Point-finiteness and semicontinuity in pointfree topology

Jorge Picado

Mathematics Department - University of Coimbra PORTUGAL

point-finite covers

[Dowker and Strauss, Paracompact frames and closed maps, 1975]

upper semicontinuous real functions: $f: \mathfrak{L}_u(\mathbb{R}) \to L$

[Li and Wang, Localic Katětov-Tong insertion theorem, 1997]

[M.J. Ferreira, J. P., On the construction of quasi-uniform structures in pointfree topology, 2004]

any family of { (1) int.-pres. covers (2) Fletcher's condition (3) preserved by frame hom.

any family of { (1) int.-pres. covers (2) Fletcher's condition *induces* (3) preserved by frame hom. functorial transitive (3) preserved by frame hom.

any family of { (1) int.-pres. covers (2) Fletcher's condition *induces* (3) preserved by frame hom. functorial transitive quasi-unif. on FRM

all covers

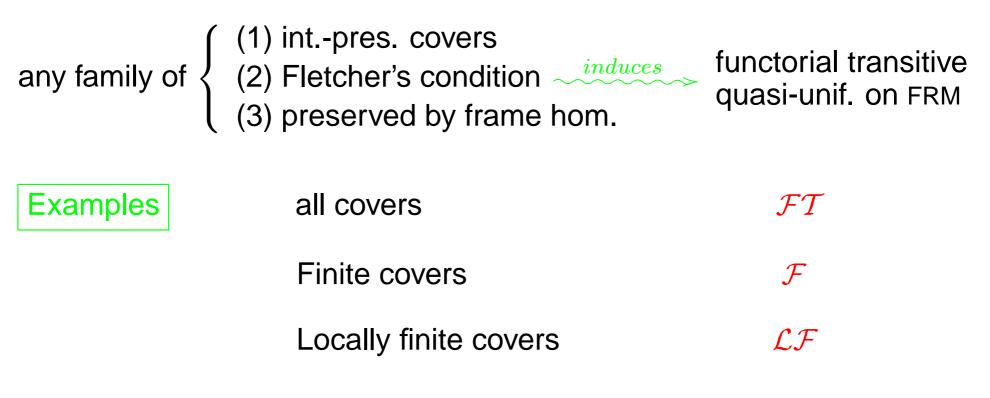
 \mathcal{FT}

all covers

Finite covers

 \mathcal{FT}

 ${\mathcal F}$



any family of $\left\{ \begin{array}{l} \end{array} \right\}$	 (1) intpres. covers (2) Fletcher's condition <i>induces</i> (3) preserved by frame hom. 	functorial transitive quasi-unif. on FRM
Examples	all covers	\mathcal{FT}
	Finite covers	${\cal F}$
	Locally finite covers	\mathcal{LF}
	Well-monotone covers	${\cal W}$

any family of $\begin{cases} () \\ () \\ () \end{cases}$	 intpres. covers Fletcher's condition <u>induces</u> preserved by frame hom. 	functorial transitive quasi-unif. on FRM
Examples	all covers	\mathcal{FT}
	Finite covers	${\cal F}$
	Locally finite covers	\mathcal{LF}
	Well-monotone covers	${\cal W}$
	Spectrum covers	SC

any family of $\left\{ \begin{array}{l} \end{array} \right\}$	 (1) intpres. covers (2) Fletcher's condition <i>induces</i> (3) preserved by frame hom. 	functorial transitive quasi-unif. on FRM
Examples	all covers	\mathcal{FT}
	Finite covers	${\cal F}$
	Locally finite covers	\mathcal{LF}
	Well-monotone covers	${\cal W}$
	Spectrum covers	\mathcal{SC} $ imes$

any family of $\left\{ \begin{array}{l} \end{array} \right.$	 (1) intpres. covers (2) Fletcher's condition <i>induces</i> (3) preserved by frame hom. 	functorial transitive quasi-unif. on FRM
Examples	all covers	\mathcal{FT}
	Finite covers	${\cal F}$
	Locally finite covers	\mathcal{LF}
	Well-monotone covers	${\cal W}$
	Spectrum covers	\mathcal{SC} \times
	Point-finite covers	× (1) (2) (3)

$A \subseteq L$, $\bigvee A = 1$

 $A \subseteq L, \bigvee A = 1$

point-finite.

$$\forall x \in L \quad x = \bigwedge_{F \in \mathcal{P}_f(A)} (x \lor a_F)$$

$$a_F := \bigvee (A \setminus F)$$

 $A \subseteq L, \bigvee A = 1$

point-finite: $\forall x \in I$

$$L \qquad x = \bigwedge_{F \in \mathcal{P}_f(A)} (x \lor a_F) \qquad \qquad \mathbf{a}_F := \bigvee (A \setminus F)$$

locally-finite:
$$\exists C \in CovL: | A_c := \{a \in A \mid a \land c \neq 0\} < \infty | \forall c \in C$$

 $A \subseteq L, \bigvee A = 1$

point-finite: $\forall x \in L$

$$x = \bigwedge_{F \in \mathcal{P}_f(A)} (x \lor a_F) \qquad \qquad \mathbf{a}_F := \bigvee (A \setminus F)$$

locally-finite: $\exists C \in CovL: \quad A_c := \{a \in A \mid a \land c \neq 0\} < \infty \quad \forall c \in C$

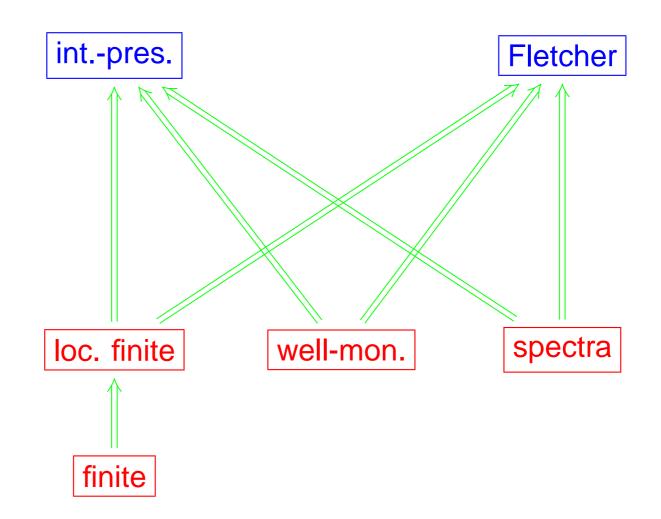
$$\fbox{finite} \Longrightarrow \fbox{locally-finite} \Longrightarrow \fbox{point-finite}$$

point-finite: $\forall x \in L$

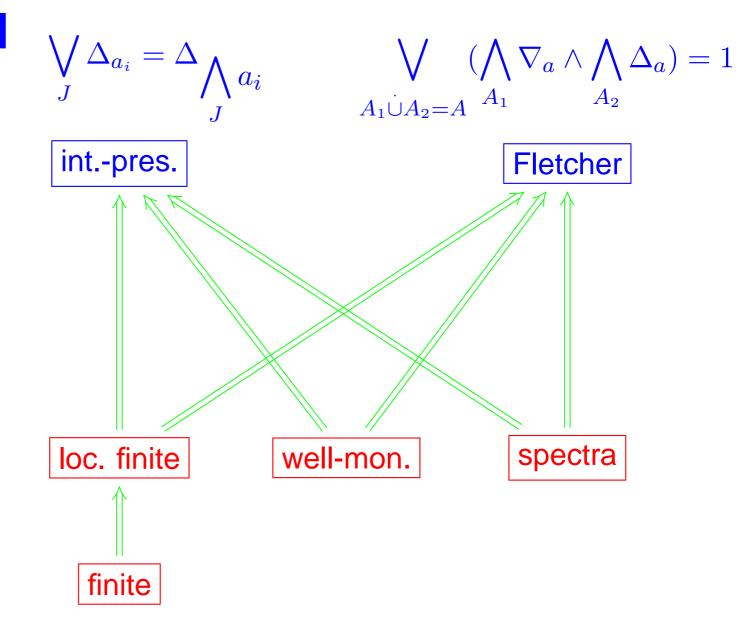
$$x = \bigwedge_{F \in \mathcal{P}_f(A)} (x \lor a_F) \qquad \qquad \mathbf{a_F} := \bigvee (A \setminus F)$$

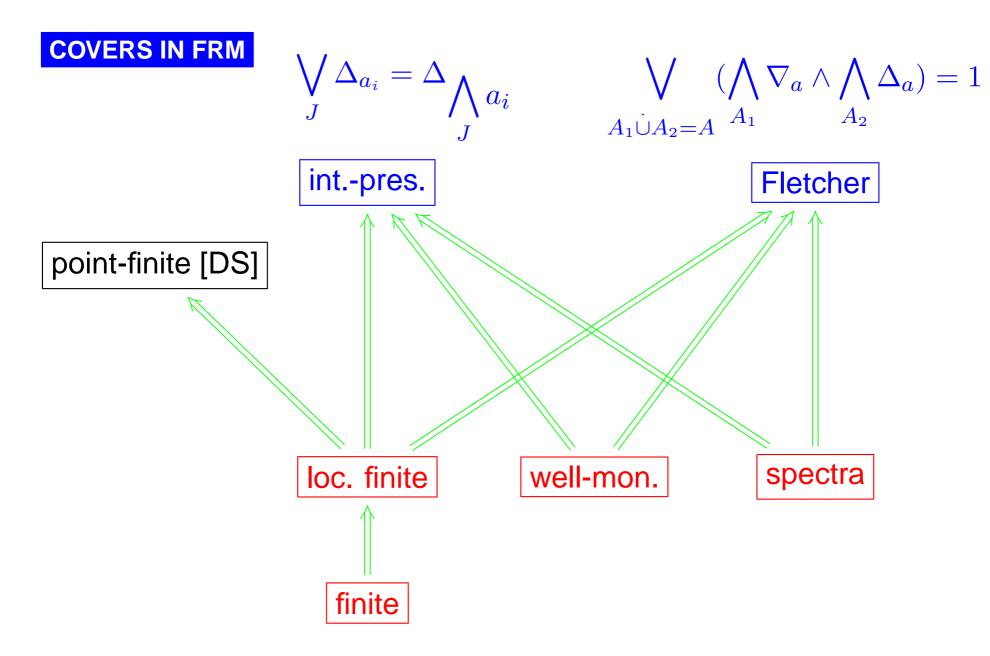
locally-finite: $\exists C \in CovL: \quad A_c := \{a \in A \mid a \land c \neq 0\} < \infty \quad \forall c \in C$

(also useful: characterizations of normality, paracompactness ...)



COVERS IN FRM





 $X \in \mathsf{SET}, \quad \mathcal{A} := \{A_i\}_I \subseteq \mathcal{P}(X)$

 $\mathcal{A} \text{ is point-finite:} \qquad \forall x \in X \quad \underbrace{\{i \in I \mid x \in A_i\}}_{I_x} < \infty$

 $X \in SET$, $\mathcal{A} := \{A_i\}_I \subseteq \mathcal{P}(X)$

 $\mathcal{A} \text{ is point-finite:} \qquad \forall x \in X \quad \underbrace{\{i \in I \mid x \in A_i\}}_{I_x} < \infty$ $F \in \mathcal{P}_f(\mathcal{A}), \qquad \mathbf{A}_F := \bigcup \{A \mid A \in \mathcal{A} \setminus F\}$

 $X \in \mathsf{SET}, \quad \mathcal{A} := \{A_i\}_I \subseteq \mathcal{P}(X)$

 $\mathcal{A} \text{ is point-finite:} \quad \forall x \in X \quad \underbrace{\{i \in I \mid x \in A_i\}}_{I_x} < \infty$ $F \in \mathcal{P}_f(\mathcal{A}), \quad A_F := \bigcup \{A \mid A \in \mathcal{A} \setminus F\}$

TFAE:

(1) \mathcal{A} is point-finite.

(2)
$$\bigcap_{F \in \mathcal{P}_f(\mathcal{A})} A_F = \emptyset.$$

 $X \in \mathsf{SET}, \quad \mathcal{A} := \{A_i\}_I \subseteq \mathcal{P}(X)$

 $\mathcal{A} \text{ is point-finite:} \quad \forall x \in X \quad \underbrace{\{i \in I \mid x \in A_i\}}_{I_x} < \infty$ $F \in \mathcal{P}_f(\mathcal{A}), \quad A_F := \bigcup \{A \mid A \in \mathcal{A} \setminus F\}$

TFAE:

(1) \mathcal{A} is point-finite.

(2)
$$\bigcap_{F \in \mathcal{P}_f(\mathcal{A})} A_F = \emptyset.$$

$$x \in \bigcap_F A_F \text{ iff } |I_x| = \infty$$

 $X \in \mathsf{SET}, \quad \mathcal{A} := \{A_i\}_I \subseteq \mathcal{P}(X)$

 $\mathcal{A} \text{ is point-finite:} \quad \forall x \in X \quad \underbrace{\{i \in I \mid x \in A_i\}}_{I_x} < \infty$ $F \in \mathcal{P}_f(\mathcal{A}), \quad A_F := \bigcup \{A \mid A \in \mathcal{A} \setminus F\}$

TFAE: (1) \mathcal{A} is point-finite. (2) $\bigcap_{F \in \mathcal{P}_f(\mathcal{A})} A_F = \emptyset.$ (3) $\forall S \subseteq X, \quad S = \bigcap_{F \in \mathcal{P}_f(\mathcal{A})} (S \cup A_F).$

$$x \in \bigcap_F A_F \text{ iff } |I_x| = \infty$$

 $X \in \mathsf{SET}, \quad \mathcal{A} := \{A_i\}_I \subseteq \mathcal{P}(X)$

 $\mathcal{A} \text{ is point-finite:} \qquad \forall x \in X \quad \underbrace{\{i \in I \mid x \in A_i\}}_{I_x} < \infty$ $F \in \mathcal{P}_f(\mathcal{A}), \qquad \mathbf{A}_F := \bigcup \{A \mid A \in \mathcal{A} \setminus F\}$

TFAE: (1) \mathcal{A} is point-finite. (2) $\bigcap_{F \in \mathcal{P}_f(\mathcal{A})} A_F = \emptyset.$ (3) $\forall S \subseteq X, \quad S = \bigcap_{F \in \mathcal{P}_f(\mathcal{A})} (S \cup A_F).$

$$x \in \bigcap_{F} A_{F} \text{ iff } |I_{x}| = \infty$$
$$\bigcap_{F} (S \cup A_{F}) = S \cup \bigcap_{F} A_{F}$$

$$finite \implies for the finite \implies for the for the finite \implies for the for$$

finite
$$\Longrightarrow$$
 locally-finite \Longrightarrow point-finite \Longrightarrow interior-preserving $\forall J \subseteq I, \text{ int}(\bigcap_J A_i) = \bigcap_J A_i$

 $\begin{array}{l} X \text{ is normal} \equiv \forall \text{ open cover } \{A,B\} \ \exists \text{ open cover } \{C,D\} : \\ C \subseteq \overline{C} \subseteq A, D \subseteq \overline{D} \subseteq B \end{array} \end{array}$

finite
$$\Longrightarrow$$
 locally-finite \Longrightarrow point-finite \Longrightarrow interior-preserving $\forall J \subseteq I, \text{ int}(\bigcap_J A_i) = \bigcap_J A_i$

 $\begin{array}{l} X \text{ is normal} \equiv \forall \text{ open cover } \{A,B\} \ \exists \text{ open cover } \{C,D\}: \\ C \subseteq \overline{C} \subseteq A, D \subseteq \overline{D} \subseteq B \end{array} \end{array}$

$$\Leftrightarrow \begin{array}{|c|c|c|c|} \forall \text{ p.-f. open cover } \{A_i\}_I & \exists \text{ open cover } \{C_i\}_I : \\ \forall i \quad C_i \subseteq \overline{C}_i \subseteq A_i \end{array}$$

finite
$$\Longrightarrow$$
 locally-finite \Longrightarrow point-finite \Longrightarrow interior-preserving $\forall J \subseteq I, \text{ int}(\bigcap_J A_i) = \bigcap_J A_i$

 $\begin{array}{l} X \text{ is normal} \equiv \forall \text{ open cover } \{A,B\} \ \exists \text{ open cover } \{C,D\} : \\ C \subseteq \overline{C} \subseteq A, D \subseteq \overline{D} \subseteq B \end{array} \end{array}$

$$\Leftrightarrow \begin{array}{|c|c|c|} \forall \text{ p.-f. open cover } \{A_i\}_I & \exists \text{ open cover } \{C_i\}_I : \\ \forall i \quad C_i \subseteq \overline{C}_i \subseteq A_i \end{array}$$

every point-finite cover is shrinkable [Lefschetz]

POINT-FINITE FAMILIES OF SUBLOCALES

Locale X

sublocale lattice $\mathfrak{S}X$ co-frame

POINT-FINITE FAMILIES OF SUBLOCALES

Locale X

sublocale lattice $\mathfrak{S}X$ co-frame

 $\mathcal{A} := \{A_i \mid i \in I\} \subseteq \mathfrak{S}X$

POINT-FINITE FAMILIES OF SUBLOCALES

Locale X

sublocale lattice $\mathfrak{S}X$ co-frame

 $\mathcal{A} := \{A_i \mid i \in I\} \subseteq \mathfrak{S}X$

cover: $\bigvee \mathcal{A} = X$

Locale X

sublocale lattice $\mathfrak{S}X$ co-frame

 $\mathcal{A} := \{A_i \mid i \in I\} \subseteq \mathfrak{S}X$

point-finite: $\forall S \in \mathfrak{S}X$

$$S = \bigwedge_{F \in \mathcal{P}_f(\mathcal{A})} (S \lor A_F)$$

cover:
$$\bigvee \mathcal{A} = X$$

$$A_F := \bigvee (\mathcal{A} \setminus F)$$

Locale X

sublocale lattice $\mathfrak{S}X$ co-frame

 $\mathcal{A} := \{A_i \mid i \in I\} \subseteq \mathfrak{S}X$

point-finite: $\forall S \in \mathfrak{S}X$

$$S = \bigwedge_{F \in \mathcal{P}_f(\mathcal{A})} (S \lor A_F)$$

$$\textbf{cover:} \quad \bigvee \mathcal{A} = X$$

$$A_F := \bigvee (\mathcal{A} \setminus F)$$

$$\Leftrightarrow \bigwedge_{F \in \mathcal{P}_f(\mathcal{A})} A_F = 0$$

Locale X

sublocale lattice $\mathfrak{S}X$ co-frame

 $\mathcal{A} := \{A_i \mid i \in I\} \subseteq \mathfrak{S}X$

point-finite: $\forall S \in \mathfrak{S}X$

$$S = \bigwedge_{F \in \mathcal{P}_f(\mathcal{A})} (S \lor A_F)$$

cover:
$$\bigvee \mathcal{A} = X$$

$$A_F := \bigvee (\mathcal{A} \setminus F)$$

$$\Leftrightarrow \bigwedge_{F \in \mathcal{P}_f(\mathcal{A})} A_F = 0$$

Locale X

sublocale lattice $\mathfrak{S}X$ co-frame

 $\mathcal{A} := \{A_i \mid i \in I\} \subseteq \mathfrak{S}X$

point-finite: $\forall S \in \mathfrak{S}X$

$$S = \bigwedge_{F \in \mathcal{P}_f(\mathcal{A})} (S \lor A_F)$$

cover:
$$\bigvee \mathcal{A} = X$$

$$A_F := \bigvee (\mathcal{A} \setminus F)$$

$$\Leftrightarrow \bigwedge_{F \in \mathcal{P}_f(\mathcal{A})} A_F = 0$$

locally-finite: \exists open cover C of X :

 $\forall C \in \mathcal{C} \ \mathcal{A}_C := \{A \in \mathcal{A} \mid A \land C \neq 0\} < \infty$

$$\Leftrightarrow \forall C \in \mathcal{C} \exists \text{ finite } I_C : C \land \bigvee_J A_j = C \land \bigvee_{J \cap I_C} A_j \text{ for all } J \subseteq I.$$

Now we have

$$finite \implies locally-finite \implies point-finite \implies interior-preserving$$
$$int(\bigwedge_{J} A_{i}) = \bigwedge_{J} intA_{i}$$
$$\forall J \subseteq I$$

$$\begin{array}{l} \hline \text{locally-finite} \Longrightarrow \text{point-finite} \\ \hline \text{Proof:} & \bigwedge_{F \in \mathcal{P}_{f}(\mathcal{A})} A_{F} \stackrel{?}{=} 0 \\ & \bigwedge_{F \in \mathcal{P}_{f}(\mathcal{A})} A_{F} = \bigvee_{C \in \mathcal{C}} C \wedge \bigwedge_{F \in \mathcal{P}_{f}(\mathcal{A})} A_{F} = \bigvee_{C \in \mathcal{C}} (C \wedge \bigwedge_{F \in \mathcal{P}_{f}(\mathcal{A})} A_{F}) \\ & \text{(open families are distributive)} \\ & \text{and, for every } C \in \mathcal{C}, C \wedge \bigwedge_{F \in \mathcal{P}_{f}(\mathcal{A})} A_{F} \leq C \wedge A_{I_{C}} = 0. \end{array}$$

Locale X $\mathfrak{S}X$

frame $L = \mathcal{O}X$

$\mathfrak{C}L$

Locale X

 $\mathfrak{S}X$

open cover $\mathcal{A} := \{S_a \mid a \in A\}$

frame $L = \mathcal{O}X$

$\mathfrak{C}L$

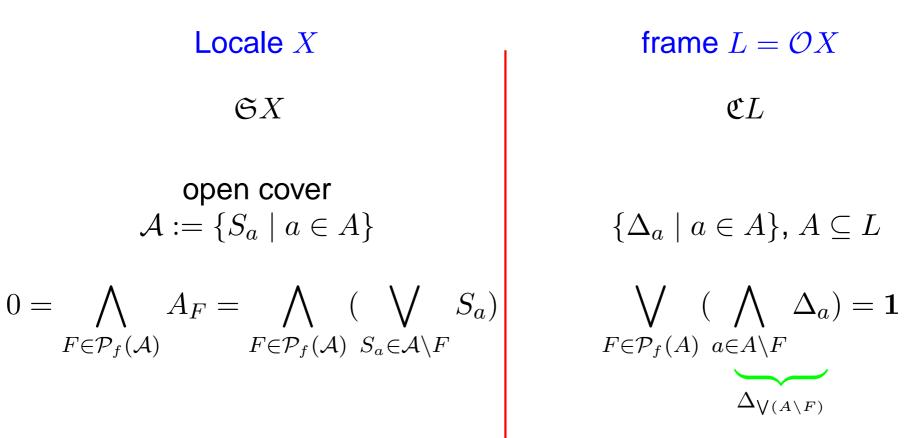
$\{\Delta_a \mid a \in A\}, A \subseteq L$

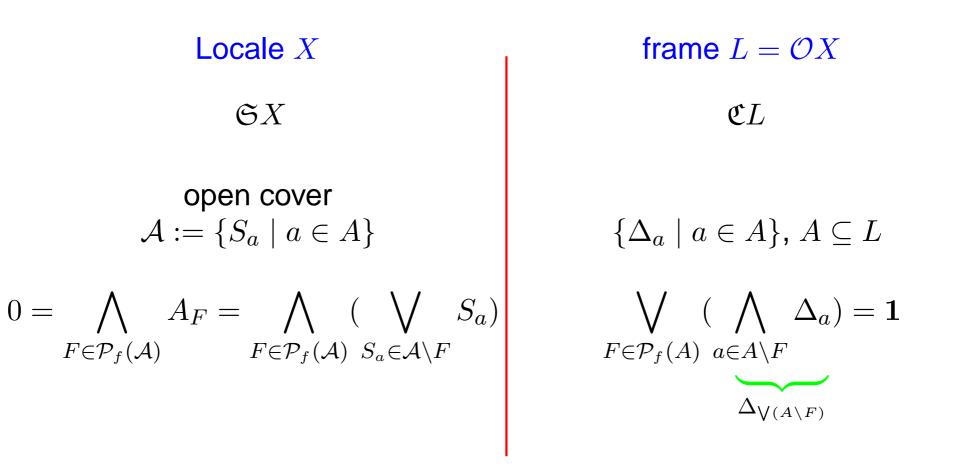
$$\begin{split} \text{Locale } X \\ \mathfrak{S}X \\ \text{open cover} \\ \mathcal{A} := \{S_a \mid a \in A\} \\ 0 &= \bigwedge_{F \in \mathcal{P}_f(\mathcal{A})} A_F = \bigwedge_{F \in \mathcal{P}_f(\mathcal{A})} (\bigvee_{S_a \in \mathcal{A} \setminus F} S_a) \end{split}$$

frame $L = \mathcal{O}X$ $\mathfrak{C}L$

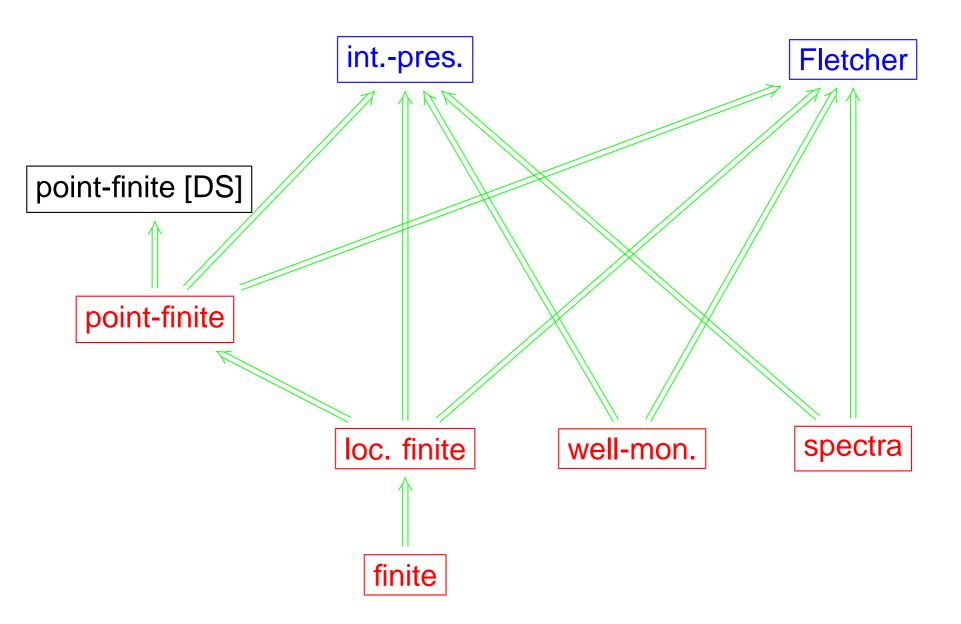
$$\{\Delta_a \mid a \in A\}, A \subseteq L$$

$$\bigvee_{F \in \mathcal{P}_f(A)} \left(\bigwedge_{a \in A \setminus F} \Delta_a\right) = \mathbf{1}$$





$$A \subseteq L$$
 is point-finite $\equiv \bigvee_{F \in \mathcal{P}_f(A)} \Delta_{a_F} = \mathbf{1}$



PROPOSITION. Let $h : L \to M$ be a frame homomorphism. If A is a point-finite cover of A then h[A] is a point-finite cover of M.

PROPOSITION. Let $h : L \to M$ be a frame homomorphism. If A is a point-finite cover of A then h[A] is a point-finite cover of M.

COROLLARY. The collection of all point-finite covers induces a functorial quasi-uniformity \mathcal{PF} on frames.

PROPOSITION. Let $h : L \to M$ be a frame homomorphism. If A is a point-finite cover of A then h[A] is a point-finite cover of M.

COROLLARY. The collection of all point-finite covers induces a functorial quasi-uniformity \mathcal{PF} on frames.

PROPOSITION [Lefschetz's Theorem]. A frame *L* is normal iff for every p.-f. cover $\{a_i\}_I$ of *L* there exists a cover $\{b_i\}_I$ of *L* such that $a_i \vee b_i^* = 1$ for all *i*. (i.e. iff each point-finite cover is shrinkable.)

upper semicontinuous real function on L: $f: \mathfrak{L}_u(\mathbb{R}) \to L$

SEMICONTINUITY

[Li and Wang, Localic Katětov-Tong insertion theorem, 1997]

upper semicontinuous real function on L: $f: \mathfrak{L}_u(\mathbb{R}) \to L$

$$\mathfrak{L}_{u}(\mathbb{R}) = Frm\Big\langle (-, p)(p \in \mathbb{Q}) \mid (1), (2), (3) \Big\rangle$$
 upp

upper frame of reals

(1)
$$p \le q \Rightarrow (-, p) \le (-, q)$$

(2) $\bigvee_{q < p} (-, q) = (-, p)$
(3) $\bigvee_{p \in \mathbb{Q}} (-, p) = 1.$

upper semicontinuous real function on L: $f: \mathfrak{L}_u(\mathbb{R}) \to L$

but $\operatorname{FRM}(\mathfrak{L}_u(\mathbb{R}), \mathcal{O}X) \cong \operatorname{TOP}(X, \Sigma \mathfrak{L}_u(\mathbb{R}))$

upper semicontinuous real function on L: $f: \mathfrak{L}_u(\mathbb{R}) \to L$

but
$$\operatorname{FRM}(\mathfrak{L}_u(\mathbb{R}), \mathcal{O}X) \cong \operatorname{TOP}(X, \Sigma \mathfrak{L}_u(\mathbb{R}))$$

$$\left\langle \begin{array}{c} & & \\$$

upper semicontinuous real function on L: $f: \mathfrak{L}_u(\mathbb{R}) \to L$

but $\operatorname{FRM}(\mathfrak{L}_u(\mathbb{R}), \mathcal{O}X) \cong \operatorname{TOP}(X, \Sigma\mathfrak{L}_u(\mathbb{R}))$

$$\begin{array}{cccc} \boldsymbol{\xi}_{-\boldsymbol{\infty}} \colon \boldsymbol{\mathfrak{L}}_u(\mathbb{R}) & \to & \mathbf{2} \\ (-,\alpha) & \mapsto & 1 \end{array}$$

 $(\mathbb{R}\cup\{-\infty\},\mathcal{T}_u)$

upper semicontinuous real function on L: $f: \mathfrak{L}_u(\mathbb{R}) \to L$

but $\operatorname{FRM}(\mathfrak{L}_u(\mathbb{R}), \mathcal{O}X) \cong \operatorname{TOP}(X, \Sigma\mathfrak{L}_u(\mathbb{R}))$

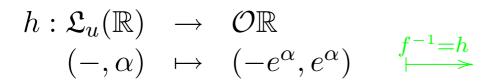
$$\begin{array}{rccc} \boldsymbol{\xi}_{-\boldsymbol{\infty}} \colon \boldsymbol{\mathfrak{L}}_u(\mathbb{R}) & \to & \mathbf{2} \\ (-,\alpha) & \mapsto & 1 \end{array}$$

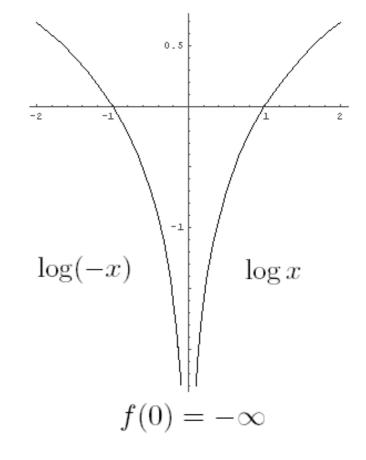
 $(\mathbb{R}\cup\{-\infty\},\mathcal{T}_u)$

 $\mathbb{R}_u := (\mathbb{R}, \mathcal{T}_u)$ is not sober: $\Sigma L \ncong \mathbb{R}_u$

$$\begin{array}{rccc} h: \mathfrak{L}_u(\mathbb{R}) & \to & \mathcal{O}\mathbb{R} \\ (-, \alpha) & \mapsto & (-e^{\alpha}, e^{\alpha}) \end{array}$$

$$\begin{array}{rcccc} h: \mathfrak{L}_u(\mathbb{R}) & \to & \mathcal{O}\mathbb{R} \\ (-, \alpha) & \mapsto & (-e^{\alpha}, e^{\alpha}) & \stackrel{f^{-1}=h}{\longmapsto} \end{array}$$





$$f: X \to \mathbb{R} \text{ is u.s.c} \Leftrightarrow f: \underbrace{(X, \mathcal{O}X, \mathcal{C}X)}_{Sk(X)} \to (\mathbb{R}, \mathcal{T}_u, \mathcal{T}_l) \in \mathsf{Bitop}$$

$$f: X \to \mathbb{R} \text{ is u.s.c} \Leftrightarrow f: \underbrace{(X, \mathcal{O}X, \mathcal{C}X)}_{Sk(X)} \to (\mathbb{R}, \mathcal{T}_u, \mathcal{T}_l) \in \mathsf{Bitop}$$

Thus $\operatorname{TOP}(X, \mathbb{R}_u) \cong \operatorname{Bitop}(Sk(X), (\mathbb{R}, \mathcal{T}_u, \mathcal{T}_l))$

$$f: X \to \mathbb{R} \text{ is u.s.c} \Leftrightarrow f: \underbrace{(X, \mathcal{O}X, \mathcal{C}X)}_{Sk(X)} \to (\mathbb{R}, \mathcal{T}_u, \mathcal{T}_l) \in \mathsf{Bitop}$$

 $\begin{aligned} \mathsf{Thus}\; \mathsf{TOP}(X,\mathbb{R}_u) &\cong \mathsf{Bit}\mathsf{OP}(Sk(X),(\mathbb{R},\mathcal{T}_u,\mathcal{T}_l)) \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$

$$f: X \to \mathbb{R} \text{ is u.s.c} \Leftrightarrow f: \underbrace{(X, \mathcal{O}X, \mathcal{C}X)}_{Sk(X)} \to (\mathbb{R}, \mathcal{T}_u, \mathcal{T}_l) \in \mathsf{Bitop}$$

 $\stackrel{\mathcal{O} \to \Sigma}{\cong} \mathsf{BiFRM}((\mathfrak{L}(\mathbb{R}), \mathfrak{L}_u(\mathbb{R}), \mathfrak{L}_l(\mathbb{R})), \mathcal{O}(Sk(X)))$

$$f: X \to \mathbb{R} \text{ is u.s.c} \Leftrightarrow f: \underbrace{(X, \mathcal{O}X, \mathcal{C}X)}_{Sk(X)} \to (\mathbb{R}, \mathcal{T}_u, \mathcal{T}_l) \in \mathsf{Bitop}$$

$$\mathsf{BiFRM}(\mathfrak{L}(\mathbb{R}),\mathfrak{C}L) \cong \left\{ f: \mathfrak{L}_u(\mathbb{R}) \to L \in \mathsf{FRM} \mid \bigvee_{p \in \mathbb{Q}} \Delta_{f(-,p)} = \mathbf{1} \right\}$$

$$\mathsf{BiFRM}(\mathfrak{L}(\mathbb{R}),\mathfrak{C}L) \cong \left\{ f: \mathfrak{L}_u(\mathbb{R}) \to L \in \mathsf{FRM} \mid \bigvee_{p \in \mathbb{Q}} \Delta_{f(-,p)} = \mathbf{1} \right\}$$

$$\mathsf{BiFRM}(\mathfrak{L}(\mathbb{R}),\mathfrak{C}L) \cong \left\{ f: \mathfrak{L}_u(\mathbb{R}) \to L \in \mathsf{FRM} \mid \bigvee_{p \in \mathbb{Q}} \Delta_{f(-,p)} = \mathbf{1} \right\}$$

$$\begin{array}{rccc} h_f:(-,p) & \mapsto & \nabla_{f(-,p)} \\ (p,-) & \mapsto & \bigvee_{q>p} \Delta_{f(-,q)} \end{array}$$

$$\prec$$
 f

$$\mathsf{BiFRM}(\mathfrak{L}(\mathbb{R}),\mathfrak{C}L) \cong \left\{ f: \mathfrak{L}_u(\mathbb{R}) \to L \in \mathsf{FRM} \mid \bigvee_{p \in \mathbb{Q}} \Delta_{f(-,p)} = \mathbf{1} \right\}$$

$$\begin{array}{ccccc} h_f:(-,p) & \mapsto & \nabla_{f(-,p)} \\ (p,-) & \mapsto & \bigvee_{q>p} \Delta_{f(-,q)} & & \checkmark & f \end{array}$$

- $\mathcal{SC}(L)$ is induced by all u.s.c. real functions on L
- Katětov-Tong insertion theorem

CONCLUSION

u.s.c. real function on L: $f : \mathfrak{L}_u(\mathbb{R}) \to L \in \mathsf{FRM} \text{ s.t. } \bigvee_{p \in \mathbb{Q}} \Delta_{f(-,p)} = \mathbf{1}.$

CONCLUSION

u.s.c. real function on L: $f : \mathfrak{L}_u(\mathbb{R}) \to L \in \mathsf{FRM} \text{ s.t. } \bigvee_{p \in \mathbb{Q}} \Delta_{f(-,p)} = \mathbf{1}.$

I.s.c. real function on L: $g: \mathfrak{L}_l(\mathbb{R}) \to L \in \mathsf{FRM} \text{ s.t. } \bigvee_{p \in \mathbb{Q}} \Delta_{g(p,-)} = \mathbf{1}.$

u.s.c. real function on L: $f : \mathfrak{L}_u(\mathbb{R}) \to L \in \mathsf{FRM} \text{ s.t. } \bigvee_{p \in \mathbb{Q}} \Delta_{f(-,p)} = \mathbf{1}.$

I.s.c. real function on L: $g: \mathfrak{L}_l(\mathbb{R}) \to L \in \mathsf{FRM} \text{ s.t. } \bigvee_{p \in \mathbb{Q}} \Delta_{g(p,-)} = 1.$

PROPOSITION [Localic Katětov-Tong Insertion Theorem].

L is normal iff for every usc real function $f : \mathfrak{L}_u(\mathbb{R}) \to L$ and every lsc real function $g : \mathfrak{L}_l(\mathbb{R}) \to L$ with $f \leq g$ there exists a continuous real function $h : \mathfrak{L}(\mathbb{R}) \to L$ such that $f \leq h \leq g$.