaces, the topology is determined by the
closures of subsets. Here we have:

Proposition. Let OX be a Boolean algebra. Then each sublocale of X is closed.

Proof. Let j : Y � X be a sublocale, cj as in 2.9. We can define h : X-Xcj
→ Y ,

by setting h∗(j∗(a)) = cj ∨ a, since if j∗(a) = j∗(b) then cj ∨ a = cj ∨ b (indeed,
j∗(a) = j∗(b) implies j∗(a∧ bc) = 0, hence a∧ bc ≤ cj making cj ∨ a ≤ cj ∨ b, and
cj ∨ b ≤ cj ∨ a by symmetry). This shows that j = j. �

Now T0-spaces with Boolean topology are necessarily discrete. We have, how-
ever, rather non-trivial locales X such that OX is Boolean (see 2.13 below).

Exercise. Prove that, for each locale X:

(a) OX is a Boolean algebra if and only if every sublocale of X is closed;
(b) OX is a Boolean algebra if and only if every sublocale of X is open.

2.12. Density. A sublocale j : Y � X is said to be dense if j = X. The corre-
sponding j∗ will also be referred to as dense.

Proposition. A sublocale j : Y � X is dense if and only if j∗(a) = 0 implies
a = 0.

Proof. j = X iff 0 =
∨
{a ∈ OX | j∗(a) = 0} iff a = 0 whenever j∗(a) = 0. �

More generally, a localic map f : Y → X is said to be dense if f∗(a) = 0 implies
a = 0.
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For any f : Y → X, f∗(cf ) = 0 and cf is the largest such element. Since
↑cf → OY , given by x 7→ f∗(x), is clearly a frame homomorphism we have the
factorization

X-Xcf
h

$$HHH
HH

Y

g ;;vvvvv
f

// X

where g∗(x) = f∗(x ∨ c) = f∗(x). Evidently, g is a dense map. This gives the so
called dense factorization, where each f is factorized as a dense map followed by
a closed sublocale. Note that denseness is a condition weaker than injectivity.

2.13. Booleanization and Isbell’s Density Theorem. Recall, from 1.1, properties
(C1)-(C6) of pseudo-complements ac.

Lemma. For each locale X, {a ∈ OX | acc = a} is a complete Boolean algebra.

Proof. First, it is easy to see that the formula
∨′

ai = (
∨

ai)cc yields a join in
{a ∈ OX | acc = a}; hence, we have a complete lattice. By property (C6), ∧ gives
finite meets. Finally, we have a∧ac = 0 and a∨′ ac = 1 since (a∨ac)c = 0; indeed,
if x∧ (a∨ ac) = 0 we have both x∧ a = 0 (and hence x ≤ ac) and a∧ ac = 0 (and
hence x ≤ acc) so that x ≤ ac ∧ acc = 0. �

Moreover, using properties (C5) and (C6), it is also easy to see that the map

OX → {a ∈ OX | acc = a}

defined by a 7→ acc is a frame homomorphism, obviously onto and dense.
Therefore, defining BX by O(BX) = {a ∈ OX | acc = a} we have a dense

sublocale βX : BX � X given by β∗X(a) = acc. This sublocale is called the
Booleanization of X [18].

Proposition. βX is the least dense sublocale of X.

Proof. Let j : Y � X be dense. If j∗(a) = j∗(b) we have j∗(a ∧ bc) = j∗(a) ∧
j∗(bc) ≤ j∗(a) ∧ j∗(b)c = 0 (by (1.1.2), h(xc) ≤ h(x)c for any homomorphism).
Thus, a ∧ bc = 0 and a ≤ bcc. By symmetry also b ≤ acc and we see that

j∗(a) = j∗(b) ⇒ acc = bcc

and that we can define a localic ϕ : BX → Y , by putting ϕ∗(j∗(a)) = acc, to
obtain βX v j. �

This is a new feature of locale theory: it is not the case that all topological
spaces have least dense subspaces.

2.14. Sublocales and subspaces. Now let X be a topological space and let S ⊆ X

be a subspace. We have the obvious representation of S as a sublocale S̃ � Lc(X),
determined by the congruence CS :

(U, V ) ∈ CS ⇔ U ∩ S = V ∩ S (that is, j−1[U ] = j−1[V ] for the j : S ↪→ X).
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This representation is, however, not always satisfactory. We say that a topological
space X satisfies the axiom TD if, for every x ∈ X, there is an open U 3 x such
that U \ {x} is also open.

Axiom TD is stronger than T0 and (much) weaker than T1. It is incomparable
with sobriety.

Exercises.

1. Prove that T1 ⇒ TD ⇒ T0.
2. Show that a space X is TD if and only if there is a neighborhood V such that

V ∩ {x} = {x}.

Proposition. In a spatial locale Lc(X) we have, for subspaces S, T of the space X,
the implication (S̃ = T̃ ⇒ S = T ) if and only if X satisfies TD.

Proof. Let X satisfy TD and let, for any open sets U and V ,

U ∩ S = V ∩ S iff U ∩ T = V ∩ T. (2.14.1)

Let S * T . Choose x ∈ S \ T and U open, U 3 x, such that V = U \ {x} is open.
Then U ∩ S 6= V ∩ S while U ∩ T = V ∩ T , contradicting (2.14.1).

On the other hand, let TD not hold and let x be a point such that, for U open,
U 3 x, V = U \ {x} is never open. Then, for S = X \ {x}, one has U ∩S = V ∩S,
that is, U \ {x} = V \ {x}, only if U = V , and hence S̃ = X̃. �

For a topological space X, BX (more exactly, B(Lc(X))) is the Boolean algebra
of the regular open sets U of X, that is, the U that are equal to int(U). Thus
(recall Proposition 1.8) they are typically not spatial. Hence, sublocales of a space
(or, spatial locale) are not necessarily spatial (“we have more sublocales than
subspaces”).

The Booleanization β : BX � X also illustrates the fact that the intersection
of sublocales need not agree with the intersection of spaces (in the notation above,
S̃ u T̃ is not necessarily the same as S̃ ∩ T ). For instance, if X is the space of
reals, the intersection of the subspaces of the rationals and of the irrationals is
void; however, by 2.13, the intersection of the respective sublocales contains at
least BX, which is a rather large Boolean algebra.

On the other hand, the unions do not bring any surprise. We have
⋃̃

i∈I Si =⊔
i∈I Si since, obviously, U ∩

⋃
i∈I Si = V ∩

⋃
i∈I Si if and only if U ∩ Si = V ∩ Si

for all i.

2.15. Factorization Theorem. We will now be concerned with a technique of pro-
ducing sublocales by means of extending a relation (identifying elements according
to the needs of a construction) to a congruence. During this paragraph, by conve-
nience, we will consistently use the frame language.

Let R ⊆ A×A be an arbitrary binary relation on a frame A. An element s ∈ A
is saturated (more precisely, R-saturated) if

∀a, b, c aRb ⇒ (a ∧ c ≤ s iff b ∧ c ≤ s). (2.15.1)
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In case R is meet-stable, that is, if there is a subset M ⊆ A such that
(1) 1 ∈ M and a =

∨
{x ∈ M | x ≤ a} for every a ∈ A,

(2) ∀a, b ∈ A ∀x ∈ M, aRb ⇒ a ∧ xRb ∧ x,

then s ∈ A is saturated if and only if

∀a, b aRb ⇒ (a ≤ s iff b ≤ s). (2.15.2)

In fact, aRb if and only if a ∧ xRb ∧ x for every x ∈ M , and a ∧ c ≤ s if and only
if a ∨ x ≤ s for every x ≤ c.

Obviously, any meet of saturated elements is saturated. Consequently, we have
the saturated

ν(a) = νR(a) =
∧
{s | s saturated , a ≤ s}.

Recall Remark 1 of 1.1. For the Heyting implication→we have:

Lemma. Let s be saturated. Then each x → s is saturated.

Proof. a ∧ c ≤ x → s iff a ∧ (c ∧ x) ≤ s iff b ∧ (c ∧ x) ≤ s iff b ∧ c ≤ x → s.
�

We show some properties of mapping ν:

Proposition.

(1) ν : A → A is monotone.
(2) a ≤ ν(a).
(3) νν(a) = ν(a).
(4) ν(a ∧ b) = ν(a) ∧ ν(b).

Proof. (1), (2) and (3) are obvious.
(4) By the monotonicity, ν(a∧ b) ≤ ν(a)∧ν(b). Now since a∧ b ≤ ν(a∧ b) we have
a ≤ b → ν(a∧b) and, by the Lemma, ν(a) ≤ b → ν(a∧b). Thus, ν(a)∧b ≤ ν(a∧b)
and repeating the procedure we obtain ν(a) ∧ ν(b) ≤ ν(a ∧ b). �

Mappings ν : A → A satisfying properties (1)-(4) from the Proposition are
called nuclei. Denote by N (A) the system of all nuclei on A, endowed with the
natural order.

Note that we have already encountered a nucleus, namely the β∗X : a 7→ acc, if
viewed as a map OX → OX.

Exercises.

1. For each nucleus ν on A let Aν = {a ∈ A | ν(a) = a}. Show that:
(a) Aν is a frame;
(b) ν : A → Aν is a surjective frame homomorphism whose right adjoint is the

inclusion Aν ⊆ A;
(c) Conclude that, for any locale X, the partially ordered sets S(X) and N (OX)op

are isomorphic.
2. Prove that a subset S of a frame A is equal to some Aν if and only if

• S is closed under arbitrary meets in A, and
• s ∈ S, a ∈ A implies a → s ∈ S.
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3. Define a subset S of a frame A as a sublocale set if it satisfies the conditions of
the preceding exercise, and denote the system of all sublocale sets of A, ordered by
inclusion, by S ′(A). Prove that the correspondences ν 7→ Aν and S 7→ νS , where
νS(a) =

∧
{s ∈ S | a ≤ s}, constitute an isomorphism S ′(A) ∼= N (A)op.

Denote the set of all R-saturated elements by A/R and view the mapping ν as
restricted to ν : A → A/R.

Theorem.

(1) A/R is a frame and the restriction ν : A → A/R is a frame surjection.
If aRb then ν(a) = ν(b), and for every frame homomorphism h : A → B
such that h(a) = h(b) whenever aRb, there is a frame homomorphism
h : A/R → B such that h ·ν = h. Moreover, h(a) = h(a) for all a ∈ A/R.

(2) If R is meet-stable then, moreover, for every join-preserving f : A → B,
there is a join-preserving f : A/R → B such that f · ν = f .

Proof. We have suprema in A/R given by
∨′

ai = ν(
∨

ai): if a = ν(a) and
a ≥ ai for all i then a ≥

∨
ai and a = ν(a) ≥ ν(

∨
ai). We have, for general

ai ∈ A, ν(
∨

ai) ≤ ν(
∨

ν(ai)) =
∨′

ν(ai) and
∨′

ν(ai) ≤ ν(
∨

ai), by monotonicity.
Preservation of finite meets follows from Proposition (ν(1) = 1 by (2)). Thus we
have a complete lattice A/R and ν : A → A/R preserving all joins and finite
meets. Since it is onto, A/R satisfies the distributivity requirement for frames.

If aRb then b ≤ ν(a), since a ≤ ν(a) and ν(a) is saturated. Hence ν(b) ≤ ν(a),
and by symmetry ν(b) = ν(a).

Let h : A → B be such that h(x) = h(y) whenever xRy. For a ∈ A set
τ(a) =

∨
{a′ ∈ A | h(a′) ≤ h(a)}. Then

a ≤ τ(a) and hτ(a) = h(a). (2.15.3)

Let xRy and x ∧ z ≤ τ(a). Then h(y ∧ z) = h(x ∧ z) ≤ hτ(a) = h(a) and hence
y∧z ≤ τ(a). Thus, τ is saturated. Note that if R is meet-stable we can use (2.15.2)
and do not need h to preserve the meet. Using (2.15.3) we see that a ≤ ν(a) ≤ τ(a)
and hence h(a) ≤ hν(a) ≤ hτ(a) = h(a). Thus, we can define h : A/R → B by
h(a) = h(a) to obtain h · ν = h. �

2.16. The coframe structure of S(X). So far we met three equivalent ways of
representing sublocales of a locale X, given by three different complete lattices
that are isomorphic to S(X): C(OX)op, in 2.5, and N (OX)op and S ′(OX), in 2.15.
The lattice structure of these partially ordered sets is particularly transparent in
S ′(OX): meets are simply intersections (since any intersection of sublocale sets is
a sublocale set) and joins are given by∨

i∈I

Si =
{∧

T | T ⊆
⋃
i∈I

Si

}
(indeed, a sublocale set containing all Si necessarily contains {

∧
T | T ⊆

⋃
i∈I Si};

on the other hand, this set is clearly closed under meets, and for any a ∈ OX and
T ⊆

⋃
i∈I Si, a →

∧
T =

∧
{a → t | t ∈ T} and each a → t is in

⋃
i∈I Si).
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Furthermore, ⋂
i∈I

(Si ∨ T ) ⊆ (
⋂
i∈I

Si) ∨ T :

We may assume I 6= ∅. If a ∈
⋂

i∈I(Si ∨T ) then, for each i, a = si ∧ ti for some
si ∈ Si and ti ∈ T . Let t =

∧
i∈I ti ∈ T ; then a = si ∧ t = (t → si) ∧ t for every

i. On the other hand, t ∧ si = t ∧ sj for all i, j ∈ I means that t → si = t → sj .
Therefore t → si does not depend on i; denote it by s (s belongs to

⋂
i∈I Si since,

for each i, s = t → si ∈ Si). Thus a = s ∧ t with s ∈
⋂

i∈I Si and t ∈ T .
Since the reverse inclusion (

⋂
i∈I Si) ∨ T ⊆

⋂
i∈I(Si ∨ T ) is trivial, we have

just proved that S ′(OX) is a coframe. Consequently, S(X) is also a coframe and
N (OX) and C(OX) are frames.

2.17. Images. Let f : X → Y be a localic map. The image of a sublocale j : X ′ �
X under f , denoted by f [j] (or, sometimes, by abuse of notation, by f [X ′]), is the
unique m in the (E ,M)-factorization of f · j (recall 2.3)

X ′

��
j

��

e // // Y ′

��
m

��
X

f // Y

Technically, of course, one uses the congruence on OY defined by

a ∼ b if and only if j∗(f∗(a)) = j∗(f∗(b)).

The definition of the preimage needs some more knowledge of the category Loc
and is postponed to the next section.

3. Limits and colimits

3.1. Equalizers, products, and coequalizers in Frm. If h1, h2 : A → B are frame
homomorphisms then

k : {a ∈ A | h1(a) = h2(a)} ↪→ A

is obviously the equalizer of h1, h2 in Frm.
If Ai, i ∈ I, is any system of frames, the projections of the (cartesian) product

pj :
∏
i∈I

Ai → Aj

(with the structure in
∏

Ai defined coordinatewise) obviously constitute the prod-
uct in Frm. Thus,

the category Loc is cocomplete (the category Frm is complete).
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Also, coequalizers in Frm (equalizers in Loc) are easy. If h1, h2 : A → B are
frame homomorphisms consider the relation R = {(h1(a), h2(a)) | a ∈ A} and
the homomorphism ν : B → B/R from 2.15. We immediately see that ν is the
coequalizer of h1, h2 in Frm.

The following immediate consequence of Theorem 2.15(2) will be useful.

Proposition. Let h1, h2 : A → B be frame homomorphisms and let g : B → C be
their coequalizer. Let ϕ : B → D be a join-preserving map such that ϕ(h1(a)∧b) =
ϕ(h2(a) ∧ b) for all a ∈ A and b ∈ M , where M join-generates B. Then there is a
join-preserving ϕ : C → D such that ϕ = ϕ · g. �

Concerning limits and colimits in Loc, the only problem is the product (co-
product in Frm). The existence of products (and, more generally, of all limits and
colimits, as well as the exactness of the category Frm) is known at once by the
fact that Frm is monadic over the category Set of sets (see V.2.5(5)). But here, we
need to know their structure. The major part of this section will be devoted to
construct them. For technical reasons, that will be apparent shortly, we will use
the frame language.

3.2. Useful facts about the category of semilattices. From Chapter I, paragraph
5.23, recall the downset functor D sending a meet-semilattice S to the frame

DS =
(
{U ⊆ S | U =↓U},⊆

)
,

where ↓U = {a ∈ S | ∃b(a ≤ b and b ∈ U)} is the down-closure of U (cf. I.4.3). For
our purposes, it will be handier to use the modification

D0 : SLat0 → Frm

where SLat0 is the category of bounded meet-semilattices (that is, semilattices
with bottom 0 and top 1), and (bounded) semilattice homomorphisms (that is,
mappings preserving the meet, including the top 1, and 0),

D0S =
(
{U ⊆ S | ∅ 6= U =↓U},⊆

)
and

D0h(U) =↓h[U ].

Note that the joins in D0S are, again, the unions, with one exception: the join of
the void system (the bottom of D0S) is {0}, not the union (which is ∅ and is not
an element of D0S). Moreover, it is obvious that D0h preserves the bottom, the
top and all unions; it also preserves the meet since

↓h[U ]∩ ↓h[V ] = {x | ∃a ∈ U, b ∈ V, x ≤ h(a) ∧ h(b)}
⊆ {x | ∃c ∈ U ∩ V, x ≤ h(c)}
= ↓h[U ∩ V ]
⊆ ↓h[U ]∩ ↓h[V ]

(the last inclusion because of the monotonicity).
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Consider the maps λS : S → D0S given by λS(a) =↓a. It is an important fact
that the λS are the universal bounded semilattice homomorphisms, analogously
as in the well known situation with the D including the empty set:

Proposition. The mapping λS is a morphism in SLat0 and, for each frame A and
each h : S → A in SLat0, there is exactly one frame homomorphism h : D0S → A
such that h · λS = h.

Proof. The first statement is obvious, since ↓(a ∧ b) =↓a ∩↓b, by the definition of
a ∧ b. If h · λS = h then

h(U) = h(
⋃
{↓a | a ∈ U}) =

∨
{h(↓a) | a ∈ U} =

∨
{h(a) | a ∈ U}

and hence h is uniquely determined. On the other hand, the formula h(U) =∨
{h(a) | a ∈ U} determines a frame homomorphism. �

In SLat0 the coproducts are obtained as follows. Set∏′

i∈I
Si =

{
(ai)i∈I ∈

∏
i∈I

Si | ai = 1 for all but finitely many i
}
∪

{
(0)i∈I

}
and define

γj : Sj →
∏′

i∈I
Si by setting (γj(a))i =

{
a for i = j,

1 otherwise.

Obviously, if hj : Sj → T are morphisms in SLat0, we have a uniquely defined
h :

∏′
Si → T such that h ·γj = hj , namely that given by h((ai)i∈I) =

∧
i∈I hi(ai)

— the meet is finite, all but finitely many hi(ai) being 1.

3.3. Coproducts of frames. Let now Ai, i ∈ I, be frames. View them, for a
moment, as objects of SLat0, and take S =

∏′
i∈I Ai. On the frame D0(

∏′
i∈I Ai)

consider the relation

R =
{(

λSγj(
∨

m∈M

am),
∨

m∈M

λSγj(am)
)
| j ∈ I, M any set, am ∈ Aj

}
,

and set ⊕
i∈I

Ai = D0(
∏′

i∈I
Ai)/R.

Let ν : D0(
∏′

i∈IAi) →
⊕

i∈I Ai be the homomorphism from 2.15.

Remark. The ιj = ν · λ · γj are frame homomorphisms. Indeed, 0,1 and ∧ are
preserved trivially and (

λγj(
∨

m∈M

am),
∨

m∈M

λγj(am)
)
∈ R

and hence ιj(
∨

m∈M am) =
∨

m∈M ιj(am).

Proposition. The system (γj : Aj →
⊕

i∈I Ai)j∈I is a coproduct in Frm.
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Proof. Consider the diagram

Aj
γj //

hj

��

∏′
i∈I Ai

h′

��

λ // D0(
∏′

i∈I Ai)

h′′

��

ν //
⊕

i∈I Ai

h

��
B B B B

where hj are some frame homomorphisms, h′ is the coproduct morphism in SLat0
and h′′ is the frame homomorphism from Proposition 3.2. We have

h′′(
∨
M

λγj(am)) =
∨
{h′((bi)i∈I) | (bi)i∈I ≤ γj(am) for some m ∈ M} =

=
∨
M

h′γj(am) =
∨
M

hj(am) = hj(
∨
M

am) = h′γj(
∨
M

am) = h′′λγj(
∨
M

am).

Hence, by Theorem 2.15, there is a frame homomorphism h such that h · ν = h′′.
Thus, h · ιj = h · ν · λ · γj = h′′ · λ · γj = h′ · γj = hj . The unicity follows from the
obvious fact that all the elements of D0(

∏′
i∈IAi) are joins of finite meets of the

λγj(a) and hence all the elements of
⊕

i∈I Ai are joins of finite meets of the ιj(a)
(j ∈ I, a ∈ Aj). �

Recalling the equalizers from 3.1 we conclude that
the category Loc is complete (the category Frm is cocomplete).

For finite systems we write A⊕B, A1⊕A2⊕A3 etc. to denote frame coproducts.

3.4. More about the coproduct structure. Recalling that the join
∨

m∈M Um in
D0A is equal to the union

⋃
m∈M Um if M 6= ∅, and to the set {0} if the index set

M is void, we see that, in particular,(
↓γj(0), {(0)i∈I}

)
∈ R for all j.

Set
O =

{
(ai)i∈I ∈

∏
i∈I

′
Ai | ∃i, ai = 0

}
.

Obviously,
⋃

m∈M ↓γj(am) =↓γj(
⋃

m∈M am) for M 6= ∅. Then, since D0(
∏′

i∈I Ai)
is generated by the ↓(bi)i∈I , we easily infer (recall 2.15) that

U ∈ D0(
∏′

Lj) is saturated if and only if
(1) O ⊆ U , and
(2) for M 6= ∅, whenever xim = xi for i 6= j, xj =

∨
m∈M xjm and

(xim)i∈I ∈ U for all m then (xi)i∈I ∈ U .

Lemma. For any (ai)i∈I ∈
∏′

i∈I Ai, the set ⊕i∈Iai :=↓(ai)i∈I ∪O is saturated.

Proof. Let (xim)i∈I and xj be as in the condition above. If xi = 0 for some i
then (xi)i∈I ∈ ⊕i∈Iai. Otherwise all xim 6= 0 for i 6= j and

∨
i∈I xjm 6= 0. Hence

xjn 6= 0 for some n, (xin)i∈I is not in O and therefore xi ≤ ai for all i 6= j; but
then also all xjm ≤ aj and xj =

∨
i∈I xjm ≤ aj . �
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Corollary. If ⊕i∈Iai ≤ ⊕i∈Ibi and ai 6= 0 for all i, then ai ≤ bi for all i. �

For finite index sets we write

a⊕ b, a1 ⊕ a2 ⊕ a3 etc.

Note that, for (ai)i∈I ∈
∏′

i∈I Ai, we have
∧

i∈I ιi(ai) = ⊕i∈Iai. Thus the set of
the elements of the form ⊕i∈Iai generates

⊕
i∈I Ai by joins and we have, for each

u ∈
⊕

i∈I Ai,

u =
∨
{⊕i∈Iai | (ai)i∈I ∈ u} =

∨
{⊕i∈Iai | ⊕i∈Iai ≤ u}.

Exercises.

1. Show that PX ⊕ PY ∼= P(X × Y ), and hence that the product of discrete spatial
locales is a discrete spatial locale.

2. For the usual topology on Q, prove that the frame O(Q×Q) of open subsets of Q×Q
is not isomorphic to the frame O(Q)⊕O(Q).

The following technical statement will be used later.

Proposition. Let Ai, i = 1, 2, be frames and ai ∈ Ai. Then we have ↓a1⊕ ↓a2 =
↓(a1 ⊕ a2). More precisely, if ιi : Ai → A1 ⊕A2 are the coproduct injections, then

ι′i : ↓ai → ↓(a1 ⊕ a2)
x 7→ ιi(x) ∧ (a1 ⊕ a2)

constitute the coproduct of frames ↓a1 and ↓a2.

Proof. Let hi :↓ai → B be frame homomorphisms. Consider the g : A1 ⊕A2 → B
such that g·ιi = hi·âi. We have g(x1⊕x2) = g(ι1(x1)∧ι2(x2)) = h1(x1∧a1)∧h2(x2∧
a2). Hence, if (x1⊕x2)∧(a1⊕a2) = (y1⊕y2)∧(a1⊕a2), then g(x1⊕x2) = g(y1⊕y2).
Thus there is a frame homomorphism h :↓(a1⊕a2) → B such that h·(a1⊕a2)̂ = g.
For x ∈↓ai we have h(ι′i(x)) = h(ιi(x)∧ (a1 ⊕ a2)) = g(ιi(x)) = hi(x). The unicity
of such an h is obvious. �

For any frame homomorphisms hi : Ai → Bi, i = 1, 2, we write h1 ⊕ h2 for
the unique frame homomorphism A1 ⊕ A2 → B1 ⊕ B2 that makes the following
diagram commutative

A1
ι1 //

h1

��

A1 ⊕A2

h1⊕h2

���
�
� A2

h2

��

ι2oo

B1
1 // B1 ⊕B2 B2

2oo

Obviously,
(h1 ⊕ h2)(

∨
i∈I

(a1
i ⊕ a2

i )) =
∨
i∈I

(h1(a1
i )⊕ h2(a2

i )). (3.4.1)

3.5. Coproducts and join-preserving maps. Making the relation R in 3.3 meet-
stable (recall 2.15) is easy but it would obscure the notation. For the coproduct
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of two frames, it is transparent enough. We can replace R by the relation R′

consisting of all(
↓(

∨
i∈I

ai, b),
∨
i∈I

↓(ai, b)
)

and
(
↓(a,

∨
i∈I

bi),
∨
i∈I

↓(a, bi)
)
.

Using the second part of Theorem 2.15 we can then easily deduce that:

Proposition. Let A1, A2, B be frames and let mappings ϕi : Ai → B preserve all
joins. Then there is (exactly one) ϕ : A1 ⊕ A2 → B preserving all joins such that
ϕ(a1 ⊕ a2) = ϕ1(a1) ∧ ϕ2(a2). �

3.6. Preimages. Now, knowing that the category Loc is complete and cocomplete,
we can add to the definition of image from 2.17 the definition of preimage. It is a
general categorical fact that

(∗) in a category with pullbacks and pushouts, extremal monomorphisms are
stable under pullbacks.

Hence we can define the preimage of the sublocale j : Y ′ � Y under f : X → Y ,
that we denote by f−1[j], (or, sometimes, by abuse of notation, by f−1[Y ′]) as the
sublocale m : X ′ � X from the pullback

X ′

��
m

��

f ′ // Y ′

��
j

��
X

f // Y

(3.6.1)

Images and preimages satisfy the inequalities

j v f−1[f [j]] and f [f−1[j]] v j (3.6.2)

(see III.1.6 for more details).
For the sake of completeness, let us finish this paragraph by proving the state-

ment (∗):
In the pullback (3.6.1), let m = n · e with e an epimorphism. Consider the

pushout

X ′

e
����

f ′ // Y ′

e′

����
X ′′ f ′′ // Y ′′

Since (f ·n) ·e = s ·f ′, we have an n′ such that n′ ·e′ = s and n′ ·f ′′ = f ·n. Since e′

is an epimorphism (epimorphisms are stable under pushouts in any category) and
since s is extremal, e′ is an isomorphism and we can assume that e′ = 1. Hence
n′ = s and s · f ′′ = f · n. From the last equation and the original pullback we
obtain a k such that m · k = n. Hence m · k · e = n · e = m, and since m is a
monomorphism, k · e = 1. Finally, since e is an epimorphism, we may conclude,
using e · k · e = e, that also e · k = 1. �
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3.7. Preimages of open and closed sublocales.

Proposition. Let f : X → Y be a localic map and let a ∈ OY . Then:

(1) The preimage of an open sublocale is open. More precisely,

f−1[Ya] = Xf∗(a);

(2) The preimage of a closed sublocale is closed. More precisely,

f−1[Y -Ya] = X-Xf∗(a).

Proof. (1) Let us check that

Xf∗(a)
��

��

f ′ // Ya
��

��
X

f // Y

is a pullback in Loc, where (f ′)∗(a) = f∗(a). It is a commutative square by Exercise
1 of 2.6. Given localic morphisms g : Z → X and h : Z → Ya such that the outer
part of the diagram

Z

g

��

h

%%
k

""
Xf∗(a)

��

��

f ′ // Ya
��

��
X

f // Y

(3.7.1)

is commutative, define k : Z → Xf∗(a) by k∗(x) = g∗(x) for each x ≤ f∗(a) in
OX. This is a localic map; indeed k∗ preserves binary meets and arbitrary joins,
since g∗ does, and moreover k∗(f∗(a)) = g∗(f∗(a)) = h∗(a ∧ a) = h∗(a) = 1.
Furthermore, given b ∈ OX and a′ ∈ OY with a ≤ a′,

k∗(b∧f∗(a)) = g∗(b∧f∗(a)) = g∗(b)∧g∗(f∗(a)) = g∗(b)∧h∗(a) = g∗(b)∧1 = g∗(b)

and k∗(f∗(a′)) = g∗(f∗(a′)) = h∗(a ∧ a′) = h∗(a′). Thus k is a factorization in di-
agram (3.7.1). This factorization is unique since Xf∗(a) � X is a monomorphism.
(2) The argument for closed sublocales is similar. �

3.8. Preimage as a (co)frame homomorphism. Let f : X → Y be a localic map.
By (3.6.2), f−1 : S(Y ) → S(X) has a left Galois adjoint f [−] : S(X) → S(Y ).
Thus,

f−1 : S(Y ) → S(X)preserves all meets. (3.8.1)

Lemma. f−1[Ya t Y -Yb] = Xf∗(a) tX-Xf∗(b).
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Proof. Since f−1 preserves meets, we have

f−1[Ya t Y -Yb] u f−1[Y -Ya u Yb] = f−1[(Ya t Y -Yb) u (Y -Ya u Yb)]
= f−1[0Y ] = 0X ,

the zero of S(X) by 2.5. On the other hand,

f−1[Ya t Y -Yb] t f−1[Y -Ya u Yb]
= f−1[Ya t Y -Yb] t (f−1[Y -Ya] u f−1[Yb])
w f−1[Ya] t f−1[Y -Yb] t (f−1[Y -Ya] u f−1[Yb])
= Xf∗(a) tX-Xf∗(b) t (X-Xf∗(a) uXf∗(b))
= X,

the top element of S(X) by (2.5). Thus, f−1[Ya t Y -Yb] = (f−1[Y -Ya u Yb])c =
(f−1[Y -Ya] u f−1[Yb])c = (X-Xf∗(a) uXf∗(b))c = Xf∗(a) tX-Xf∗(b). �

Proposition. f−1 : S(Y ) → S(X) is a coframe homomorphism.

Proof. By (3.8.1) f−1 preserves all meets and by Proposition 3.7 f−1[0Y ] = 0X .
Thus, it remains to prove that f−1 preserves the join t.

By Proposition 2.8 we have, for each sublocale j of Y ,

j = {Ya t Y -Yb | j∗(a) = j∗(b)}.
Using the coframe structure of S(Y ) we obtain

j1 t j2 =
{

Ya1 t Y -Yb1 t Ya2 t Y -Yb2 | j∗i (ai) = j∗i (bi), i = 1, 2
}

=
{

Ya1∨a2 t Y -Yb1∧b2 | j∗i (ai) = j∗i (bi), i = 1, 2
}

.

Then, by the Lemma, f−1[j1 t j2] is equal to{
Xf∗(a1∨a2) tX-Xf∗(b1∧b2) | j

∗
i (ai) = j∗i (bi), i = 1, 2

}
=

{
Xf∗(a1)∨f∗(a2) tX-Xf∗(b1)∧f∗(b2) | j

∗
i (ai) = j∗i (bi), i = 1, 2

}
=

{
Xf∗(a1) tXf∗(a2) tX-Xf∗(b1) tX-Xf∗(b2) | j

∗
i (ai) = j∗i (bi), i = 1, 2

}
=

{
f−1[Ya1 t Y -Yb1 ] t f−1[Ya2 t Y -Yb2 ] | j∗i (ai) = j∗i (bi), i = 1, 2

}
= f−1[j1] t f−1[j2],

since f−1[ji] = {f−1[Yai
t Y -Ybi

] | j∗i (ai) = j∗i (bi)}. �

Corollary. The preimage f−1 preserves complementarity of sublocales. �

3.9. S as a functor Loc → Loc. Peculiar monomorphisms. The fact from 3.8 allows
us to extend the construction S(X) from 2.4 (see also 2.16) to a functor

S : Loc → Loc,



4. Some subcategories of locales 77

by defining S(X) = S(X)op and S(f) : S(X)op → S(Y )op by (S(f))∗(j) = f−1[j]
for every j ∈ S(Y )op. In terms of frames, this means that the construction C(A)
from 2.5 gives a functor C : Frm → Frm.

Moreover, we have a natural transformation

s : S
·→ 1Loc,

defined by s∗X(a) = X-Xa. In fact we have, for each f : X → Y , (S(f))∗(s∗Y (a)) =
f−1(Ya) = Xf∗(a) = s∗X(f∗(a)).

Remark. The homomorphisms sX are monomorphisms in Loc. Indeed, let f, g :
Y → S(X) such that sX · f = sX · g. Since a complement, if it exists, is uniquely
determined, and since each frame homomorphism preserves complements, homo-
morphisms f∗, g∗ : O(S(X)) → OY coinciding on all elements of the form X-Xa

have to coincide on all elements of the form Xa as well, by 2.7. But then, by 2.8,
they coincide on all j ∈ S(X).

Functor S can be iterated by setting S0 = 1Loc, Sα+1(X) = S(Sα(X)), for non-
limit ordinals α + 1, and sα+1

X = sα
X · sSα(X), and taking the limit of the obvious

diagram in the limit ordinals. More precisely, set δββ = 1Sβ(X) : Sβ(X) → Sβ(X);
if δβγ : Sγ(X) → Sβ(X) are already defined, set δβ,γ+1 = δβγ · sSγ(X); for a limit
ordinal, if Sβ(X) for β < α and δβγ for β, γ < α are already defined, take the limit(

δβα : Sα(X) → Sβ(X)
)

β<α

of the diagram (
δβγ : Sγ(X) → Sβ(X)

)
β,γ<α

;

finally, set sα
X = δ0α.

Then
all the sα

X : Sα(X) → X are monomorphisms.
This shows that the structure of monomorphisms in Loc is rather complex. There
are locales X for which the iteration Sα(X) never stops increasing in size ([34],
2.10). Consequently,

there is a locale X such that, for any cardinality α, there exists a
locale Y with |Y | ≥ α, and a monomorphism f : Y → X.

Exercise. If the locale S(X) is a Boolean algebra, prove that it is the reflection of the

locale X in the full subcategory of Boolean locales.

4. Some subcategories of locales

4.1. A very weak separation axiom: subfitness. A locale X is said to be subfit
([32], conjunctive in [56]) if, for every a, b ∈ OX,

a � b ⇒ ∃c ∈ OX, a ∨ c = 1 6= b ∨ c.
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Exercises.

1. Let X be a topological space. Prove: if X is T1 then Lc(X) is subfit, but not conversely.
2. Show that, for TD-spaces, subfitness coincides with T1.

4.2. Relations ≺ and ≺≺. Define also a ≺ b if ac ∨ b = 1.

Exercises.

1. Prove that a ≺ b if and only if there is a c such that a ∧ c = 0 and b ∨ c = 1.
2. Verify that, if X is a space and U, V ∈ OX, U ≺ V if and only if U ⊆ V .

Lemma. The relation ≺ has the following properties:
(1) a ≺ b ⇒ a ≤ b;
(2) a ≤ b ≺ c ≤ d ⇒ a ≺ d;
(3) a1, a2 ≺ b ⇒ a1 ∨ a2 ≺ b;
(4) a ≺ b1, b2 ⇒ a ≺ b1 ∧ b2;
(5) a ≺ b ⇒ bc ≺ ac;
(6) If f : X → Y is a localic map and a ≺ b in OY , then f∗(a) ≺ f∗(b).

Proof. (1) If ac ∨ b = 1 then a ∧ b = a ∧ (ac ∨ b) = b.
(2) It follows from the fact that a ≤ b implies bc ≤ ac.
(3) Let ai∧ci = 0 and ai∨b = 1. Set c = c1∧c2. Then c∨b = (c1∨b)∧ (c2∨b) = 1
and (a1 ∨ a2) ∧ c = 0.
(4) Similarly, let a ∧ ci = 0 and ci ∨ bi = 1. Set c = c1 ∨ c2. Then c ∨ (b1 ∧ b2) =
(c ∨ b1) ∧ (c ∨ b2) = 1 and a ∧ c = 0.
(5) If ac ∨ b = 1 then bcc ∨ ac = 1.
(6) Since (f∗(a))c ≥ f∗(ac) we have (f∗(a))c ∨ f∗(b) ≥ f∗(ac ∨ b) = 1. �

A transitive relation R is interpolative if whenever aRb there is a c such that
aRcRb. It is easy to check that, for each transitive R, there is the largest (transitive)
interpolative R̃ ⊆ R, namely the following one. Denote by D the set of dyadic
rationals in the unit interval; then

aR̃b iff there are ad, d ∈ D, such that a = a0, b = a1, and c < d ⇒
acRad.

The relation ≺̃ is usually denoted by ≺≺. It is easy to see that
Lemma 4.2 holds with ≺ replaced by ≺≺.

4.3. Regular and completely regular locales. Let X be a locale. For each a ∈ OX
set

σX(a) = {x ∈ OX | x ≺ a} and ρX(a) = {x ∈ OX | x ≺≺ a}.
X is said to be regular (resp. completely regular) if

∀a ∈ OX, a =
∨

σ(a) (resp. a =
∨

ρ(a)).

The category of regular (resp. completely regular) locales, and the localic maps
between them, will be denoted by

RegLoc (resp. CRegLoc).
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Proposition. RegLoc and CRegLoc are reflective subcategories of the category Loc.
Consequently, these categories are complete and cocomplete.

Proof. For a locale X set

R1(X) = {a ∈ OX | a =
∨

σ(a)}.

Obviously, R1(X) is a subframe of OX. For ordinals α set

Rα+1(X) = R1(Rα(X)), and if α is a limit one, Rα(X) =
⋂

β<α

Rβ(X).

Now if f : X → Y is a localic map and Y is regular, f∗[OY ] ⊆ R(X), by Lemma
4.2(6). Thus, if we set R∞(X) =

⋂
α Rα(X), the epimorphisms eX : X � R∞(X),

given by the frame inclusions e∗X : R∞(X) ↪→ X, constitute a reflection of Loc
onto RegLoc.

Similarly for complete regularity (the situation is in fact simpler: here, the
procedure stops after the first step). �

Exercises.

1. Let X be a topological space. Prove that:
(a) X is regular in the classical sense if and only if the locale Lc(X) is regular in

the sense just defined (recall Exercise 1 of 4.2);
(b) X is completely regular in the classical sense if and only if the locale Lc(X) is

completely regular in the sense just defined. (Hint: use the procedure from the
standard proof of the Urysohn Lemma.)

2. Conclude from Lemma 4.2(6) that a sublocale of a (completely) regular locale is
(completely) regular.

3. Prove that a product of regular locales is regular.

4.4. Normality. A locale X is said to be normal if for any a, b ∈ OX such that
a ∨ b = 1 there are u, v ∈ OX such that

u ∨ b = 1, a ∨ v = 1 and u ∧ v = 1.

This is an immediate translation of the homonymous property of spaces; thus,
trivially, a space X is normal in the classical sense if and only if Lc(X) is normal
in the sense just defined.

Lemma. In a normal locale the relation ≺ interpolates (and hence coincides with
≺≺).

Proof. Let a ≺ b, that is, ac ∨ b = 1. Then there are u, v such that ac ∨ v = 1,
u ∨ b = 1 and u ∧ v = 0 (and hence u ≤ vc). Thus, a ≺ v ≺ b. �

Proposition. A subfit normal locale is completely regular.

Proof. By the Lemma it suffices to prove that it is regular. Let c∨a = 1. We shall
prove that then c ∨

∨
σ(a) = 1, so that, by subfitness, a =

∨
σ(a). If c ∨ a = 1

we have u, v such that u ∨ a = 1, c ∨ v = 1 and u ≤ vc. Thus, v ≤
∨

σ(a) and
c ∨

∨
σ(a) = 1. �
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4.5. Hausdorff locales. Recall that a topological space is Hausdorff if and only if
the diagonal {(x, x) | x ∈ X} is closed in X×X. In analogy with this fact, a locale
X is called Hausdorff (strongly Hausdorff in [32]) if the diagonal

∆X : X → X ×X

is a closed sublocale (or, in frame terms, if the codiagonal

∇OX = ∆∗
X : O(X ×X) = OX ⊕OX → OX

is a closed surjection).
Since, in Frm, ∇OX(a⊕ b) = ∇OX(ι1(a) ∧ ι2(b)) = a ∧ b, we immediately infer

that ďOX : OX ⊕OX →↑dOX , where

dOX =
∨
{a⊕ b | a ∧ b = 0},

is the closure of ∇OX . Hence the Hausdorff condition amounts to the existence of
a frame homomorphism α : OX →↑dOX such that

α · ∇OX = ďOX . (4.5.1)

Remark. Unlike the previous separation axioms, this Hausdorff condition is only
an analogy of the classical one. The functor Lc : Top → Loc does not, in general,
preserve products, and a Hausdorff topological space X need not have a closed
localic diagonal, that is, it does not necessarily yield a Hausdorff Lc(X). There are
other analogues of the Hausdorff axiom in the literature [26, 40], useful in various
contexts. Note that the Hausdorff type axioms presented there are weaker than the
Hausdorff property discussed here. From the point of view of categorical topology,
the latter (considered first by Isbell in [32]) seems to be, for obvious reasons, of a
particular importance.

The category of Hausdorff locales will be denoted by HausLoc.

Lemma. A locale X is Hausdorff if and only if, for any a, b ∈ OX,

a⊕ b ≤ ďOX

(
(a ∧ b)⊕ (a ∧ b)

)
.

Proof. For the α from (4.5.1) we have

(a⊕b)∨dOX = α(∇OX(a⊕b)) = α(∇OX((a∧b)⊕(a∧b))) = ((a∧b)⊕(a∧b))∨dOX .

On the other hand, if the condition is satisfied set α(x) = (x ⊕ x) ∨ dOX . As
xi⊕xj ≤ ((xi∧xj)⊕(xi∧xj))∨dOX , we have (xi⊕xj)∨dOX ≤ (xi⊕xi)∨dOX . Hence
α(

∨
i∈I xi) = (

∨
i∈I xi⊕

∨
i∈I xi)∨dOX =

∨
i,j∈I(xi⊕xj)∨dOX =

∨
i∈I(xi⊕xi)∨

dOX =
∨

i∈I α(xi). Trivially, α preserves finite meets and hence α : OX →↑dOX

is a frame homomorphism. Since

ďOX(a⊕ b) = (a⊕ b) ∨ dOX = ((a ∧ b)⊕ (a ∧ b)) ∨ dOX = α(∇OX(a⊕ b)),

and since the a⊕ b generate OX ⊕OX, we have ďOX = α · ∇OX . �

Proposition. Each regular locale X is Hausdorff.
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Proof. If x ≺ a and y ≺ b then

x⊕ y = (x ∧ (yc ∨ b))⊕ (y ∧ (xc ∨ a))
= ((x ∧ b) ∨ (x ∧ yc))⊕ ((a ∧ y) ∨ (xc ∧ y))
≤ ((a ∧ b)⊕ (a ∧ b)) ∨ (x⊕ xc) ∨ (yc ⊕ y)
≤ ((a ∧ b)⊕ (a ∧ b)) ∨ dOX .

If X is regular we have

a⊕ b =
∨
{x ∈ OX | x ≺ a} ⊕

∨
{y ∈ OX | y ≺ b}

=
∨
{x⊕ y | x ≺ a, y ≺ b}

≤ ((a ∧ b)⊕ (a ∧ b)) ∨ c

and, by the Lemma, X is Hausdorff. �

4.6. Some special properties of HausLoc. For the equalizers in HausLoc (and
hence in RegLoc and CRegLoc) one has a very simple formula, obtained first by
Banaschewski for the regular case in [8]. The Hausdorff case appeared in Chen’s
thesis [24].

Theorem. Equalizers in HausLoc are closed sublocales. More precisely, if X is
Hausdorff and f1, f2 : Y → X are localic maps, then the equalizer of f1, f2 is given
by

Y -Yc � Y,

where c stands for
∨
{f∗1 (a) ∧ f∗2 (b) | a ∧ b = 0}.

Proof. Recall (3.4.1). Obviously, c = ∇OX((f∗1 ⊕f∗2 )(dOX)). For the α from (4.5.1)
we have

(x⊕ 1) ∨ dOX = α(∇OX(x⊕ 1)) = α(x) = α(∇OX(1⊕ x)) = (1⊕ x) ∨ dOX .

Therefore

č(f∗1 (x)) = f∗1 (x) ∨ c

= ∇OX((f∗1 ⊕ f∗2 )((x⊕ 1) ∨ dOX))
= ∇OX((f∗1 ⊕ f∗2 )((1⊕ x) ∨ dOX))
= f∗2 (x) ∨ c = č(f∗2 (x)).

On the other hand, if f1 · ϕ = f2 · ϕ = f for a ϕ : Z → Y , we have

ϕ∗(c) =
∨
{f∗(x ∧ y) | x ∧ y = 0} = 0

and hence we can define ϕ : Z → Y -Yc by ϕ∗(x) = ϕ∗(x) to obtain Y -Yc · ϕ = ϕ.
�

Proposition. In HausLoc (and in RegLoc and CRegLoc) each dense morphism is
an epimorphism.
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Proof. Let f be dense and let f1 ·f = f2 ·f . Then, for the c from Theorem 4.6, we
have f∗(c) = 0 and hence, by density, c = 0. Thus, f∗1 (a) = f∗1 (a)∨c = f∗2 (a)∨c =
f∗2 (a). �

Remark. Conversely, each epimorphism in HausLoc is dense (the proof is easy
but space consuming). Therefore epimorphisms in HausLoc are precisely the dense
morphisms.

4.7. Some special properties of RegLoc. In regular locales, congruences are com-
pletely described by the congruence classe of the top element 1. Indeed:

Proposition. Let X be regular and let C1, C2 be two congruences on OX such that
the congruence classes C1[1], C2[1] coincide. Then C1 = C2.

Proof. Let (a, b) ∈ C1 and let x ≺ a. Then xc∨a = 1 and therefore (xc∨b, 1) ∈ C2.
Consequently, (x∧ b, x) = (x∧ (xc ∨a), x) ∈ C2 and (a∧ b, a) = ((

∨
σ(a))∧ b, a) =

(
∨
{x ∧ b | x ≺ a},

∨
{x | x ≺ a}) ∈ C2. Similarly, (a ∧ b, b) ∈ C2. This shows that

(a, b) ∈ C2. �

A localic map f : Y → X is said to be codense if f∗(a) = 1 implies a = 1. From
the proposition above we immediately obtain:

Corollary. If X is regular then every codense f : Y → X is an epimorphism.

It should be noted that the statement of the Proposition holds, more generally,
for fit locales, that is, locales X in which

a � b ⇒ ∃c, a ∨ c = 1 and c→b 6= b,

(in fact it characterizes fit locales) and the Corollary holds already for the subfit
ones. The relation between fit and subfit is in the following fact:

A locale is fit iff each of its sublocales is subfit.

Exercises.

1. Show that each regular frame is fit.
2. Show that fitness is hereditary, that is, if X is fit and j : Y � X is a sublocale then

Y is fit.
3. Prove that the following statements are equivalent for a locale X:

(i) X is subfit;
(ii) C[1] = {1} for a congruence C implies that C is trivial;
(iii) each open sublocale of X is a join of closed sublocales (more exactly, Xa =⊔

{X-Xb | b ∨ a = 1}).
4. Prove that the following statements are equivalent for a locale X:

(i) X is fit;
(ii) for any two congruences C1 and C2, C1[1] = C2[1] implies C1 = C2;
(iii) each sublocale of X is a meet of open sublocales (more exactly, j = {Xa |

j∗(a) = 1});
(iv) each sublocale of X is subfit.
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4.8. First notes on compact locales. Compact locales will have a special section.
Here we will just mention a few facts connected with regularity.

A cover of a locale X is a subset A ⊆ OX such that
∨

A = 1, and a locale X
is compact if each cover contains a finite subcover.

Proposition.

(1) Each compact regular locale is normal (and hence, by Lemma 4.4, com-
pletely regular).

(2) Let f : Y → X be a dense localic map, with Y compact and X regular.
Then f is an epimorphism.

(3) A compact sublocale of a regular locale is closed.

Proof. (1) Let a ∨ b = 1. Thus, σ(a) ∪ σ(b) is a cover and hence there are

x1, . . . , xn ≺ a and y1, . . . , ym ≺ b

such that
∨n

i=1 xi ∨
∨m

i=1 yi = 1. Set x =
∨n

i=1 xi and y =
∨m

i=1 yi. Then, by
Lemma 4.2, xc ∨ a = 1 and yc ∨ b = 1. As x ∨ y = 1 we have x ∨ b = 1 = a ∨ y.
Set u = x ∧ yc and v = xc ∧ y. Then u ∨ b = (x ∨ b) ∧ (yc ∨ b) = 1 and, similarly,
a ∨ v = 1. Trivially, u ∧ v = 0.
(2) By Corollary 4.7 it suffices to verify that f is codense. Suppose f∗(a) = 1.
Consequently {f∗(x) | x ≺ a} is a cover of Y and hence there are x1, . . . , xn ≺ a
such that

∨n
i=1 f∗(xi) = 1. Set x =

∨n
i=1 xi. By Lemma 4.2, x ≺ a. Thus, we have

f∗(x) = 1 and xc ∨ a = 1. Since f∗(xc) ≤ f∗(x)c = 1c = 0, xc = 0 and finally
a = 1.
(3) Let f : Y � X be a compact sublocale of X. For the

c =
∨
{x ∈ OX | f∗(x) = 0}

from the closure we have a dense sublocale f : Y � Xc. By (2), f is an epimor-
phism and hence an isomorphism. �

More generally, one can prove the normality for the regular Lindelöf locales,
by the standard procedure imitating the classical proof.

Exercise. Prove that a closed sublocale of a compact locale is compact.

5. Open and closed maps

5.1. Open maps of locales. The Heyting structure (recall Remark 1 of 1.1) will
play a crucial role in this section.

A localic map f : X → Y is said to be open (resp. closed) if the image of each
open (resp. closed) sublocale under f is open (resp. closed).

Proposition. Let f : X → Y be a localic map. The following conditions are equiv-
alent:

(i) f is open;
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(ii) f∗ is a complete Heyting homomorphism (that is, it preserves all suprema
and infima as well as the Heyting operation);

(iii) f∗ admits a left adjoint f! that satisfies the “Frobenius Identity”

f!(a ∧ f∗(b)) = f!(a) ∧ b,

for every a ∈ OX, b ∈ OY .

Proof. (i)⇒(ii): By the definition of image, f open means that, for each a ∈ OX,
there exists f!(a) ∈ OY such that

b ∧ f!(a) = c ∧ f!(a) iff f∗(b) ∧ a = f∗(c) ∧ a, (5.1.1)

or, equivalently,
b ∧ f!(a) ≤ c iff f∗(b) ∧ a ≤ f∗(c). (5.1.2)

In particular, for b = 1, we obtain f!(a) ≤ c if and only if a ≤ f∗(c). Thus, f! is a
left adjoint of f∗ and we see that f∗ preserves all meets. Returning to (5.1.2) and
using the Heyting formula we obtain

a ≤ f∗(b→c) ⇔ f!(a) ≤ b→c

⇔ b ∧ f!(a) ≤ c

⇔ f∗(b) ∧ a ≤ f∗(c)
⇔ a ≤ f∗(b)→f∗(c).

Thus, f∗(b→c) = f∗(b)→f∗(c), that is, f∗ is a Heyting homomorphism.
(ii)⇒(iii): If f∗ is a complete Heyting homomorphism, it admits a left adjoint f!.
Obviously f!(a ∧ f∗(b)) ≤ f!(a) ∧ b since f! · f∗ ≤ 1. Moreover,

a ∧ f∗(b) ≤ f∗(f!(a ∧ f∗(b))) ⇔ a ≤ f∗(b)→f∗(f!(a ∧ f∗(b)))
⇔ a ≤ f∗(b→f!(a ∧ f∗(b)))
⇔ f!(a) ≤ b→f!(a ∧ f∗(b))
⇔ b ∧ f!(a) ≤ f!(a ∧ f∗(b)).

(iii)⇒(i): If f! a f∗ and f! satisfies Frobenius Identity we have

b ∧ f!(a) ≤ c ⇔ f!(a ∧ f∗(b)) ≤ c ⇔ a ∧ f∗(b) ≤ f∗(c),

so that (5.1.2) is satisfied. �

Remarks. (1) Recall from 4.7 that a congruence on a regular locale is determined
by the congruence class of the top element. Thus, in the regular case, the formula
(5.1.1) above is equivalent to

f!(a) = c ∧ f!(a) iff a = f∗(c) ∧ a,

that is, f!(a) ≤ c if and only if a ≤ f∗(c). Hence

if Y is regular, the open localic maps f : X → Y are those for which f∗

is a complete lattice homomorphism.
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Note that, hence, each complete lattice homomorphism h : L → M between
frames, with L regular, is automatically Heyting.
(2) If X and Y are spaces and f : X → Y is an open continuous map, then f
is open also as a localic map. The converse is not generally true. It holds for the
Y that are TD; in fact, the coincidence of classical open and localic open maps
characterizes property TD (see [17, 51]).

Exercises.

1. Show that a sublocale Y � X is open if and only if it is open as a localic map.
2. Let Y be a fit locale. Prove that a localic map f : X → Y is open if and only if

f∗ : OY → OX is a complete lattice homomorphism. (By Exercise 4 of 4.7, this
generalizes Remark 1 above.)

5.2. Pullback stability. A straightforward application of the Frobenius Identity
yields a characterization of surjections among open maps:

Lemma. An open f : X → Y is a surjection if and only if f!(1) = 1.

Proof. Since f∗ is one-one, f! · f∗ = 1OY . Hence f!(1) = f!(f∗(1)) = 1.
Conversely, if f!(1) = 1 we have, by the Frobenius Identity, a = f!(1) ∧ a =

f!(f∗(a)), which shows that f∗ is one-one. �

We may now check pullback stability for open maps and open surjections.

Theorem. Consider the pullback square

P
q //

p

��

Z

g

��
X

f // Y

in Loc, where f is open. Then:
(1) q is open;
(2) for each a ∈ OX, g∗(f!(a)) = q!(p∗(a));
(3) q is a surjection whenever f is a surjection.

Proof. (1) Consider the diagram

OY
f∗ //

g∗

��

OX

p∗

��

ιX

yyrrrrrrrrrr

OZ ⊕OX
γ

%%LLLLLLLLLL

OZ

ιZ

99ssssssssss

q∗
// OP

in Frm, where the outer diagram is a pushout, constructed in the standard way
from the coproduct and the coequalizer of ιZ · g∗ and ιX · f∗. By Proposition
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5.1, if f is open, f∗ has a left adjoint f! satisfying Frobenius Identity. Define
ϕ : OZ ⊕OX → OZ by ϕ(z ⊕ x) = z ∧ g∗(f!(x)) (recall 3.4). Then

ϕ(ιZ(g∗(a)) ∧ (z ⊕ x)) = ϕ((g∗(a) ∧ z)⊕ x)
= z ∧ g∗(a ∧ f!(x))
= z ∧ g∗(f!(f∗(a) ∧ x))
= ϕ(z ⊕ (f∗(a) ∧ x))
= ϕ(ιX(f∗(a)) ∧ (z ⊕ x)),

and since ϕ preserves joins, we have a ϕ : OP → OZ such that ϕ · γ = ϕ (recall
Proposition 3.1). Then

ϕ(q∗(z)) = ϕ(ιZ(z)) = ϕ(z ⊕ 1) = z ∧ g∗(f!(1)) ≤ z

and

q∗(ϕ(γ(z⊕x))) = q∗(z∧g∗(f!(x))) = q∗(z)∧p∗(f(f!(x))) = γ(z⊕ff!(x)) ≥ γ(z⊕x).

Thus, ϕ = q!, the left Galois adjoint of q∗. Since we have

q!(q∗(a) ∧ γ(z ⊕ x)) = q!(γ(ιZ(a) ∧ (z ⊕ x)))
= ϕ((a ∧ z)⊕ x)
= a ∧ z ∧ g∗(f!(x))
= a ∧ q!(γ(z ⊕ x)),

q is open.
(2) For a ∈ OX we obtain q!(p∗(a)) = ϕ(1⊕ a) = g∗(f!(a)).
(3) If f is a surjection we have f!(1) = 1 by the Lemma. Then, by (2), q!(1) =
g∗(1) = 1 and hence q is surjective as well. �

Remark. As is well known, surjections are not stable under pullback in Loc, as the
following example [47] shows. Let N with topology

ON = {U ⊆ N | U = ∅ or N \ U is a finite subset of N}

and let N with the discrete topology PN. The frame homomorphism i−1 : ON →
PN given by the continuous map i : N � N is a monomorphism but the pushout
of i−1 along the monomorphism ON � PN is

ON //

i−1

��

PN

i−1

��
PN 1 // PN

and i−1 : PN → PN is not a monomorphism.
In [8] Banaschewski characterizes the locales Y for which pullback along every

g : Z → Y preserves surjections: precisely the ones such that S(Y ) is Boolean.



5. Open and closed maps 87

Corollary. Let f : X → Y be an open localic map. For every sublocale j : Y ′ � Y ,

f−1[j] = f−1[j]. (5.2.1)

Proof. We know, by 2.9, that j is the sublocale Y -Ycj
� Y and f−1[j] is the

sublocale X-Xcf−1(j)
� X, where

c(j) =
∨
{b ∈ OY | j∗(b) = 0}

and
cf−1(j) =

∨
{a ∈ OX | (f−1(j))∗(a) = 0}.

Moreover, by Proposition 3.7, f−1(Y -Ycj
) = X-Xf∗(c(j)). Therefore it suffices to

verify that f∗(c(j)) = cf−1(j), that is,∨
{f∗(b) | j∗(b) = 0} =

∨
{a | (f−1(j))∗(a) = 0}.

The inequality
∨
{f∗(b) | j∗(b) = 0} ≤

∨
{a | (f−1(j))∗(a)} = 0 is obvious.

Conversely, for each a such that (f−1(j))∗(a) = 0 take b = f!(a). Then a ≤ f∗(b)
and, by condition (2) of the Theorem, j∗(b) = 0. �

The converse is not true [37], as the following example due to P. Johnstone
shows. Take, for f , the dense embedding βX : BX � X from 2.13. Then the
condition is trivially satisfied since, in BX, every sublocale is closed, by Proposition
2.11. The localic map βX is not open, though.

This contrasts with classical topology, where the formula

f−1(A) = f−1(A), for any A ⊆ Y

is equivalent to f being open. However, if a localic map f stably has the property
(5.2.1) above (that is, if all pullbacks of f satisfy it), then f is necessarily open
and we do get a characterization of localic openness (see [37] for a proof; see also
III.7.3).

Exercise. For X the unit interval, find an example of a system {Ui ∈ OX | i ∈ I} such

that
∧

i∈I Ui = ∅ and
∧

i∈I βX(Ui) = I.

5.3. Closed and proper maps of locales. We end this section with a characterization
of closed maps via a “co-Frobenius identity”.

Proposition. A localic map f : X → Y is closed if and only if f∗ satisfies

f∗(a ∨ f∗(b)) = f∗(a) ∨ b.

Proof. Similarly like in Proposition 5.1 we see that the closedness amounts to the
existence of a map ϕ such that

a ∨ f∗(b) = a ∨ f∗(c) iff ϕ(a) ∨ b = ϕ(a) ∨ c,
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which is easily seen to be equivalent to

f∗(c) ≤ a ∨ f∗(b) iff c ≤ ϕ(a) ∨ b.

Setting b = 0 we see that ϕ = f∗. Further, the first inequality is equivalent to
c ≤ f∗(a ∨ f∗(b)) so that we finally transform the condition into the form

c ≤ f∗(a ∨ f∗(b)) iff c ≤ f∗(a) ∨ b,

yielding the desired equation. �

Exercise 1 of 5.1 shows that open maps generalize open sublocales and Theorem
5.2 asserts that open maps and open surjections are stable under pullback. In order
to have similar results for closed maps one has to restrict the class of closed maps:
a localic map f : X → Y is said to be proper if it is closed and f∗ preserves directed
joins (see [63] and [64] for some alternative descriptions).

Exercise. Observe that proper maps generalize closed sublocales, by proving that a sublo-

cale Y � X is closed if and only if it is proper as a localic map.

The classes of proper maps and proper surjections are stable under pullback
(see [63] for a proof). In particular, if this property is weakened to mention only
pullbacks along product projections Z × Y → Y one concludes that, for proper
f : X → Y , 1Z × f : Z ×X → Z ×Y is closed for all locales Z, which corresponds
to one of the standard definitions of properness for continuous maps between
topological spaces [21]. The converse is also true [64] and so the condition

1Z × f : Z ×X → Z × Y is closed for all locales Z

characterizes the properness property of a map f : X → Y of locales (similarly to
topological spaces).

For more information on open, closed and proper maps consult [38, 60, 63]. In
[60] the results about open and proper maps are proved side by side with “parallel
proofs for parallel results”, showing the similarities between the two classes. For
instance the proof that proper maps are stable under pullback is really just a
repetition of the proof that open maps are stable under pullback but with “has
a left adjoint which is a sup-lattice homomorphism” being replaced with “has a
right adjoint which is a preframe homomorphism”.

6. Compact locales and compactifications

6.1. Some machinery. The converse of Proposition 4.5 is valid for compact locales
and it was first proved constructively by Vermeulen [62]. In order to present it we
need a few results of a technical nature, involving binary products of locales.

Let X1 and X2 be locales. The maps π1, π2 : D(OX1×OX2) → D(OX1×OX2)
defined by

π1(U) = {(
∨

S, y) | S × {y} ⊆ U}
and

π2(U) = {(x,
∨

S) | {x} × S ⊆ U}
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are nuclei on the frame D(OX1 ×OX2). The map

π0 : D(OX1 ×OX2) → D(OX1 ×OX2)
U 7→ π1(U) ∪ π2(U)

is a prenucleus, that is, for all U, V ∈ D(OX1 × OX2), U ⊆ π0(U), π0(U) ∩ V ⊆
π0(U ∩ V ) and π0(U) ⊆ π0(V ) whenever U ⊆ V . But for each prenucleus π0 there
is a unique nucleus π which has the same fixed points as π0, which is given by

π(a) =
∧
{b | a ≤ b, π0(b) = b} [6].

In this case, since

Fix(π0) = {U ∈ D(OX1 ×OX2) | π0(U) = U} = OX1 ⊕OX2,

the associated nucleus π is given by

π(U) =
⋂
{V ∈ OX1 ⊕OX2 | U ⊆ V }.

Furthermore define, for any U ∈ D(OX1 ×OX2),

σ0(U) = {
∨

D | directed D ⊆ U}.

This defines a prenucleus. Let σ denote the associated nucleus. Note that σ ≤ π,
since σ0(U) ⊆ π(U) for every U . Indeed, for every directed set D = {(ci, di) | i ∈
I} ⊆ U , we have (

∨
i∈F ci,

∨
i∈F di) ∈ U for every finite F ⊆ I, which implies

(ci, dj) ∈ U for every i, j ∈ I. Consequently, (ci,
∨

i∈I di) ∈ π(U) and finally∨
D = (

∨
i∈I ci,

∨
i∈I di) ∈ π(U).

As a consequence of this inclusion we have:

Lemma. π = σ · π2 · π1. �

A constructive proof of this result was first provided by Banaschewski [10].

6.2. Compact elements. An element a of a complete lattice A is said to be compact
(finite in [34]) if a ≤

∨
S for some S ⊆ A implies a ≤

∨
F for some finite F ⊆ S.

Clearly a locale X is compact if and only if 1 is a compact element of OX.

Exercises.

1. Let A be a complete lattice, a ∈ A. Prove that a is compact if and only if for every
directed subset D ⊆ A with a ≤

∨
D, there exists d ∈ D with a ≤ d.

2. Let A be a frame, a ∈ A. Prove that a is compact if and only if for every S ⊆ A with
a =

∨
S, there exists a finite F ⊆ S with

∨
F = a.

Lemma. Let U ∈ D(OX1 × OX2) and let a ∈ OX1 be a compact element. If
a⊕ b ≤ π(U) then (a, b) ∈ π2(π1(U)).

Proof. Let S = π2(π1(U)) ∈ D(OX1 ×OX2) and

W =
{

V ∈ D(OX1 ×OX2) | S ⊆ V ⊆ π(S), (a, b) ∈ V ⇒ (a, b) ∈ S
}

.

Then:
• S ∈ W;
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• W is σ0-stable, that is, V ∈ W implies σ0(V ) ∈ W. Indeed, take V ∈ W
and consider (a, b) =

∨
D, for directed D ⊆ V . Since a is compact

there exists (c0, d0) ∈ D such that a ≤ c0. For any (c, d) ∈ D with
(c0, d0) ≤ (c, d) we have (a, d) ∈ V , thus (a, d) ∈ S. Since b =

∨
{d |

(c, d) ∈ D, (c0, d0) ≤ (c, d)}, we get (a, b) ∈ π2(S) = S;
• trivially, W :=

⋃
W ∈ W.

Thus σ0(W ) ∈ W and σ0(W ) = W , which implies σ(W ) = W ∈ W. Hence σ(S) ⊆
σ(W ) = W and σ(S) ∈ W. On the other hand, by Lemma 6.1, π(U) ⊆ σ(S) so
π(U) ∈ W. �

6.3. A technical lemma. The following notation will be convenient in the sequel.
For locales X1, X2 and I ∈ OX1 ⊕OX2 let

I1[b] =
∨
{a ∈ OX1 | (a, b) ∈ I} (b ∈ OX2)

and
I2[a] =

∨
{b ∈ OX2 | (a, b) ∈ I} (a ∈ OX1).

Note that (I1[b], b) ∈ I and (a, I2[a]) ∈ I for every a ∈ OX1 and b ∈ OX2.

Lemma. Consider locales X1, X2 and the projections pi : X1×X2 → Xi (i = 1, 2).
If X1 is compact then, for every a ∈ OX1 and I ∈ OX1 ⊕OX2, we have

p2∗(p
∗
1(a) ∨ I) =

∨
{b ∈ OX2 | a ∨ I1[b] = 1}.

Proof. Let b ∈ OX2 with a ∨ I1[b] = 1. In order to show that b ≤ p2∗(p
∗
1(a) ∨ I)

it suffices to check that (1, b) ∈ p∗1(a) ∨ I, which is true because (a, b) ∈ p∗1(a) and
(I1[b], b) ∈ I. So

p2∗(p
∗
1(a) ∨ I) ≥

∨
{b ∈ OX2 | a ∨ I1[b] = 1}.

Now, for U = p∗1(a) ∪ I ∈ D(OX1 × OX2) and u = p2∗(p
∗
1(a) ∨ I), let us

prove that u ≤
∨
{b | a ∨ I1[b] = 1}. Since p∗2(u) ≤ p∗1(a) ∨ I, we have that

(1, u) ∈ p∗1(a) ∨ I = π(U). Hence, by Lemma 6.2, (1, u) ∈ π2(π1(U)). But

π2(π1(U)) =
{

(x, y) | y ≤
∨
{b | x ≤ a ∨ I1[b]}

}
. (6.3.1)

Indeed, if (x, y) ∈ π2(π1(U)) then y =
∨

S with (x, s) ∈ π1(U) for every s ∈ S.
Then (x, s) = (

∨
Rs, s) where Rs × {s} ⊆ U , from which it follows that, for each

s ∈ S and r ∈ Rs, r ≤ a ∨ I1[s]. Therefore x =
∨

Rs ≤ a ∨ I1[s] for every s ∈ S,
which means that

∨
{b | x ≤ a∨ I1[b]} ≥

∨
S = y. On the other hand, let (x, y) be

such that y ≤
∨
{b | x ≤ a ∨ I1[b]}. The conclusion that (x, y) ∈ π2(π1(U)) follows

immediately from the fact that, for each such b, (a, b) ∈ p∗1(a) and (I1[b], b) ∈ I so
(a ∨ I1[b], b) ∈ π1(U) and then (x, b) ∈ π1(U).

Finally, it follows from (6.3.1) that u ≤
∨
{b | a ∨ I1[b] = 1}. �

6.4. Hausdorffness and regularity. We may now prove, at last, the converse of
Proposition 4.5 for compact locales.
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Theorem. Each compact Hausdorff locale is regular.

Proof. Applying Lemma 6.3 in the case X = X1 = X2 and I = dOX =
∨
{a⊕ b |

a ∧ b = 0} we get

p2∗(p
∗
1(a) ∨ dOX) =

∨
{b ∈ OX | a ∨ bc = 1} =

∨
{b ∈ OX | b ≺ a}.

Since X is Hausdorff, we may conclude, from Theorem 4.6, that the sublocale

X ×X-(X ×X)dOX
� X

is the equalizer of p1 and p2, since∨
{p∗1(a) ∧ p∗2(b) | a ∧ b = 0} =

∨
{a⊕ b | a ∧ b = 0} = dOX .

Therefore p2∗(p
∗
1(a) ∨ dOX) = p2∗(p

∗
2(a) ∨ dOX) ≥ p2∗(p

∗
2(a)) ≥ a, which shows

that
∨
{b ∈ OX | b ≺ a} = a for every a ∈ OX. �

6.5. The Kuratowski-Mrówka Theorem for locales. The Kuratowski-Mrówka The-
orem characterizes compact spaces K by the fact that for each X the projection
K × X → X is closed (see, for example, [29]). Its counterpart for locales is also
valid and was first obtained by Pultr and Tozzi [50]. By applying the results on
binary coproducts of Sections 6.1 and 6.2 we can present a constructive proof [25].

Theorem. A locale K is compact if and only if p2 : K ×X → X is closed for any
locale X.

Proof. Let K be a compact locale. By Proposition 5.3, p2 is closed if and only if
it satisfies the co-Frobenius Identity

p2∗(I ∨ p∗2(x)) = p2∗(I) ∨ x (6.5.1)

for all I ∈ O(K ×X) and x ∈ OX. Since

p2∗(I) =
∨
{a ∈ OX | p∗2(a) ≤ I} =

∨
{a ∈ OX | (1, a) ∈ I},

(6.5.1) holds if and only if (I∨p∗2(x))2[1] = I2[1]∨x or, equivalently, (I∨p∗2(x))2[1] ≤
I2[1] ∨ x, that is,

(1, y) ∈ I ∨ p∗2(x) ⇒ y ≤ I2[1] ∨ x.

Let U = I ∪ p∗2(x) ∈ D(OK × OX). Then π2(U) = {(a, b) | b ≤ x ∨ I2[a]}, and
(1, y) ∈ π2(U) if and only if y ≤ x ∨ I2[1]. Thus (6.5.1) holds if and only if

(1, y) ∈ π(U) ⇒ (1, y) ∈ π2(U).

This is true by Lemma 6.1 and the fact that π1(U) = U .
Conversely, suppose U is a directed cover of OK. We shall prove that 1 ∈ U .
In the set OK define

T (OK) =
{

S ⊆ OK | 1 ∈ S ⇒↑u ⊆ S for some u ∈ U
}

.
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This is a topology on OK. Let X be the corresponding locale. By hypothesis,
p2 : K ×X → X is closed, that is, p2∗((1 ⊕ a) ∨ I) = a ∨ p2∗(I) for all a ∈ OX,
I ∈ O(K ×X). Consider a = K \ {1} ∈ OX and I =

∨
{u⊕ ↑u | u ∈ U}. Then

(1⊕ a) ∨ I =
∨
{u⊕ a | u ∈ U} ∨

∨
{u⊕ ↑u | u ∈ U}

=
∨
{u⊕ (a∪ ↑u) | u ∈ U}

= {u⊕ 1OX | u ∈ U}
= 1O(K×X).

Hence a ∨ p2∗(I) = p2∗((1 ⊕ a) ∨ I) = p2∗(1) = 1OX = OK, which implies
1 ∈ p2∗(I). By definition of T (OK) this means that ↑v ⊆ p2∗(I) for some v ∈ U ,
that is, p2∗(↑v) ⊆ I. Then (1⊕ ↑v) ∧ (1⊕ ↓v) ≤ I ∧ (1⊕ ↓v) is equivalent to
1 ⊕ {v} ≤

∨
{u ⊕ [u, v] | u ∈ U}, where [u, v] = {k ∈ OK | u ≤ k ≤ v}. For

W = {
∨

V | V ⊆ U} let

S =↓{(w, [w, v]) | w ∈ W} ∈ D(OK ×OX).

It can be easily checked that π1(S) = S and 1 ⊕ {v} ⊆ π(S). Since {v} is an
atom of OX, it is a compact element, and we may apply Lemma 6.2 to conclude
that (1, {v}) ∈ π1(π2(S)). Again by {v} being an atom of OX, this implies that
(1, {v}) ∈ π1(S) = S. Finally, (1, {v}) ∈ S means that 1 = w and {v} = [w, v] for
some w ∈ W , that is, 1 = w = v ∈ U , as required. �

6.6. Regular ideals. In the sequel we will present an easy construction of com-
pact locales starting from general ones. This will give us the compactification of
completely regular locales due to Banaschewski and Mulvey [12].

An ideal in a frame A is a non-void subset J ⊆ A such that
(1) a, b ∈ J ⇒ a ∨ b ∈ J , and
(2) a ∈ J & b ≤ a ⇒ b ∈ J .

It is said to be regular if, moreover
(3) for each a ∈ J there is a b ∈ J such that a ≺≺ b.

Examples. The sets ↓a, or the σ(a) from 4.3, are ideals; ρ(a) is a regular ideal.

The collection of all ideals (resp. all regular ideals) in A will be denoted by

JA (resp. RA).

Proposition. JA and RA are compact frames with bottom {0}, top A, intersection
for meet and the join defined by∨

i∈I

Ji =
{∨

F | F finite, F ⊆
⋃
i∈I

Ji

}
.

Proof. {0} and A are regular ideals and a finite intersection of a system of (regular)
ideals is obviously a (regular) ideal. Also, obviously, {

∨
F | F finite, F ⊆

⋃
i∈I Ji}

is an ideal containing all Ji, and if K is an ideal containing all Ji, it has to contain
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all finite joins of the elements of
⋃

i∈I Ji. Thus, {
∨

F | F finite, F ⊆
⋃

i∈I Ji} is
the supremum of the system Ji in JA. If all the Ji are regular and {a1, . . . , an} ⊆⋃

i∈I Ji choose bi, ai ≺≺ bi in
⋃

i∈I Ji; then a1 ∨ · · · ∨ an ≺≺ b1 ∨ · · · ∨ bi by
Lemma 4.2 and we see that

∨
i∈I Ji is regular as well. Trivially, (

∨
i∈I Ji) ∩K ⊇∨

i∈I(Ji ∩K). If a ∈ (
∨

i∈I Ji) ∩K we have a = a1 ∨ · · · ∨ an ∈ K, aj ∈
⋃

i∈I Ji.
Since K is an ideal, all the ai are in K and hence {a1, . . . , an} ⊆

⋃
i∈I(Ji ∩ K)

and a ∈
∨

i∈I(Ji ∩K). Thus, JA is a frame and RA one of its subframes.
Finally, let {Ji | i ∈ I} be a cover of JA. Then

∨
i∈I Ji = A 3 1 and hence

there are a1, . . . , an ∈
⋃

i∈I Ji such that a1 ∨ · · · ∨ an = 1. Choose Jij
containing

aj . Then
∨n

j=1 Jij
3 1 and hence

∨n
j=1 Jij

= A by the down-closedness condition
(2) of ideals. �

6.7. The Stone-Čech compactification of locales. The constructions JA and RA
can be extended to functors by setting

Jh(J) (resp. R(h)(J)) =↓ h[J ].

(Checking that ↓h[J ] is an ideal — a regular one if J is regular — is straightforward
and so is the preserving of 0, 1 and joins. Also preserving the meets is an easy
exercise.)

Proposition. If A is completely regular then RA is regular. Thus, R can be viewed
as a functor from CRegLoc to the category KRegLoc of compact regular locales.

Proof. For a regular ideal J we obviously have J =
∨
{ρ(a) | a ∈ J} (=

⋃
{ρ(a) | a ∈

J}), and for each a, ρ(a) =
∨
{ρ(b) | b ≺≺ a}. Thus, it suffices to prove that

b ≺≺ a in A ⇒ ρ(b) ≺ ρ(a) in RA.

Interpolate b ≺≺ x ≺≺ y ≺≺ a. Obviously, ρ(bc) ∩ ρ(b) = {0} and consequently
ρ(bc) ⊆ ρ(b)c. Then, by 4.2, xc ⊆ ρ(b)c. Thus, 1 = xc ∨ y ∈ ρ(b)c ∨ ρ(a) and hence
ρ(b)c ∨ ρ(a) = J . �

For a completely regular locale X define vX : X → RX by setting v∗X(J) =
∨

J .

Lemma. vX is a dense sublocale.

Proof. We obviously have

v∗(ρ(a)) = a and ρ(v∗(J)) ⊇ J. (6.7.1)

Thus, v∗ is a left adjoint and preserves all joins. Furthermore, v∗(OX) = 1 and

v∗(J)∧v∗(K) =
∨

J ∧
∨

K =
∨
{a ∧ b | a ∈ J, b ∈ K} ≤

≤
∨
{c | c ∈ J ∩K} = v∗(J ∩K) ≤ v∗(J) ∧ v∗(K),

the last inequality being trivial. Obviously v∗ is onto, and if v∗(J) =
∨

J 6= 0 then
J 6= {0}. �

The parallelism with the classical situation is now apparent; we have a reflection
of CRegLoc onto KRegLoc, called by obvious reasons the Stone-Čech compactifica-
tion for locales [12]:
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Theorem. The functor R and the system of mappings vX constitute a reflection of
CRegLoc onto KRegLoc.

Proof. Checking that, for a localic map f : X → Y , R(f) · vX = vY · f is
immediate. Thus, it remains to be proved that if X is compact, vX is an isomor-
phism. According to formulas (6.7.1), it suffices to prove that ρ(v∗(J)) ⊆ J . Let
a ∈ ρ(

∨
J). Then ac ∨

∨
J = 1 and if X is compact there are x1, . . . , xn ∈ J such

that ac ∨ x1 ∨ · · · ∨ xn = 1. Then x = x1 ∨ · · · ∨ xn ∈ J and a ≤ x so that a ∈ J .
�

Remarks. (1) More generally, a compactification of a locale X is a dense extremal
monomorphism f : X → Y with compact regular codomain. A locale which has a
compactification is called compactifiable. For a comprehensive view of compactifi-
cations of locales consult [9].
(2) Note that the entire procedure was constructive (no choice principle or the
law of the excluded middle was used). Banaschewski and Mulvey presented this
construction in [12]. In [13] they presented an alternative construction. Realiz-
ing that the fact that a reflective subcategory is closed under limits can be also
proved constructively, we can conclude that products of compact regular locales
(by Proposition 4.5 and Theorem 6.4 this is the same as compact Hausdorff lo-
cales) are compact and this fact does not need non-constructive principles. This
is even true in the non-regular case (where a reflection here does not exist), that
is, Tychonoff’s Theorem is choice-free for locales (the proof is much more difficult,
though — see [33] or [6]). This came as a remarkable surprise when Johnstone
[33] was able to prove it within Zermelo-Fraenkel axiomatic without choice (ZF).
Indeed, this contrasts with the classical case where Tychonoff’s Theorem is equiv-
alent to the axiom of choice (in the Hausdorff setting, with the Boolean Ultrafil-
ter Theorem). It turns out that in fact the non-constructive principle is needed
for products having enough points rather than for preserving compactness (see
III.11.4).

Later refinements of this important result were given by Kř́ıž [39], who uses
fewer axioms of ZF (namely, Kř́ıž’s proof does not depend on the non-constructive
axiom of replacement as Johnstone’s did), and by Vermeulen [61], whose proof is
constructively valid in the sense of topos theory (meaning: valid in an arbitrary
topos).

7. Locally compact locales

7.1. The “way below” relation and continuous lattices. Recall that in a complete
lattice A, a is well below b, written

a � b,
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if for each directed D ⊆ A

b ≤
∨

D ⇒ ∃d ∈ D, a ≤ d.

By Exercise 1 of 6.2, an element a of a complete lattice is compact precisely when
a � a.

A continuous lattice [53] is a complete lattice A such that, for every a ∈ A,

a =
∨
{b ∈ A | b � a}.

Lemma. The relation � satisfies the following properties:
(1) 0 � a for all a;
(2) if x ≤ a � b ≤ y then x � y;
(3) if a1, a2 � b then a1 ∨ a2 � b. Thus, the set {x | x � a} is always

directed;
(4) in any frame, a ≺ b � 1 implies a � b;
(5) in any regular (resp. completely regular) frame,

a � b ⇒ a ≺ b (resp. a � b ⇒ a ≺≺ b);

(6) in any continuous lattice, the relation � interpolates.

Proof. (1), (2), and (3) are immediate.
(4) Let b ≤

∨
D for a directed D. Then 1 ≤ ac ∨

∨
D and hence there is a d ∈ D

such that b ≤ ac ∨ d. Then a = a ∧ b ≤ a ∧ d, that is, a ≤ d.
(5) For regular frames we have b =

∨
{x | x ≺ b} and since the join is directed,

there is an x ≺ b such that a ≤ b. For completely regular frames the proof is
analogous.
(6) We have b =

∨
{
∨
{y | y � x} | x � b} =

∨
{y | ∃x, y � x � b} and the

join is obviously directed. Thus, if a � b there are x, y such that a ≤ y � x � b.
�

Exercise. Show that, for open subsets U, V of a space X, if there is a compact K such

that U ⊆ K ⊆ V , then U � V . Conclude that, for every locally compact space X, the

frame OX is continuous.

7.2. Locally compact locales. Exercise 7.1 above suggests that the continuity may
be a good description of local compactness in the localic setting: a locale X is said
to be locally compact if the frame OX is a continuous lattice. In fact we will see
that it is even better than that (see Theorem 7.4 below).

A general compact locale is not necessarily locally compact. But we have:

Proposition.

(1) A compact Hausdorff locale is locally compact. More generally, any open
sublocale of a compact Hausdorff locale is locally compact. Moreover, in
such a case the relations �, ≺ and ≺≺ coincide.

(2) A completely regular locale X is locally compact if and only if it is open
in its Stone-Čech compactification vX : X → RX.
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Proof. (1) Let X be a compact Hausdorff locale. Compactness means 1 � 1
and hence, by Lemma 7.1(4), a ≺ b implies a � b in OX. By Theorem 6.4, X
is regular (and hence, by 4.8, completely regular). Therefore, by Lemma 7.1(5),
a � b implies a ≺≺ b.
(2) By (1) it suffices to prove that, in case X is locally compact, there is a regular
ideal J in OX such that the congruence associated with v∗X is the open ∆J , that
is, for any regular ideals J1 and J2,

vX(J1) = vX(J2) if and only if J1 ∩ J = J2 ∩ J.

Consider J = {x ∈ OX | x � 1}. By Lemma 7.1 it is a regular ideal. By
continuity, v∗X(J) =

∨
J = 1 and hence J1 ∩ J = J2 ∩ J implies v∗X(J1) = v∗X(J2).

On the other hand, let
∨

J1 =
∨

J2, let a ∈ J1 ∩ J and choose b ∈ J1 ∩ J such
that a ≺≺ b (and hence a � b). Since ideals are directed, we may conclude from
b ≤

∨
J2 =

∨
J1 that there is an x ∈ J2 with a ≤ x, and hence a ∈ J2. �

Furthermore, as for compact locales, the converse of Proposition 4.5 is valid for
locally compact locales [62] and Hausdorff also means regular. In ([62], Proposition
4.7) it is also proved that, for Hausdorff locales, local compactness can be defined
in terms of compact neighborhoods.

7.3. Scott topology. Let A be a lattice. A subset U ⊆ A is said to be Scott open
if U =↑U and, whenever D ⊆ A is directed and

∨
D ∈ U , U ∩D 6= ∅. Obviously

the Scott open subsets constitute a topology (the so-called Scott topology on A).
Consider now a locale X and represent the spectrum Pt(X) by complete filters

P ⊆ OX (as in 1.5). One can characterize compact subsets of Pt(X) in terms of
Scott opens:

Lemma. A subset K ⊆ Pt(X) is compact if and only if
⋂
{P | P ∈ K} is Scott

open.

Proof. Let
⋂
{P | P ∈ K} be Scott open and let K ⊆

⋃
{Σa | a ∈ A}. Then∨

A ∈
⋂
{P | P ∈ K} since for each P ∈ K there is an a ∈ A such that a ∈ P , and

hence
∨

A ∈ P . Thus, there are a1, . . . , an ∈ A with a1 ∨ · · · ∨an ∈
⋂
{P | P ∈ K}

and hence K ⊆ Σa1∨···∨an
=

⋃n
i=1 Σai

. If K is compact and
∨

A ∈
⋂
{P | P ∈ K}

then K ⊆ Σ∨A =
⋃
{Σa | a ∈ A} and there are a1, . . . , an ∈ A such that K ⊆

Σa1∨···∨an =
⋃n

i=1 Σai . Finally a1 ∨ · · · ∨ an ∈
⋂
{P | P ∈ K}. �

7.4. The Hofmann-Lawson Duality. On the other hand, prime Scott open filters
of OX give the points of the spectrum Pt(X):

Lemma. The elements P ∈ Pt(X) are precisely the prime Scott open filters.

Proof. A completely prime P is obviously Scott open. Now let P be Scott open
and prime, and let

∨
i∈I ai ∈ P . Since P is open there are ai1 , . . . , ain

such that
ai1 ∨ · · · ∨ ain

∈ P . Since it is prime, aij
∈ P for some j. �
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Proposition. Let F be a Scott open filter of OX such that a ∈ F and b /∈ F . Then
there is a complete filter P ⊇ F such that a ∈ P and b /∈ P . Consequently, each
Scott open filter is an intersection of complete filters.

Proof. This is just the famous Birkhoff’s Theorem with the openness added.
Using Zorn’s Lemma in the standard way (taking into account that unions of
open sets are open), we obtain an open filter P ⊇ F maximal with respect to the
condition b /∈ P 3 a. We will prove that it is prime (and hence, by the Lemma,
complete). Suppose it is not; then there are u, v /∈ P such that u ∨ v ∈ P . Set
G = {x | x ∨ v ∈ P}. Then G is obviously a Scott open filter and, because of the
u, P ⊂ G. Thus, b ∈ G, b ∨ v ∈ P and we can repeat the procedure with v, b /∈ P ,
v ∨ b ∈ P and H = {x | x ∨ b ∈ P} to obtain the contradiction b = b ∨ b ∈ P .

�

If X is locally compact and c � a, interpolate inductively

a � x1 � x2 � · · · � xn � · · · c,

choose the xn fixedly for each such couple a, c, and set

F (a, c) = {x | x ≥ xk for some k}.

Then F (a, c) is obviously a Scott open filter. These filters are useful to prove the
following theorem, that justifies the definition of locally compact locale.

Theorem. Each locally compact locale is spatial, and functors Lc and Pt restrict to
an equivalence between the category of sober locally compact spaces and the category
of locally compact locales.

Proof. Let X be a locally compact locale and consider a, b ∈ OX with a � b. Then
there is a c � a such that c 6= b. Hence b /∈ F (a, c) 3 a and, by the Proposition,
there exists a complete P such that b /∈ P 3 a.

Thus, since we already know (Exercise 7.1) that Lc(X), with locally compact
space X, is locally compact, it suffices to show that each Pt(X), with locally
compact locale X, is locally compact.

Let P ∈ Σa, that is, a ∈ P . Since a =
∨
{x | x � a} and P is open there

is a c � a, c ∈ P . Set K = {Q ∈ Pt(X) | F (a, c) ⊆ Q}. By the Proposition,⋂
K = F (a, c), and, by Lemma 7.3, K is compact. If Q ∈ Σc, that is, c ∈ Q, we

have F (a, c) ⊆ Q, and if F (a, c) ⊆ Q then a ∈ Q. Thus, P ∈ Σc ⊆ K ⊆ Σa. �

By Proposition 7.2(1) the equivalence above restricts to an equivalence between
the category of compact Hausdorff spaces and KRegLoc. The contravariant version
of Theorem 7.4 (in terms of continuous frames) is the well-known Hofmann-Lawson
Duality ([31], see also [4]).

7.5. Preservation of products by Lc. The functor Lc is a left adjoint and generally
does not preserve products. But we have:

Proposition. The functor Lc : Top → Loc preserves finite products of sober com-
pletely regular locally compact spaces.
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Proof. In view of Theorem 7.4 it suffices to show that finite products in the smaller
categories coincide with those in Top resp. Loc. This is obvious for locally compact
spaces. Using Proposition 7.2 we infer from 3.4 that a product of two completely
regular locally compact locales is locally compact (and completely regular, by
Proposition 4.3). �
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