Gutiérrez García, Javier; Mozo Carollo, Imanol; Picado, Jorge
Normal semicontinuity and the Dedekind completion of pointfree function rings. (English) Zbl 06590289 Algebra Univers. 75, No. 3, 301-330 (2016).

This paper about the Dedekind completion of the \(\ell \)-ring \(C(L) \) of real functions on a frame \(L \). In an earlier paper [Forum Math. 27, No. 5, 2551–2585 (2015; Zbl 1332.06028)], the authors constructed the Dedekind completion of \(C(L) \) (and its bounded part \(C^*(L) \)) in terms of what they called partial continuous real functions on \(L \). The present paper supplements this earlier one by presenting three different alternative views of the completion. The first is the point-free extension of R. P. Dilworth’s [Trans. Am. Math. Soc. 68, 427–438 (1950; Zbl 0037.20205)] construction of the Dedekind completion of the \(\ell \)-ring (Dilworth viewed it as a lattice) \(C(X) \) of real-valued continuous functions on a topological space \(X \). The second view exhibits the Dedekind completion of \(C^*(L) \) for \(L \) a completely regular frame, as a function ring. More precisely, the authors show that the Dedekind completion of \(C^*(L) \) is \(C^*(\mathcal{BL}) \), where \(\mathcal{BL} \) denotes the Booleanization of \(L \). Indeed this is a function ring because, as in the classical case, every \(C \) is (isomorphic to) a \(C^* \). After drawing the attention of the reader to the fact that, in general, the Dedekind completion of an arbitrary completely regular frame cannot be a function ring, they identify a class for which it always can. The class in question is that of weakly continuously bounded frames. They show that for such a frame \(L \), the Dedekind completion of \(C(L) \) is \(C(\mathcal{GL}) \), where \(\mathcal{GL} \) is the Gleason envelope of \(L \). The latter can be realized as some closed quotient of the coproduct of \(L \) with the frame of ideals of the Booleanization of the Stone-Čech compactification of \(L \). The final construction of the Dedekind completion of \(C(L) \) is in terms of Hausdorff continuous partial real functions on \(L \). It is the point-free version of the approach in terms of interval-valued functions of the Dedekind completion of \(C(X) \) [R. Anguelov, Quaest. Math. 27, No. 2, 153–169 (2004; Zbl 1062.54017)]. The paper is well written, and treats this subject very thoroughly. Classical results in this area appear as corollaries of the authors’ point-free theorems. Furthermore, these point-free theorems cover a wider scope than their classical antecedents.

Reviewer: Themba Dube (Unisa)

MSC:

06D22 Frames, locales
06F25 Ordered algebraic structures
13J25 Commutative ordered rings
26A15 Continuity and related questions (one real variable)
54C30 Real-valued functions on topological spaces
54D15 Higher separation axioms

Keywords:
frame; locale; sublocale lattice; frame of (extended) reals; (extended) real function; continuous real function; function ring; Dedekind completion; cb-frame; normal semicontinuous real function; Booleanization; Gleason cover; partial reals; partial real function; Hausdorff continuous real function

Full Text: DOI

References:

This reference list, which is based on information provided by the publisher and heuristically matched to zbMATH identifiers, may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.