Nearness spaces, obtained by axiomatizing the concept of near-collections (alternatively: of uniform covers; alternatively of collections with arbitrary small members), form a pleasant category Near that contains the categories Top, of symmetric topological spaces, Unif of uniform spaces and Cont of contiguity spaces as nicely embedded full subcategories. By weakening Weil’s axioms on entourages for uniform spaces the author obtains the category WNear of Weil nearness spaces with similar features: (1) WNear is a well-fibred topological construct. (2) Top is (up to concrete isomorphism) a bicoreflective subcategory of WNear. (3) Unif is (up to . . .) a bireflective subcategory of WNear. Moreover, as for topological spaces, uniform spaces and nearness spaces there is a “non-spatial” frame-theoretic generalization of Weil nearness spaces, briefly discussed by the authors.

H.Herrlich (Bremen)

Keywords: nearness space; entourage; uniform space; reflective subcategory; coreflective subcategory

Classification:
54E15 Uniform structures and generalizations
54B30 Categorical methods in general topology
54E17 Nearness spaces
06D20 Heyting algebras
18B30 Categories of topological spaces
54E05 Proximity structures and generalizations