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(...) it is my strong conviction that the only decisive
test of the viability of an idea, or of a new vision of the
world, is that of time. The fertility of an idea is to be
judged by the quality of its offspring, and not through
honors.

A. Grothendieck

1. Introduction: a lecture on topology, about semiconti-
nuity, in the non-classical context of frames and locales

In spaces like R or R2 there are plenty of continuous maps with real values.
But there are non-trivial topological spaces that do not admit continuous
real-valued functions other than the constant ones. The abundance of real
continuous functions in a space X can be assessed by the existence of func-
tions that indeed separate all subsets that can possibly be separated1 (in
that case one says that X is a space ¿with plenty of continuous real func-
tionsÀ [4]). The (separation) lemma of Urysohn, one of the fundamental
classical results of point-set topology, characterizes such topological spaces:
they are precisely the normal spaces2.

In terms of characteristic functions, Urysohn’s Lemma means precisely
that in any normal space, whenever χF ≤ χA for a closed F and an open
A, there exists a continuous function h : X → R such that χF ≤ h ≤ χA.
The (insertion) theorem of Katětov-Tong3 stresses this characterization by

1Two subsets U and V of X are separable if there is a continuous map f : X → R such that
f(U) = {1} and f(V ) = {0}; of course, this is only possible if the closures of U and V are disjoint.

2At first sight it may appear surprising that the class of such spaces is so vaste, containing for
example all compact Hausdorff spaces.

3Originally announced by Hing Tong in 1948 (the proof was however only published in 1952
[39]), Miroslav Katětov shares the name of the theorem because of his independent version, with
an improved proof [25]. Such result is part of the classical theory of general topology, with roots in
Hahn [17] and Dieudonné [5], that proved the theorem in the particular cases of metrizable spaces
and paracompact spaces, respectively.
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replacing χF and χA, respectively, by an arbitrary upper semicontinuous
function and an arbitrary lower semicontinuous function:

A topological space X is normal if and only if, for any up-
per semicontinuous f : X → R and any lower semicontinuous
g : X → R satisfying f ≤ g, there is a continuous function
h : X → R such that f ≤ h ≤ g.

Similarly, the (extension) theorem of Tietze, another important classical
theorem, may be also obtained in a very elegant way as a particular case of
the Katětov-Tong Theorem. This justifies the importance of this theorem
and of the concept of semicontinuity in Real Analysis.

It was Baire that in 1899 introduced the notion of semicontinuity for real-
valued functions (with domain R). More generally, a real function f defined
in a topological space (X,OX) is upper (resp. lower) semicontinuous if, for
any x ∈ X and r ∈ R satisfying f(x) < r (resp. f(x) > r), there is a
neighbourhood U ⊆ X of x such that f(y) < r (resp. f(y) > r) for every
y ∈ U .
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Equivalently, f is upper (resp. lower) semicontinuous if and only if for each
real r the set {x ∈ X | f(x) ≥ r} (resp. {x ∈ X | f(x) ≤ r}) is closed.

Obviously, for each closed subset F of X, χF is upper semicontinuous, and
for each open subset A of X, χA is lower semicontinuous.

Denoting by Tl the lower topology of R, generated by intervals ] −∞, q[,
with q ∈ Q, we may further say that f : X → R is upper semicontinuous
if and only if f : (X,OX) → (R, Tl) is continuous. Analogously, consid-
ering the upper topology of R, generated by intervals ]p, +∞[, p ∈ Q, that
we shall denote by Tu, f : X → R is lower semicontinuous if and only if
f : (X,OX) → (R, Tu) is continuous.

Here the points of the spaces in question — the elements of X in (X,OX)
and the real numbers in (R, Tl) or (R, Tu) — seem to be relevant for the
description of the two concepts. Is it that so? Actually no, as we shall see in
the sequel.

In [2], Banaschewski wrote:

¿The aim of these notes is to show how various facts in classical
topology connected with the real numbers have their counterparts,
if not actually their logical antecedents, in pointfree topology, that
is, in the setting of frames and their homomorphisms.

(. . . ) the treatment here will specifically concentrate on the
pointfree version of continuous real functions which arises from
it.À

Our goal, with this lesson, is to show how we can extend this study to the
case of arbitrary real functions. We shall see how several facts of classical
topology related with real numbers and semicontinuous functions are, in fact,
consequences of more general results of pointfree topology, where they have
their logical antecedents.

This is thus not a lesson about topological spaces and classical point-set
topology, but about locales (and frames) and the corresponding pointfree
topology.
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2. The new setting

2.1. Locales

The first thing to say about locales is that they behave like topological
spaces. The theory of locales is defined in order to clone inside it topological
spaces: one speaks about sublocales (cf. subspaces) and, in particular, of
closed, open and dense sublocales (cf. closed, open and dense subspaces).
One speaks about continuous maps between locales (cf. continuous maps
between topological spaces) and, in particular, of proper and open maps (cf.
proper and open maps between spaces). One speaks about compact locales
and, analogously, many other separation axioms have their versions in locales:
e.g, one speaks of compact Hausdorff locales, regular locales, normal locales,
etc.

This analogy between the theory of locales and the theory of topological
spaces is not quite exact; otherwise, the two theories would be indistinguish-
able and so locale theory would be redundant.

What exists is a translating device between the two theories: each topolog-
ical space X defines naturally a locale O(X) (specifically, his topology). And
given a locale X there exists a topological space Σ(X) naturally associated
to X. More precisely, there is a categorical adjunction between the category
Top of topological spaces and continuous maps and the category Loc of lo-
cales, defined by the open functor O : Top → Loc and the spectral functor
Σ : Loc → Top.

Suppose we have a space X and that we translate it into a locale OX and
that, next, we transform it back into a space ΣO(X). Will we recover the
given space X (up to an homeomorphism) ? Similarly, starting from a locale
X, is OΣ(X) isomorphic to X?

Both responses are, in general, negative, that is, the translating device is
not exact. However, if we restrict our attention to the topological spaces X
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for which ΣO(X) is homeomorphic to X (i.e., the so-called sober spaces4,
introduced by Grothendieck) and to locales X for which OΣ(X) is isomor-
phic to X (the so-called spatial locales), the restrictions of those translations
are exact. In other words, the theories of sober spaces and spatial locales
are equivalent (more precisely, the functors Σ and O define an equivalence
between the corresponding categories Sob and SpLoc).

Now the following question is unavoidable: is Sob a significant subcategory
of Top? In other words, is the class of sober spaces sufficiently big to contain
the most common topological spaces? The response, fortunately for locale
theory, is positive: the sobriety condition relies somewhere between axioms
T0 and T2 (being incomparable with T1). As Johnstone wrote in [23],

¿(...) in effect, one sacrifices a small amount of pathology (non-
sober spaces) in order to achieve a category that is more smoothly
and purely “topological” than the category of spaces itself.À

So the category Loc of locales contains a subcategory, SpLoc, which is an
equivalent copy of the subcategory Sob of Top:
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This is a good reason to take seriously the study of locales: in practice,
when studying topological spaces, we are almost always considering sober
spaces and so we might as well be working within the category of locales.

There is however another important reason: the categorical properties of
Loc are different from Top, with advantages to the former in many situations.
For example, the embedding of sober spaces inside locales is a full embedding;
it does not preserve products, in general, which implies some discrepancy
between the two products. As it was originally observed by J. Isbell in 1972

4A topological space X is sober if for every meet-irreducible open subset U there is exactly one
x ∈ X such that U = X \ {x} (an open U 6= X is called meet-irreducible whenever U = U1 ∩ U2,
with U1 and U2 open, implies U = U1 or U = U2).
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[18], those differences make the theory of locales very interesting: e.g., the
paracompactness property for locales is productive, the property of Lindelöf
for regular locales is also productive. Another wonderful surprise: every
localic subgroup of a localic group is closed (localic groups are to topological
groups as locales are to topological spaces). (As it is well-known, all those
assertions are false in the classical setting.)

There are other compelling reasons for considering the category of locales
as the right framework within which to do topology: the study of locales
is, in a logical sense, purer than the study of topological spaces. Proofs in
locales require usually less axioms than the corresponding proofs in classical
topology5.

What do we gain with this, besides the simple formal aspect? One gains
the possibility of doing topology in the general constructive context of topos
theory [30], a theory that gave a new impetus to the intuitionistic approach
(of Brouwer and Heyting) to mathematics.

Toposes are mathematical universes. Some are Boolean (i.e., satisfy the
law of excluded middle), however there are many non-Boolean toposes that
naturally occur in some areas of mathematics that attest the existence of
relevant mathematical universes where the law of excluded middle does not
hold. If we want to guarantee that our mathematics can be carried in any
of these universes we have to ensure that it does not depend on the law
of excluded middle. In many occasions, the dependence of a topological
proof from this law vanishes when we translate it in a proof for locales.
Locale theory is, therefore, compatible with the philosophy of intuitionists
and constructivists6.

Further, in pointfree topology one can usually avoid another axiom that
has a weaker link to reality: the axiom of choice. Of course the axiom of
choice is, and has always been, freely used in the current practice of “classi-
cal” mathematics. In his general formulation it is even equivalent to a great
number of mathematical theorems. For example, Tychonoff Theorem (of
classical topology) is equivalent to the axiom of choice. Because of this and

5And, as stated by Occham in his principle of parsimony, why doing with more what can be
done with less? (“Frustra fit per plura quod potest fieri per pauciora.”)

6André Joyal [24] was the first to emphasize the advantages of such (pointfree) approach to
topology in the constructive context of topos theory.
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other consequences, it is understandable that some counter-intuitive results
that follow from the axiom of choice (like, for instance, the Banach-Tarski
Paradox about decompositions) are ignored. The development of a topology
free of the axiom of choice seems an impossible task regarding that depen-
dence: if we want to have Tychonoff Theorem (and of course we need to have
it if we want our topology to be useful) we need the axiom of choice. So we
have no alternative, unless we change our definition of topology.

This is precisely what we do when we move to the category of locales.
Changing slightly the definition of space we introduce a new category in
which we can obtain our topological results. And there Tychonoff Theorem
can be proved independently of any choice principle [20]. Pointfree topology
is indeed “choice-free” in its nature7.

In summary, locales have characteristics that go beyond their simple in-
terest as generalized topological spaces. In many situations, certain spaces
are only non-trivial in virtue of some choice principle, while their lattices of
opens have already previous existence, independently of such principle. This
means that, in a sense, we always see the lattice of open sets, while to see its
points we need an additional tool in the form of some choice principle [35].
This idea was concisely expressed by Banaschewski [1] with the following
slogan:

choice-free localic argument
+

adequate choice principle

classical result in topological spaces

Of course the question of knowing how far locale theory is really topology
remains. One of the main goals of locale theory is to clone the ideas, concepts
and results of classical topology in its language since the translating device
mentioned above does not solve the problem completely. In this lesson we
will describe how this cloning can be effected with the topic of semicontinuity.

7See [M. Escardo, Tychonoff Theorem and AC in locales, Top. Com., Vol. 8, N. 1], in http://
at.yorku.ca/t/o/p/d/55.htm.
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2.2. Frames

What motivates the definition of a locale?
Given a topological space (X,OX), the lattice (OX,⊆) of open sets is

complete, since any union of open sets is an open set; of course the infinite
distribution law

A ∧
∨

i∈I

Bi =
∨

i∈I

(A ∧Bi)

holds in OX since the operations ∧ (being a finite meet) and
∨

coincide
with the usual set-theoretical operations of ∩ (intersection) and

⋃
(union),

respectively8. Moreover, if

f : (X,OX) → (Y,OY )

is a continuous map, then f−1 defines an aplication of OY into OX that
clearly preserves the operations ∧ and

∨
. Therefore, defining a frame as a

complete lattice L satisfying the infinite distribution law

a ∧
∨

i∈I

bi =
∨

i∈I

(a ∧ bi),

and defining a frame homomorphism h : L → M as a map from L in M
such that h(∧i∈Fai) = ∧i∈Fh(ai) for every finite F (in particular, for F = ∅,
h(1) = 1) and h(

∨
i∈I ai) =

∨
i∈I h(ai) for every I (in particular, for I = ∅,

h(0) = 0), we have the category Frm of frames9 and a contravariant functor

8On the other hand, infinite meets
∧

i∈I Ai are given by the interior (
⋂

i∈I Ai)◦ of the intersection⋂
i∈I Ai.
9By the Adjoint Functor Theorem, a complete lattice satisfies the infinite distribution law if and

only if it is an Heyting Algebra. Consequently, frames are precisely complete Heyting algebras
(they have thus relative pseudocomplements defined by

a → b :=
∨
{c ∈ L | a ∧ c ≤ b}

and, in particular, pseudocomplements, given by a∗ := a → 0). However, frame homomorphisms
are not, in general, homomorphisms of complete Heyting algebras because they do not necessarily
preserve the Heyting operator →.
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(X,OX) OX-

(Y,OY ) OY-
?

6
f f−1

Top Frm-O :

Because of contravariance, to keep the original geometrical motivation it
is necessary to introduce the dual category Frmop, turning the functor O
covariant. This is the way the category Loc is introduced: it is precisely
the category Frmop. So, a locale X is the same thing as a frame, but we
shall use the notation L = OX to refer to X as an object of Frm. The
corresponding morphisms diverge; localic morphisms are defined abstractly,
as morphisms of frames acting in the opposite direction. If f : X → Y
is a morphism of locales, the corresponding frame homomorphism will be
denoted by f ∗ : OY → OX. These notations will make clear whether we are
referring to an object or morphism as being in Loc or in Frm.

This reveals another important aspect of locale theory, with fundamental
importance in its development: the dual category of Loc is an algebraic
category, with all the nice properties and tools available in any category of
algebras10, allowing the development of localic topology in a pure algebraic
way, in the mirror image of Loc. This aspect will be decisive in the treatment
of semicontinuity.

Intermezzo: a brief historical note

The first mathematician to consider the notion of open set as the basic con-
cept for the study of continuity was Felix Hausdorff in 1914. Using the family
(lattice) of open sets, Marshall Stone (1936) established topological represen-
tations of Boolean algebras and distributive lattices, which paved the ground
for the famous dualities of Stone and Priestley. H. Wallman (1938) applied

10Being Frm an algebraic category with presentations by equations (i.e., its objects are described
by a proper class of operations and equations), it has free objects and quotients are described by
congruences, which allows presentations of frames by generators and relations [21].
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tools from lattice theory to obtain the nowadays called Wallman compactifi-
cation, and in the 40’s McKinsey and Tarski studied the “algebra of topology”,
that is, topology from an algebraic point of view.

But the fundamental change occurred at the end of the 50’s with the works
of Charles Ehresmann (and one of his students, Jean Bénabou), in Paris, and
Seymour Papert, in Cambridge: complete lattices with the infinite distribu-
tion law deserved to be studied by its own, rather than a simple tool for
studying topological spaces. Ehresman introduced the name “local lattice”
to designate them.

This new approach to topology (noiwadays referred to as Pointfree Topol-
ogy) fulfils the idea that the points of a space should be considered as sec-
ondary to their open sets and, according to that, deals with abstract “lat-
tices of open sets”. It is worth pointing that already in Portugal, in 1946, A.
Pereira Gomes wrote [32]:

¿In Abstract Algebra, as in General Topology, one finds examples
of an evolution that leaves the points with a secondary role in
favor of the more generic notion of part (figure, subset, element
of a structure).À

But it was certainly with the publication by John Isbell, in 1972, of the
article [18], that the real importance of the theme emerged and made clear
the need for a specific terminology for the dual category of the category of
frames11. Isbell designated the objects of the dual category by locales and
wrote in Zentralblatt für Mathematik:

¿(...) topology is better modelled in the category of locales than
in topological spaces or another of their variants.À

Afterwards, many topological properties were extended by C. H. Dowker,
D. Papert (Strauss), P. T. Johnstone, B. Banaschewski, A. Pultr and others
to those “generalized spaces”. In [22] Peter Johnstone presents an excellent
survey of the motivations and goals of locale theory (see, also, [23]). His book
“Stone Spaces” [21] describes in detail, and with precision, the influence of

11According to Johnstone [21], this was made even more evident later on in the non-published
work of André Joyal [24].
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the work of Stone in modern mathematics, in general, and in the theory of
locales and frames, in particular.

2.2. Sublocale lattices and the frame of reals

One of the fundamental differences between Top and Loc relies on their lat-
tices of subobjects. In fact, sublocale lattices are much more complicated
than their topological counterparts (complete atomic Boolean algebras): they
are in general co-frames (i.e., complete lattices satisfying the distribution law
S∨∧

I Ti =
∧

I(S∨Ti), dual to the distribution law that characterizes frames).
Even the sublocale lattice of a topology OX can be much larger than the
Boolean algebra of the subspaces of X (e.g., Q has 2c many non-isomorphic
sublocales [19]).

Let X be a locale. The sublocales j : Y ½ X of X, that is, the regular
monomorphisms in Loc with codomain X (or still, the surjective frame ho-
momorphisms j∗ : OX ³ OY ) can be described in several ways (cf. [35]).
Here we shall use the description of [34]:

A subset S of L = OX is a sublocale of X if:

(1) For each A ⊆ S,
∧

A ∈ S.

(2) For any a ∈ L and s ∈ S, a → s ∈ S.

Since any intersection of sublocales is a sublocale, the set SX of all sublo-

cales of X is a complete lattice. This is a co-frame, in which
∧

i∈I

Si =
⋂

i∈I

Si,

∨

i∈I

Si = {
∧

A | A ⊆
⋃

i∈I

Si}, 0 = {1} and 1 = L. It will be convenient to

work with the dual lattice (SX)op, that we shall denote by SL.
Each sublocale S is itself a frame with ∧ and → as in L (the top of S

coincides with the one of L but the bottom 0S may differ from the one of L).
It determines a quotient cS : L ³ S, given by cS(x) :=

∧{s ∈ S | x ≤ s}.
In spite of SL not being in general a Boolean algebra, it contains for-

tunately many complemented elements. For example, for each a ∈ L, the
sets

c(a) := ↑a and o(a) := {a → b | b ∈ L}

11



define sublocales of X, complemented to each other. The former are the
so-called closed sublocales, while the latter are the open sublocales. The cor-
responding frame quotients are given by, respectively,

cc(a)(x) := a ∨ x and co(a)(x) := a → x.

The following is a list of some of the most significative properties of SL
[35]:

(S1) cL := {c(a) | a ∈ L} is subframe of SL isomorphic to L; the iso-
morphism L → cL is given by a 7→ c(a). In particular, c(

∨
i∈I ai) =∨

i∈I c(ai) and c(a ∧ b) = c(a) ∧ c(b).

(S2) Let o(L) denote the subframe of SL generated by {o(a) | a ∈ L}. The
map L → o(L) defined by a 7→ o(a) is a dual lattice embedding. In
particular, we have o(

∨
i∈I ai) =

∧
i∈I o(ai) and o(a∧ b) = o(a)∨ o(b).

(S3) c(a) ≤ o(b) ⇔ a ∧ b = 0.

(S4) o(a) ≤ c(b) ⇔ a ∨ b = 1.

(S5) The closure S :=
∨{c(a) | c(a) ≤ S} and the interior S◦ :=

∧{o(a) |
S ≤ o(a)} of a sublocale S satisfy the following proprerties12: c(a)◦ =

o(a∗), o(a) = c(a∗), ¬S∗ = S◦.

Since frame theory is algebraic in nature and constructive in its methods,
we need to construct an appropriate frame of reals that might be defined in
any topos with a natural number. We have thus to give up of working in the
usual (Euclidean) topology of R and choose the frame of reals L(R), that can
be defined in a very easy way [24, 2].

In fact, since Frm is an algebraic category (in particular, there exist free
frames and frame quotients are described by congruences), we have at our
disposal the familiar procedure from traditional algebra of presentation of
objects by generators and relations: it suffices to consider the quotient of the
free frame in the given set of generators, modulo the congruence generated
by pairs (u, v) for the given relations u = v.

12The symbol ¬ denotes the complementation operator.
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It is therefore very natural (and very useful) to introduce the reals from
the totally ordered set Q of rational numbers, in the following way13 [24, 2]:

The frame of reals is the frame L(R) generated by all ordered pairs (p, q),
with p, q ∈ Q, and by the following relations:

(R1) (p, q) ∧ (r, s) = (p ∨ r, q ∧ s).

(R2) (p, q) ∨ (r, s) = (p, s) whenever p ≤ r < q ≤ s.

(R3) (p, q) =
∨{(r, s) | p < r < s < q}.

(R4)
∨{(p, q) | p, q ∈ Q} = 1.

Let

(p,−) :=
∨

q∈Q
(p, q) and (−, q) :=

∨

p∈Q
(p, q).

With (p,−) and (−, q) taken as the primitive notions, L(R) may be equiva-
lently defined as the frame generated by these elements, subject to relations:

(R′
1) (p,−) ∧ (−, q) = 0 whenever p ≥ q.

(R′
2) (p,−) ∨ (−, q) = 1 whenever p < q.

(R′
3) (p,−) =

∨
r>p(r,−).

(R′
4) (−, q) =

∨
s<q(−, s).

(R′
5)

∨
p∈Q(p,−) = 1.

(R′
6)

∨
q∈Q(−, q) = 1.

By imposing only relations (R′
1)-(R

′
4) one gets the frame L(R), the localic

counterpart of R = [−∞, +∞].

We need further to introduce the following subframes of L(R) and L(R):

13Classically, this is just the usual topology of the real line, but from a constructive point of
view these two notions differ (see [2, 10]). Note also that this is a definition independent from any
notion of real number.
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Lu(R) = 〈{(p,−) (p ∈ Q) | (R3′) and (R5′)}〉 ,

Ll(R) = 〈{(−, q) (q ∈ Q) | (R4′) and (R6′)}〉 ,

Lu(R) = 〈{(p,−) (p ∈ Q) | (R3′)}〉 ,

Ll(R) = 〈{(−, q) (q ∈ Q) | (R4′)}〉 .
A map from the generating set of L(R) into L defines a frame homomor-

phism L(R) → L if and only if it transforms relations (R1)-(R4) of L(R) into
identities in L (the same can be said in a similar way for the other frames of
reals defined above).

14



3. Semicontinuity in locales

3.1. Genesis

It is now natural to look to frame homomorphisms h : L(R) → L as the
continuous real functions on L (for the motivation, consult [2]). One gets
this way the ordered ring Frm(L(R), L) of continuous real functions on L.
It is then tempting (as Li and Wang did in [29]) to define an upper (resp.
lower) semicontinuous real function on L as a frame homomorphism

h : Ll(R) → L (resp. h : Lu(R) → L). (3.1.1)

However, as we showed in [33], with these definitions the Katětov-Tong The-
orem does not hold in its full generality, contrary to what is stated in [29].
In fact, some condition needs to be imposed on the f and g in question in
order to ensure the existence of a continuous h such that f ≤ h ≤ g ([33],
Theorem 4.6).

Why is that so? Because when applied to spatial frames, the definition
(3.1.1) does not describe completely the classical concept of semicontinuity.
To observe that recall that continuous maps X → Y , for sober Y , are in
bijection with frame homomorphisms OY → OX. More precisely [36]:

A space Y is T0 if and only if for each frame homomorphism h : OY → OX
there is at most one continuous map f : X → Y such that h = O(f).

A space Y is weakly sober14 if and only if for each frame homomorphism
h : OY → OX there is at least one continuous map f : X → Y such that
h = O(f).

14The sobriety condition previously referred to is the conjunction of two requirements, namely
the T0 condition and the so-called weak sobriety condition [36] “for each meet-irreducible U ⊆ X

there exists an x ∈ X such that U = X \ {x}”.
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Consequently, since (R, Tu) and (R, Tl) are both T0 but non-sober, the corre-
spondences

X
f−→ (R, Tu) ∈ Top

OÃ Tu
O(f)−→ OX ∈ Frm

and

X
g−→ (R, Tl) ∈ Top

OÃ Tl
O(g)−→ OX ∈ Frm

are injective but not surjective. Digging more deeply, one gets the following
(where πx : OX → {0, 1} is defined by πx(U) = 1 iff x ∈ U):

Proposition 3.1.1. ([12]) Upper semicontinuous maps f : X → R are in
a bijective correspondence (via O) with frame homomorphisms h : Ll(R) →
OX for which the set {q ∈ Q | πx(h(−, q)) = 1} is bounded below for every
x ∈ X.

The following elementary fact suggests to look to semicontinuity from a
bitopological point of view15:

Proposition 3.1.2. Given a topological space (X,OX), let CX be the topol-
ogy on X generated by all closed subsets of (X,OX). Then, for each f :
X → R, the following conditions are equivalent:

(i) f is upper semicontinuous.

(ii) The map f : (X,OX, CX) → (R, Tl, Tu) is bicontinuous.

This proposition ensures that

Top
(
(X,OX), (R, Tl)

) ' BiTop
(
(X,OX, CX), (R, Tl, Tu)

)
.

But, by the dual adjunction [3]

-
BiTop BiFrm,¾

O
Σ15Recall that a bitopological space is a triple (X, T1, T2) where T1 and T2 are arbitrary topologies

on X. The category BiTop of bitopological spaces has as morphisms the bicontinuous maps f :
(X, T1, T2) → (Y, T ′1 , T ′2 ), that is, maps f : X → Y that are simultaneously continuous from (X, T1)
into (Y, T ′1 ) and from (X, T2) into (Y, T ′2 ). A biframe is a triple (L0, L1, L2) where L0 is a frame
and L1 and L2 are subframes of L0 that generate L0, that is, each x ∈ L0 is a join of finite meets
of elements in L1 ∪ L2. The corresponding homomorphisms h : (L0, L1, L2) → (M0,M1, M2) are
the frame homomorphisms h : L0 → M0 such that h(Li) ⊆ Mi (i ∈ {1, 2}). We shall denote the
corresponding category by BiFrm.
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similar to the one between Top and Frm, we have the natural isomorphism

BiTop
(
(X, T1, T2), Σ(L,L1, L2)

) ∼→ BiFrm
(
(L,L1, L2),O(X, T1, T2)

)
.

Combining this, for

(L,L1, L2) = (L(R), Ll(R), Lu(R))

and

(X, T1, T2) = (X,OX, CX),

with the isomorphism16 Σ
(
L(R), Ll(R), Lu(R)

) ' (R, Tl, Tu), we get

BiTop
(
(X,OX, CX), (R, Tl, Tu)

) ∼→ BiFrm
(
(L(R), Ll(R), Lu(R)),O(X,OX, CX)

)
.

On the other hand, O(X,OX, CX) = (OX ∨ CX,OX, CX) is isomorphic to
the biframe (S(OX), c(OX), o(OX)). Therefore

Top
(
(X,OX), (R, Tl)

) ' BiFrm
(
(L(R), Ll(R), Lu(R)), (S(OX), c(OX), o(OX))

)
.

Moreover, for each frame L, one has [12]:

Proposition 3.1.3. The correspondence Φ :h 7−→ h|Ll(R) establishes a bijec-
tion between

BiFrm
(
(L(R), Ll(R), Lu(R)), (SL, cL, oL)

)

and {
f : Ll(R) → L ∈ Frm |

∨

p∈Q
o(f(−, p)) = 1

}
.

This suggests immediately the following definitions [12]:

(sc1) An upper semicontinuous real function on a frame L is a frame ho-
momorphism f : Ll(R) → L satisfying

∨
q∈Q o(f(−, q)) = 1.

(sc2) A lower semicontinuous real function on a frame L is a frame homo-
morphism g : Lu(R) → L satisfying

∨
p∈Q o(g(p,−)) = 1.

16Note that contrarily to spaces (R, Tl) and (R, Tu), the bitopological space (R, Tl, Tu) is sober.
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It is now time to introduce notations for the several classes of functions in
question. We shall consider the classes

usc(L) := Frm(Ll(R), L)

and

usc(L) := {f : Ll(R) → L |
∨

q∈Q
o(f(−, q)) = 1}

partially ordered by

f1 ≤ f2 ≡ f2(−, q) ≤ f1(−, q) for every q ∈ Q,

and the classes

lsc(L) := Frm(Lu(R), L)

and

lsc(L) =: {g : Lu(R) → L |
∨

p∈Q
o(g(p,−)) = 1}

partially ordered by

g1 ≤ g2 ≡ g1(p,−) ≤ g2(p,−) for every p ∈ Q.

We shall further consider c(L) := Frm(L(R), L) and c(L) := Frm(L(R), L),
partially ordered by

h1 ≤ h2 ≡ h1|Lu(R)
≤ h2|Lu(R)

⇔ h2|Ll(R)
≤ h1|Ll(R)

.

Finally, the following relations [33] generalize the usual way of comparing
elements of LSC(X,R) and USC(X,R), overcoming the fact that members of
lsc(L) and usc(L) have distinct domains:

For every f ∈ usc(L) and g ∈ lsc(L) we define

f ≤ g ≡ f(−, q) ∨ g(p,−) = 1 whenever p < q ∈ Q,

g ≤ f ≡ g(p,−) ∧ f(−, p) = 0 for every p ∈ Q.

We can generate functions in those classes with the help of the so called
scales [16]. A family A := {ar | r ∈ Q} ⊆ L is called ascending (resp.
descending) if r ≤ s implies ar ≤ as (resp. ar ≥ as). An ascending (resp.
descending) family is called an

18



• ascending u-scale (resp. descending u-scale) if
∨

r∈Q ar = 1
(resp.

∨
r∈Q a∗r = 1),

• ascending l-scale (resp. descending l-scale) if
∨

r∈Q a∗r = 1
(resp.

∨
r∈Q ar = 1),

• ascending scale (resp. descending scale) if it is simultaneously an as-
cending (resp. descending) u-scale and an ascending (resp. descending)
l-scale and a∗r ∨ as = 1 (resp. ar ∨ a∗s = 1) for every r < s.

Lemma 3.1.4. ([16]) (a) Let A := {ar | r ∈ Q} be an ascending family of
L. Then:

(1) The formula f(−, q) :=
∨

s<q as determines a function f ∈ usc(L); if
A is a u-scale, then f ∈ usc(L).

(2) The formula g(p,−) :=
∨

r>p a∗r determines a function g ∈ lsc(L); if A
is an l-scale, then g ∈ lsc(L).

(3) If A satisfies a∗r ∨ as = 1 for every r < s then the formulas

h(−, q) :=
∨
s<q

as and h(p,−) :=
∨
r>p

a∗r

determine a function h ∈ c(L); if A is a scale then h ∈ c(L).

(b) Let A := {ar | r ∈ Q} be a descending family of L. Then:

(1) The formula f(−, q) :=
∨

s<q a∗s determines a function f ∈ usc(L); if
A is a u-scale, then f ∈ usc(L).

(2) The formula g(p,−) :=
∨

r>p ar determines a function g ∈ lsc(L); if A
is an l-scale, then g ∈ lsc(L).

(3) If A satisfies ar ∨ a∗s = 1 for every r < s then the formulas

h(−, q) :=
∨
s<q

a∗s and h(p,−) :=
∨
r>p

ar

determine a function h ∈ c(L); if A is a scale then h ∈ c(L).
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The definitions (sc1) and (sc2) have proved to be the right approach to
develop the concept of semicontinuity in locale theory, as the articles [12, 13,
14, 15] show, but the fact that the three classes of functions c(L), usc(L)
and lsc(L) (or c(L), usc(L) and lsc(L)) have distinct domains is quite un-
pleasant: it would be expectable to have a function continuous if and only
if it is simultaneously upper and lower semicontinuous (and here continuous
functions are not even a subclass of semicontinuous functions!). How can we
remedy this?

The set

F(X,R)

of all functions X → R (not necessarily continuous or semicontinuous) is
clearly in bijection with the set Top

(
(X,P(X)), (R, T )

)
, whatever topology

T we put on the reals. In particular, for the usual (Euclidean) topology Te

of R, we have

F(X,R) ' Top
(
(X,P(X)), (R, Te)

)
.

Therefore, by the adjunction between Top and Frm,

F(X,R) ' Frm(L(R),PX)).

Since PX is the subspace lattice of X, when we move to Loc replacing X by
an arbitrary frame L, we should replace PX by the sublocale lattice SL of
L. This conceptually justifies that we adopt the frame homomorphisms

L(R) → SL

as the definition of real function in an arbitrary frame L17:

17It is interesting to note that, being the spectrum ΣL(R) of L(R) homeomorphic to R, and given
the bijective correspondence between real numbers and frame homomorphisms L(R) → {0, 1}, real
numbers are, essentially, the frame homomorphisms L(R) → {0, 1}. Thus, this definition indicates
that, from the point of view of logic, the real functions on L should be seen as the “SL-valued real
numbers”.
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(SC1) A real function (resp. extended real function) on a frame L is a frame
homomorphism

L(R) → SL (resp. L(R) → SL).

We denote by F(L) = c(SL) (resp. F(L)) the set of all real functions
(resp. extended real functions) on L.

(SC2) A real function (resp. extended real function) F on a frame L is upper
semicontinuous if

F (Ll(R)) ⊆ cL (resp. F (Ll(R)) ⊆ cL),

i.e., each sublocale F (−, q) is closed. We denote by USC(L) (resp.
USC(L)) the set of all upper semicontinuous real functions (resp. ex-
tended upper semicontinuous real functions) on L.

(SC3) A real function (resp. extended real function) G on a frame L is lower
semicontinuous if

G(Lu(R)) ⊆ cL (resp. G(Lu(R)) ⊆ cL),

i.e., each sublocale G(p,−) is closed. We denote by LSC(L) (resp.
LSC(L)) the set of all lower semicontinuous real functions (resp. ex-
tended lower semicontinuous real functions) on L.

(SC4) Finally, a real function (resp. extended real function) H on a frame
L is continuous if

H(L(R)) ⊆ cL (resp. H(L(R)) ⊆ cL),

i.e., each sublocale H(p, q) is closed. We denote by C(L) (resp. C(L))
the set of all continuous real functions (resp. extended continuous
real functions) on L.

To compare functions in these classes it suffices to introduce the following
order relation in F(L) (cf. page 18):

F ≤ G ≡ F (p,−) ≤ G(p,−) for every p ∈ Q
⇔ G(−, q) ≤ F (−, q) for every q ∈ Q.

With this new setting we have solved our problem:
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F(L)

USC(L) LSC(L)

C(L) = USC(L) ∩ LSC(L)
½

½
½½>

Z
Z

ZZ}

½
½

½½>

Z
Z

ZZ}
F(L)

USC(L) LSC(L)

C(L) = USC(L) ∩ LSC(L)
½

½
½½>

Z
Z

ZZ}

½
½

½½>

Z
Z

ZZ}

(3.1.2)

Of course C(L) ' Frm(L(R), L) = c(L) and C(L) ' Frm(L(R), L) = c(L).
The following results ensure that USC(L) ' usc(L), LSC(L) ' lsc(L),
USC(L) ' usc(L) and LSC(L) ' lsc(L).

Proposition 3.1.5. Let L be a frame. Each f ∈ usc(L) induces a function
Ψu(f) ∈ USC(L), defined by

Ψu(f)(−, q) := c(f(−, q))

Ψu(f)(p,−) :=
∨
r>p

o(f(−, r)).

The map Ψu : usc(L) → USC(L) satisfies the following:

(a) Ψu is an order-isomorphism between usc(L) and USC(L).

(b) Ψu|usc(L) is an order-isomorphism between usc(L) and USC(L).

Proof: Let f ∈ usc(L). Then {o(f(−, r))}r∈Q is a descending family of SL
in the conditions of (b3) (Lemma 3.1.4). Thus, the formulas

Ψu(f)(p,−) :=
∨
r>p

o(f(−, r))

and

Ψu(f)(−, q) :=
∨
s<q

c(f(−, s)) = c(
∨
s<q

f(−, s)) = c(f(−, q))

determine a function Ψu(f) ∈ c(SL), which is clearly a function of USC(L).

(a) We show now that Ψu is a bijection. For that we prove that, for each
F ∈ USC(L), there exists a unique Φu(F ) ∈ usc(L) such that Ψu(Φu(F )) = F .
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Applying the isomorphism c : L → cL, it is easy to verify that the map
Φu(F ) : Ll(R) → L defined by Φu(F )(−, q) := c−1(F (−, q)) is a frame ho-
momorphism that satisfies Ψu(Φu(F ))(−, q) = c(Φu(F )(−, q)) = F (−, q) for
every q ∈ Q. On the other hand, since F (r,−) ≤ F (−, r)∗ = o(Φu(F )(−, r)),
then, for each p ∈ Q,

Ψu(Φu(F ))(p,−) =
∨
r>p

o(Φu(F )(−, r)) ≥ ∨
r>p

F (r,−) = F (p,−).

Moreover, since 1 = F (p,−)∨ F (−, q) = F (p,−)∨ c(Φu(F )(−, q)) for q > p,
then o(Φu(F )(−, q)) ≤ F (p,−). Hence

Ψu(Φu(F ))(p,−) =
∨
q>p

o(Φu(F )(−, q)) ≤ F (p,−).

Therefore, Ψu(Φu(F )) = F .
Finally, for each f ∈ usc(L), since Ψu(f)(−, q) = c(f(−, q)) for every

q ∈ Q, it is obvious that Φu(Ψu(f)) = f . The correspondence Ψu is thus an
isomorphism since, for each f1, f2 ∈ usc(L), we have

f1 ≤ f2 ⇔ f2(−, q) ≤ f1(−, q) for every q ∈ Q

⇔ c(f2(−, q)) ≤ c(f1(−, q)) for every q ∈ Q

⇔ Ψu(f2)(−, q) ≤ Ψu(f1)(−, q) for every q ∈ Q

⇔ Ψu(f1) ≤ Ψu(f2).

(b) When f ∈ usc(L), it is obvious that Ψu(f) ∈ USC(L). Moreover, for each
F ∈ USC(L), Φu(F ) ∈ usc(L). Indeed, for each p ∈ Q,

0 = F (p,−) ∧ F (−, p) = F (p,−) ∧ c(Φu(F )(−, p)),

so that o(Φu(F )(−, p)) ≥ F (p,−). Consequently

∨
p∈Q

o(Φu(F )(−, p)) ≥ ∨
p∈Q

F (p,−) = 1. ¤

In a similar way we get:
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Proposition 3.1.6. Let L be a frame. Each g ∈ lsc(L) induces a function
Ψl(g) ∈ LSC(L), given by

Ψl(g)(p,−) := c(g(p,−))

Ψl(g)(−, q) :=
∨
s<q

o(g(s,−)).

The map Ψl : lsc(L) → LSC(L) satisfies the following:

(a) Ψl is an order-isomorphism between lsc(L) and LSC(L).

(b) Ψl|lsc(L) is an order-isomorphism between lsc(L) and LSC(L). ¤

Proposition 3.1.7. Let L be a frame. Each h ∈ c(L) induces a function
Ψ(h) ∈ C(L), given by

Ψ(h)(p,−) = c(h(p,−)) := Ψl(h)(p,−)

Ψ(h)(−, q) = c(h(−, q)) := Ψu(h)(q,−).

The map Ψ : c(L) → C(L) satisfies the following:

(a) Ψ is an order-isomorphism between c(L) and C(L).

(b) Ψ|c(L) is an order-isomorphism between c(L) and C(L). ¤

Observation 3.1.8. Defining the characteristic map χS, for any comple-
mented sublocale S of L, by

χS(−, q) :=





0, if q ≤ 0,

S, if 0 < q ≤ 1,

1, if q > 1,

and χS(p,−) :=





1, if p < 0,

S∗, if 0 ≤ p < 1,

0, if p ≥ 1,

it is easy to see that:

(a) χS ∈ USC(L) if and only if S is a closed sublocale.

(b) χS ∈ LSC(L) if and only if S is an open sublocale.

(c) χS ∈ C(L) if and only if S is a clopen sublocale.
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Let H ∈ C(L). If we denote by h the corresponding function of c(L) given
by Proposition 3.1.7 then:

(a) χc(a) ≤ H ⇔ h(−, 0) = 0 and h(−, 1) ≤ a.

(b) χo(a) ≤ H ⇔ h(−, 0) = 0 and h(−, 1) ≤ a∗.

(c) H ≤ χc(a) ⇔ h(0,−) ≤ a∗ and h(1,−) = 0.

(d) H ≤ χo(a) ⇔ h(0,−) ≤ a and h(1,−) = 0.

In conclusion, with the introduction of definitions (SC1)-(SC4) we have
now the same freedom as we had in the classical context, being able to speak
about arbitrary (not necessarily continuous) real functions. In particular we
have the desired identity

upper semicontinuity
+

lower semicontinuity

continuity

Further, diagrams (3.1.2) make sense in locale theory to the following ci-
tation from Gillman and Jerison [11]:

¿The set C(X) of all continuous, real-valued functions on a topo-
logical space X will be provided with an algebraic structure and
an order structure. Since their definitions do not involve con-
tinuity, we begin by imposing these structures on the collection
RX of all functions from X into the set R of real numbers.

(...) In fact, it is clear that RX is a commutative ring with
unity element (provided that X is non empty).

(...) The partial ordering on RX is defined by: f ≥ g if and
only if f(x) ≥ g(x) for all x ∈ X.

(...) The set of all continuous functions from the topological
space X into the space R is denoted C(X).

(...) Therefore C(X) is a commutative ring, a subring of RX.À
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3.2. Regularization

A basic fact from Real Analysis asserts that every real function f : X → R
on a topological space X, not necessarily lower semicontinuous, admits a
lower semicontinuous regularization f∗ : X → R, given by the lower limit of
f :

f∗(x) := lim inf
y→x

f(y) =
∨{∧ f(U) | x ∈ U ∈ OX} [26].

This is the largest lower semicontinuous minorant of f :

f∗ =
∨{g ∈ LSC(X,R) | g ≤ f}.

For each p ∈ Q we have

f−1
∗ (]p, +∞[) =

⋃
r>p

(f−1([r, +∞[))◦ = X \ ⋂
r>p

f−1(]−∞, r[),

which means that the lower regularization f∗ takes values in R if and only if
it has a lower semicontinuous minorant; equivalently, if and only if

⋃
r∈Q

f−1
∗ (]r, +∞[) = X,

that is, ⋂
r∈Q

f−1(]−∞, r[) = ∅.

Once we know already how to deal with generic real functions, we may now
try to approach the above construction in the localic setting18.

We start with the lower regularization. The construction can be performed
in a surprising easy and transparent way:

Let H ∈ F(L). The family {H(r,−) | r ∈ Q} is descending so, by Lemma
3.1.4, formulas

H◦(p,−) :=
∨
r>p

H(r,−)

H◦(−, q) :=
∨
s<q
¬H(s,−)

determine a frame homomorphism H◦ : L(R) → SL, that we call the lower
regularization of H. It satisfies, among others, the following properties [16]:

18Since symbols (·)∗ and (·)∗ have a special meaning in frames, we use (·)◦ and (·)−, that have
the advantage of making explicit the similarities between the lower and upper regularizations and
the interior and closure operators in Topology (for instance, (χA)◦ = χA◦ and (χA)− = χA).
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Proposition 3.2.1. For each H ∈ F(L) we have:

(a) H◦ ∈ LSC(L).

(b) H◦ ≤ H.

(c) If G ∈ LSC(L) and G ≤ H then G ≤ H◦. Therefore,

H◦ =
∨
{G ∈ LSC(L) | G ≤ H}.

(d) LSC(L) = {H ∈ F(L) | H = H◦}.
(e) LSC(L) = {H ∈ F(L) | H = H◦}.
(f) H◦◦ = H◦.

Proof: (a) It is obvious, by the definition of H◦, that H◦(p,−) ∈ cL.

(b) For each p ∈ Q,

H◦(p,−) =
∨
r>p

H(r,−) ≤
∨
r>p

H(r,−) = H(p,−).

(c) If G ∈ LSC(L) and G ≤ H then, for each p ∈ Q and each r > p, G(r,−) ∈
cL and G(r,−) ≤ H(r,−). Thus G(r,−) ≤ H(r,−) and, consequently,

H◦(p,−) =
∨
r>p

H(r,−) ≥
∨
r>p

G(r,−) = G(p,−).

(d) It is an immediate consequence of the previous assertions.

(e) It is an immediate consequence of (d).

(f) It is an immediate consequence of the previous assertions. ¤

Analogously, we can define the upper regularization of H ∈ F(L):

H−(−, q) :=
∨
s<q

H(−, s),

H−(p,−) :=
∨
r>p
¬H(−, r).
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Proposition 3.2.2. ([16]) For each H ∈ F(L) we have:

(a) H− ∈ USC(L).

(b) H ≤ H−.

(c) If F ∈ USC(L) and H ≤ F then H− ≤ F . Therefore

H− =
∧
{F ∈ USC(L) | H ≤ F}.

(d) USC(L) = {H ∈ F(L) | H = H−}.
(e) USC(L) = {H ∈ F(L) | H = H−}.
(f) H−− = H−. ¤

In particular, for each sublocale S of L:

χS
◦(p,−) =





1 if p < 0,

S∗ if 0 ≤ p < 1,

0 if p ≥ 1,

χS
◦(−, q) =





0 if q ≤ 0,

¬S∗ if 0 < q ≤ 1,

1 if q > 1,

χS
−(−, q) =





0 if q ≤ 0,

S if 0 < q ≤ 1,

1 if q > 1,

χS
−(p,−) =





1 if p < 0,

¬S if 0 ≤ p < 1,

0 if p ≥ 1.

Therefore,
χS

− = χS and χS
◦ = χ¬S∗ = χS◦

(since ¬S∗ = S◦, by property (S3) of 2.2).

3.3. Insertion

As we observed in the Introduction, the theorems about the existence of
continuous real functions in normal spaces rank among the fundamental re-
sults of point-set topology. They can be classified in three types:
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• separation theorems (like the Urysohn Lemma),

• extension theorems (like the Tietze Theorem),

• insertion theorems (like the Katětov-Tong Theorem).

The latter are the most important since they imply the former two as corol-
laries.

We are now ready to show that all these results are, ultimately, results
about locales, from which they readily follow as particular cases.

We begin by the pointfree version of Katětov-Tong insertion theorem, that
holds for normal frames, that is, frames in which, whenever a ∨ b = 1, there
exist u, v ∈ L such that u ∧ v = 0 and a ∨ u = 1 = b ∨ v (or, equivalently,
there exists u ∈ L such that a ∨ u = 1 = b ∨ u∗).

It is not hard to show that a frame L is normal if and only if

for any countable subsets {ai}i∈N and {bi}i∈N of L satisfying ai∨
(
∧

j∈N bj) = 1 and bi∨(
∧

j∈N aj) = 1, for every i ∈ N, there exists
u ∈ L such that ai ∨ u = 1 and bi ∨ u∗ = 1 for every i ∈ N [33].

Based on this characterization it is then possible to show [33] that, for
each enumeration {αi | i ∈ N} of Q, whenever F ∈ USC(L) and G ∈ LSC(L)
satisfy F ≤ G, there exists {uαi

}i∈N ⊆ L such that

(q > αi) ⇒ (F (−, q) ∨ c(uαi
) = 1), (3.3.1)

(p < αi) ⇒ (G(p,−) ∨ c(u∗αi
) = 1), (3.3.2)

(αj1 < αj2) ⇒ (uαj1
∨ u∗αj2

= 1). (3.3.3)

Using this fact it is possible to show the Katětov-Tong Theorem:

Theorem 3.3.1. [Insertion: Katětov-Tong] ([33, 12])

For each frame L, the following assertions are equivalent:

(i) L is normal.

(ii) For every F ∈ USC(L) and G ∈ LSC(L) satisfying F ≤ G, there is a
function H ∈ C(L) such that F ≤ H ≤ G.
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(iii) For every F ∈ USC(L) and G ∈ LSC(L) satisfying F ≤ G, there is a
function H ∈ C(L) such that F ≤ H ≤ G.

Proof: (i)⇒(ii): Let F ∈ USC(L) and G ∈ LSC(L) such that F ≤ G. By
normality, there exists {uαi

}i∈N ⊆ L satisfying conditions (3.3.1), (3.3.2) and
(3.3.3). The latter means that {uαi

}i∈N is a descending family of L satisfying
condition (b3) of Lemma 3.1.4. Consequently, the formulas

h(−, q) :=
∨
αi<q

u∗αi
and h(p,−) :=

∨
αi>p

uαi

define a function h ∈ c(L). The corresponding function H = Ψ(h) ∈ C(L)
satisfies F ≤ H ≤ G:

Indeed, condition (3.3.1) means that, for each q ∈ Q and each αi < q,

F (−, q) ≥ o(uαi
). Then F (−, q) ≥ o(uαi

) = c(u∗αi
), therefore

F (−, q) ≥
∨
αi<q

c(u∗αi
) = c(

∨
αi<q

u∗αi
) = H(−, q).

Similarly, by condition (3.3.2) one has G(p,−) ≥ o(u∗αi
) ≥ o(u∗αi

) whenever
αi > p. Thus, for each p ∈ Q,

G(p,−) ≥
∨
αi>p

o(u∗αi
) =

∨
αi>p

c(u∗∗αi
) ≥

∨
αi>p

c(uαi
) = c(

∨
αi>p

uαi
) = H(p,−).

(ii)⇒(iii): Let F ∈ USC(L) and G ∈ LSC(L) such that F ≤ G. It suffices to

show that the function H ∈ C(L) given by hypothesis belongs to C(L), that
is,

∨
q∈QH(−, q) = 1 =

∨
p∈QH(p,−), which is easy:

∨

q∈Q
H(−, q) ≥

∨

q∈Q
G(−, q) = G


∨

q∈Q
(−, q)


 = G(1) = 1,

∨

p∈Q
H(p,−) ≥

∨

p∈Q
F (p,−) = F


∨

p∈Q
(p,−)


 = F (1) = 1.

(iii)⇒(i): Suppose a ∨ b = 1 in L. Then o(b) ≤ c(a), that is, χc(a) ≤ χo(b).
By hypothesis, there exists H ∈ C(L) such that χc(a) ≤ H ≤ χo(b). Consider
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the closed sublocale H
(1

2 ,−
)
, which is equal to c(u) for some u ∈ L. Then

1 = χc(a)(−,
3

4
)∨χc(a)(

1

2
,−) ≤ χc(a)(−,

3

4
)∨H(

1

2
,−) = c(a)∨ c(u) = c(a∨u).

This guarantees that a ∨ u = 1. On the other hand, H(−, 1
2) ≤ ¬H(1

2 ,−) =

o(u) and, therefore, since H(−, 1
2) is closed, H(−, 1

2) ≤ o(u) = c(u∗). Conse-
quently,

c(b∨u∗) = c(b)∨c(u∗) ≥ χo(b)(
1

4
,−)∨H(−,

1

2
) ≥ χo(b)(

1

4
,−)∨χo(b)(−,

1

2
) = 1,

which shows that b ∨ u∗ is also equal to 1. This proves the normality of L.
¤

If we apply Theorem 3.3.1 to the topology OX of a normal space X, the
implication “(i) ⇒ (iii)” provides the non-trivial implication of the classical
Katětov-Tong Theorem([25, 39]):

Let f : X → R be an upper semicontinuous function and g : X → R a
lower semicontinuous function such that f ≤ g. The family

{f−1(]−∞, q[) | q ∈ Q}
is a descending u-scale, while

{g−1(]p, +∞[) | p ∈ Q}
is a descending l-scale. Consequently, by Lemma 3.1.4, the formulas

F (−, q) := c(f−1(]−∞, q[)) and F (p,−) :=
∨
r>p

o(f−1(]−∞, r[))

G(p,−) := c(g−1(]p, +∞[)) and G(−, q) :=
∨
s<q

o(g−1(]s, +∞[))

establish functions F, G : L(R) → S(OX). The condition f ≤ g implies
f−1(] −∞, q[) ⊇ g−1(] −∞, q[) for every q ∈ Q, therefore F ≤ G. Consider
H ∈ C(OX) provided by Theorem 3.3.1, and the corresponding continuous
map h : X → R defined by

h(x) ∈]p, q[ if and only if x ∈ c−1(H(p, q)).

It is then obvious that f ≤ h ≤ g.
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Other insertion theorems were meanwhile obtained for other classes of
frames [13, 14, 15]. In the sequel we present briefly these results. The first
is, in some sense, a dual version of the previous theorem and generalizes the
Stone (insertion) theorem [38].

Theorem 3.3.2. [Insertion: Stone] ([28, 14])

For each frame L, the following assertions are equivalent19:

(i) L is extremally disconnected20.

(ii) For every F ∈ USC(L) and G ∈ LSC(L) satisfying G ≤ F , there exists
H ∈ C(L) such that G ≤ H ≤ F .

The next is the monotone version of Katětov-Tong Theorem and generalizes
the (monotone insertion) theorem of Kubiak [27].

Let

UL(L) := {(F,G) ∈ USC(L)× LSC(L) | F ≤ G}
be partially ordered by the order inherited from F(L)op × F(L), i.e.,

(F1, G1) ≤ (F2, G2) ≡ F2 ≤ F1 and G1 ≤ G2.

Theorem 3.3.3. [Monotone insertion: Kubiak] ([13])

For each frame L, the following assertions are equivalent:

(i) L is monotonically normal21.

(ii) There is a monotone map ∆ : UL(L) → C(L) such that F ≤ ∆(F,G) ≤
G for every pair (F, G) ∈ UL(L).

19Some more conditions equivalent to (i) are:
(a) C(L) = {F ◦ | F ∈ USC(L)}; (b) C(L) = {G− | G ∈ LSC(L)}; (c) If F ∈ USC(L), G ∈ LSC(L)

and G ≤ F , then G− ≤ F ◦ [14].
20A frame L is extremally disconnected if a∗∨a∗∗ = 1 for every a ∈ L. These frames are precisely

those in which the second De Morgan law (
∧

i∈I ai)∗ =
∨

i∈I a∗i holds; by that reason, they are also
referred to as De Morgan frames.

21The definition of normality may be rephrased in the following way: let DL = {(a, b) ∈ L ×
L | a ∨ b = 1}; a frame L is normal if and only if there exists a map ∆ : DL → L satisfying
a ∨ ∆(a, b) = 1 = b ∨ ∆(a, b)∗. Equipping DL with the partial order (≤op,≤) inherited from
Lop × L, L is called monotonically normal [13] if it is normal and ∆ is monotone.
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Writing briefly 0 ≤ F whenever F (−, 0) = 0 and F ≤ 1 whenever
F (1,−) = 0, let C∗(L) denote the class {H ∈ C(L) | 0 ≤ H ≤ 1} of all
bounded continuous real functions on L (one may define, in a similar way, the
classes USC∗(L) and LSC∗(L)). The next theorem is the pointfree version of
the (insertion) theorem of Michael [31].

Theorem 3.3.4. [Bounded insertion: Michael] ([15])

For each frame L, the following assertions are equivalent:

(i) L is perfectly normal22.

(ii) L is normal and for each G ∈ LSC∗(L) there exists H ∈ C(L) such that
0 ≤ H ≤ G and H(0,−) = G(0,−).

Let F ≤ G ∈ F(L). Let us denote by ι(F,G) the join

∨
r∈Q

F (−, r) ∧G(r,−).

The notation F < G means ι(F, G) = 1. Clearly, 0 < G if and only if
G(0,−) = 1. The last insertion theorem in our list is the pointfree version
of the (insertion) theorem of Dowker [6].

Theorem 3.3.5. [Strict insertion: Dowker] ([15])

For each frame L, the following assertions are equivalent:

(i) L is countably paracompact23.

(ii) L is normal and for each G ∈ LSC∗(L) satisfying 0 < G there exists
H ∈ C(L) such that 0 < H < G.

22A frame L is called perfectly normal [15] if, for each a ∈ L, there exists a countable subset
B ⊆ L such that a =

∨
B and b ≺ a (i.e., b∗ ∨ a = 1) for every b ∈ B.

23A frame L is said to be countably paracompact [8] if every countable cover of L has a locally
finite refinement.
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3.4. Separation

Let L be a normal frame and consider a, b ∈ L satisfying a ∨ b = 1. By
property (S4) of 2.2, o(b) ≤ c(a). Therefore, χc(a) ≤ χo(b). Consequently,
applying Theorem 3.3.1 we get H ∈ C(L) such that

χc(a) ≤ H ≤ χo(b).

Let h denote the corresponding function from c(L). By Observation 3.1.8, it
follows immediately the non-trivial implication of the following corollary:

Corollary 3.4.1. [Separation: Urysohn]

A frame L is normal if and only if, for every a, b ∈ L satisfying a ∨ b = 1,
there exists h : L(R) → L such that h((−, 0) ∨ (1,−)) = 0, h(0,−) ≤ a and
h(−, 1) ≤ b.

The statement of 3.4.1 is precisely the statement of the (separation) lemma
of Urysohn for frames [7] (cf. [2], Prop. 5), that extends the famous Urysohn
Lemma of point-set topology.

We can deduce in a similar way, from Theorem 3.3.2, the frame counterpart
of the (separation) lemma of Stone:

Corollary 3.4.2. [Separation: Stone] ([14])

A frame L is extremally disconnected if and only if, for every a, b ∈ L satis-
fying a ∧ b = 0, there exists h : L(R) → L such that h((−, 0) ∨ (1,−)) = 0,
h(0,−) ≤ a∗ and h(−, 1) ≤ b∗.

If we do the same with Theorem 3.3.4 we get the pointfree version of a
separation result due to Vedenissoff [40]:

Corollary 3.4.3. [Bounded separation: Vedenissoff] ([15])

A frame L is perfectly normal if and only if, for every a, b ∈ L satisfying
a ∨ b = 1, there exists h : L(R) → L such that h((−, 0) ∨ (1,−)) = 0,
h(0,−) = a and h(−, 1) = b.

34



3.5. Extension

For any sublocale S of L, let cS : L ³ S denote the corresponding frame
quotient, given by cS(x) :=

∧{s ∈ S | x ≤ s}. We say that H̃ ∈ C(L) is a
continuous extension of H ∈ C(S) whenever the following diagram commutes

?
-´

´
´

´
´

´́3

c(S) SL(R)

c(L) L

H

H̃
cS

-

-

¾

¾

c

c

i.e., cS ◦ c ◦ H̃ = c ◦H.
As it is shown in [33], from Theorem 3.3.1 it also follows the (extension)

Theorem of Tietze for frames [41]:

Corollary 3.5.1. [Extension: Tietze]

For each frame L, the following assertions are equivalent:

(i) L is normal.

(ii) For any closed sublocale S of L and any H ∈ C(S), there exists a

continuous extension H̃ ∈ C(L) of H.

Dually, from Theorem 3.3.2 it follows:

Corollary 3.5.2. [Extension: Stone] ([14])

For each frame L, the following assertions are equivalent:

(i) L is extremally disconnected.

(ii) For any open sublocale S of L and any H ∈ C(S), there exists a con-

tinuous extension H̃ ∈ C(L) of H.

In order to formulate the monotone version of 3.5.1 we introduce the fol-
lowing notation: given a sublocale S of L, a function ES : C(S) → C(L)
is said to be an extender if ES(H) is a continuous extension of H for every
H ∈ C(S).
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Let S be a closed sublocale of L and let H ∈ C(S). Define Ĥu ∈ USC(L)

and Ĥ l ∈ LSC(L) by

Ĥu(−, q) :=





0 if q ≤ 0,

H(−, q) if 0 < q ≤ 1,

1 if q > 1,

Ĥu(p,−) :=





1 if p < 0,∨
r>p

¬H(−, r) if 0 ≤ p < 1,

0 if p ≥ 1,

Ĥ l(p,−) :=





1 if p < 0,

H(p,−) if 0 ≤ p < 1,

0 if p ≥ 1,

Ĥ l(−, q) :=





0 if q ≤ 0,∨
s<q

¬H(s,−) if 0 < q ≤ 1,

1 if q > 1.

It is easy to check that Ĥu ≤ Ĥ l i.e., Ĥ := (Ĥu, Ĥ l) ∈ UL(L). We have then
the pointfree counterpart of the (extension) Theorem of Stares [37]:

Corollary 3.5.3. [Monotone extension: Stares] ([13])

For each frame L, the following are equivalent:

(i) L is monotonically normal.

(ii) For each closed sublocale S of L there exists an extender ES : C∗(S) →
C∗(L) such that, for any S1, S2 ∈ SL and Hi ∈ C∗(Si) (i = 1, 2)

satisfying Ĥ1 ≤ Ĥ2, ES1
(H1) ≤ ES2

(H2).

Finally:

Corollary 3.5.4. [Bounded extension] ([15]) For each frame L, the following
are equivalent:

(i) L is perfectly normal.

(ii) For every closed sublocale S of L and any H ∈ C∗(S), there exists a

continuous extension H̃ ∈ C∗(L) of H such that H̃(0, 1) ≥ S.
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[5] J. Dieudonné, Une généralisation des espaces compacts, J. de Math. Pures et Appl. 23
(1944) 65-76.

[6] C.H. Dowker, On countably paracompact spaces, Canad. J. Math. 3 (1951) 219–224.
[7] C.H. Dowker and D. Papert, On Urysohn’s Lemma, in: Proc. Second Prague Topolog-

ical Symposium (Prague, 1966), Academia, Prague, 1967, pp. 111-114.
[8] C.H. Dowker and D. Strauss, Paracompact frames and closed maps, Symposia Math.

16 (1975) 93–116.
[9] M. J. Ferreira and J. Picado, The semicontinuous quasi-uniformity of a frame, Kyung-

pook Math. J. 46 (2006) 189-200.
[10] M.P. Fourman and M. Hyland, Sheaf models for analysis, in: M.P. Fourman, C. J.

Mulvey and D. S. Scott (Eds.), Applications of Sheaves, Springer LNM 753, 1979, pp.
280-301.

[11] L. Gillman and M. Jerison, Rings of Continuous Functions, Springer, New York, 1976.
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