
iStrict insertion of continuous real functions p

iin pointfree topology p

Jorge Picado

Department of Mathematics

University of Coimbra

PORTUGAL

— joint work with J. Gutiérrez Garcı́a (UPV-EHU, Bilbao, Spain)

September 9, 2010 Strict insertion of continuous real functions in Pointfree Topology ItEs 2010 – 0
– p. 0



MOTIVATION Strict Insertion Theorem (DOWKER)

September 9, 2010 Strict insertion of continuous real functions in Pointfree Topology ItEs 2010 – 1
– p. 1



MOTIVATION Strict Insertion Theorem (DOWKER)

[Canad. J. Math. (1951)]

THEOREM. A topological space X is normal and countably paracompact

iff

September 9, 2010 Strict insertion of continuous real functions in Pointfree Topology ItEs 2010 – 1
– p. 1



MOTIVATION Strict Insertion Theorem (DOWKER)

[Canad. J. Math. (1951)]

THEOREM. A topological space X is normal and countably paracompact

iff

for every f, g : X → R with f < g, f usc and g lsc,

there is a continuous h : X → R such that f < h < g.

September 9, 2010 Strict insertion of continuous real functions in Pointfree Topology ItEs 2010 – 1
– p. 1



MOTIVATION Strict Insertion Theorem (DOWKER)

[Canad. J. Math. (1951)]

THEOREM. A topological space X is normal and countably paracompact

iff

for every f, g : X → R with f < g, f usc and g lsc,

there is a continuous h : X → R such that f < h < g.

≪(...) what the pointfree formulation adds to the classical theory is a
remarkable combination of elegance of statement, simplicity of proof,
and increase of extent.≫ R. BALL & J. WALTERS-WAYLAND

[C- and C∗-quotients in pointfree topology, Dissert. Math. 412 (2002)]
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POINTFREE SPACES: examples

• Topological spaces

(spatial locales)

(X,OX) OX

f

(Y,OY ) OY

f−1

• complete Boolean algebras (spatial=atomic)

• complete chains

• finite distributive lattices
...
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REAL FUNCTIONS ON L

Any f : X −→ R( ,P(X)) ( ,T) is continuous

i.e. F (X) ≃ Top((X,P(X)), (R,T))

≃ Frm(L(R),P(X))
lattice of subspaces of X

Frm(L(R),S(L))
lattice of sublocales of L

MOTIVATES:
∨

F (L) := Frm(L(R),S(L))
∨
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∧
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∨
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Subobject lattice of L: is a CO-FRAME
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

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Subobject lattice of L: is a CO-FRAME
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

for each a ∈ L
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

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∨
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subframe cL := {c(a) | a ∈ L} ≃ L

INTERIOR
◦
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(4)
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{(p, q) | p, q ∈ Q} = 1 〉.

(−, q):=
∨

p∈Q

(p, q)

Ll(R) := 〈(−, q) | q ∈ Q〉

(p,−):=
∨

q∈Q

(p, q)

BERNHARD BANASCHEWSKI, The real numbers in Pointfree Topology,
Textos de Matem ática , Vol. 12, Univ. Coimbra, 1998.
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∨
f ≤ g ≡ f(p,−) ≤ g(p,−), ∀p ∈ Q

∨

September 9, 2010 Strict insertion of continuous real functions in Pointfree Topology ItEs 2010 – 7
– p. 7



SEMICONTINUITY AND CONTINUITY f : L(R) → S(L)

F(L)

LSC(L)

F(L)

USC(L) LSC(L)

C(L)

f(p,—) ∈ cLf(—, p) ∈ cL

f(L(R)) ⊆ cL ≃ L

C(L) ≃ Frm(L(R), L)
�
�

�



J. GUTIÉRREZ GARCÍA, T. KUBIAK & J. PICADO

Localic real functions: a general setting, J. Pure Appl. Algebra 213 (2009) 1064-1074
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STRICT INSERTION f < g

ι(f, g):=
∨

p∈Q

(f(—, p) ∧ g(p,—)) = 1

• f < g ⇒ f ≤ g.

• f1 ≤ f2, g1 ≤ g2 ⇒ ι(f2, g1) ≤ ι(f1, g2).

• f < g iff 0 < g − f .

• f < g iff λ · f < λ · g for every 0 < λ ∈ Q.
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ALGEBRA IN F(L) f : L(R) → S(L)

F(L) ∨,∧ −f λ · f f + g f · g ℓ-ring
(λ > 0) (f, g ≤ 0)

LSC(L) sublat. ∈ USC(L) closed closed closed
∈ USC(L)

USC(L) sublat. ∈ LSC(L) closed closed closed
∈ LSC(L)

C(L) sublat. closed closed closed closed ℓ-ring
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ALGEBRA IN F(L) f : L(R) → S(L)

f · g

F(L) ∨,∧ −f λ · f f + g (f, g ≥ 0) ℓ-ring
(λ > 0)
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ALGEBRA IN F(L) f : L(R) → S(L)

f · g

F(L) ∨,∧ −f λ · f f + g (f, g ≥ 0) ℓ-ring
(λ > 0) (f, g ≤ 0)

LSC(L) sublat. ∈ USC(L) closed closed closed
∈ USC(L)

USC(L) sublat. ∈ LSC(L) closed closed closed
∈ LSC(L)

C(L) sublat. closed closed closed closed ℓ-ring

explicit formulas for (f ⋄ g)(p,—) and (f ⋄ g)(—, q)

J. GUTIÉRREZ GARCÍA & J. PICADO

Rings of real functions in Pointfree Topology, submitted
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CONSTRUCTING REAL FUNCTIONS: SCALES S = {Sp | p ∈ Q} ⊆ S(L)

September 9, 2010 Strict insertion of continuous real functions in Pointfree Topology ItEs 2010 – 10
– p. 10



CONSTRUCTING REAL FUNCTIONS: SCALES S = {Sp | p ∈ Q} ⊆ S(L)

Scale • p < q ⇒ Sp ∨ S∗

q = 1
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CONSTRUCTING REAL FUNCTIONS: SCALES S = {Sp | p ∈ Q} ⊆ S(L)

Scale • p < q ⇒ Sp ∨ S∗

q = 1

•
∨
{Sp | p ∈ Q} = 1 =

∨
{S∗

p | p ∈ Q}.
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q = 1

•
∨
{Sp | p ∈ Q} = 1 =

∨
{S∗

p | p ∈ Q}.

Let

f(p,—) :=
∨

r>p

Sr f(—, q) :=
∨

s<q

S∗

s
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∨
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p | p ∈ Q}.

Let

f(p,—) :=
∨

r>p

Sr f(—, q) :=
∨

s<q
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September 9, 2010 Strict insertion of continuous real functions in Pointfree Topology ItEs 2010 – 10
– p. 10



CONSTRUCTING REAL FUNCTIONS: SCALES S = {Sp | p ∈ Q} ⊆ S(L)

Scale • p < q ⇒ Sp ∨ S∗

q = 1

•
∨
{Sp | p ∈ Q} = 1 =

∨
{S∗

p | p ∈ Q}.

Let
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s

Then
f ∈ F(L)

every Sp is closed ⇒ f ∈ LSC(L)
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Scale • p < q ⇒ Sp ∨ S∗

q = 1

•
∨
{Sp | p ∈ Q} = 1 =

∨
{S∗

p | p ∈ Q}.

Let

f(p,—) :=
∨

r>p

Sr f(—, q) :=
∨

s<q

S∗

s

Then
f ∈ F(L)

every Sp is closed ⇒ f ∈ LSC(L)

every Sp is open ⇒ f ∈ USC(L)
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EXAMPLE: f · g, f, g ≥ 0

f · g ∈ F(L) is the function generated by the scale

Sp :=





1 if p < 0

∨

r>0

f(r,—) ∧ g(
p

r
,—) if p ≥ 0
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EXAMPLE: f · g, f, g ≥ 0

f · g ∈ F(L) is the function generated by the scale

Sp :=





1 if p < 0

∨

r>0

f(r,—) ∧ g(
p

r
,—) if p ≥ 0

Then

(f · g)(p,—) =





1 if p < 0∨

r>0

f(r,—) ∧ g(
p

r
,—) if p ≥ 0

(f · g)(—, q) =





0 if q ≤ 0∨

r>0

f(r,—) ∧ g(
p

r
,—) if q > 0
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THE THEOREM

THEOREM.
A locale L is normal and countably paracompact iff for every f, g ∈ F(L)
with f < g, f usc and g lsc, there is an h ∈ C(L) such that f < h < g.
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THE THEOREM

THEOREM.
A locale L is normal and countably paracompact iff for every f, g ∈ F(L)
with f < g, f usc and g lsc, there is an h ∈ C(L) such that f < h < g.

NORMALITY:

A∪B = X ⇒ ∃ U, V : U∩V = ∅, A∪U = X = B∪V
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THEOREM.
A locale L is normal and countably paracompact iff for every f, g ∈ F(L)
with f < g, f usc and g lsc, there is an h ∈ C(L) such that f < h < g.

NORMALITY:

A∪B = X ⇒ ∃ U, V : U∩V = ∅, A∪U = X = B∪V

a ∨ b = 1 ⇒ ∃ u, v : u ∧ v = 0, a ∨ u = 1 = b ∨ v.
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THE THEOREM

THEOREM.
A locale L is normal and countably paracompact iff for every f, g ∈ F(L)
with f < g, f usc and g lsc, there is an h ∈ C(L) such that f < h < g.

NORMALITY:

A∪B = X ⇒ ∃ U, V : U∩V = ∅, A∪U = X = B∪V

a ∨ b = 1 ⇒ ∃ u, v : u ∧ v = 0, a ∨ u = 1 = b ∨ v.

COUNTABLE PARACOMPACTNESS:

every countable (open) cover has a locally finite (open) refinement.
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SKETCH OF PROOF

“⇒”

September 9, 2010 Strict insertion of continuous real functions in Pointfree Topology ItEs 2010 – 12
– p. 12



SKETCH OF PROOF

“⇒” f︸︷︷︸
USC

< g︸︷︷︸
LSC
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LSC
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SKETCH OF PROOF

“⇒” f︸︷︷︸
USC

< g︸︷︷︸
LSC

⇒ 0 < g − f︸ ︷︷ ︸
LSC

≤ 1

⇒ 0 < k︸︷︷︸
C(L)

≤ g − f

⇒ f +
k

2︸ ︷︷ ︸
LSC

≤ g −
k

2︸ ︷︷ ︸
USC
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SKETCH OF PROOF

“⇒” f︸︷︷︸
USC

< g︸︷︷︸
LSC

⇒ 0 < g − f︸ ︷︷ ︸
LSC

≤ 1

⇒ 0 < k︸︷︷︸
C(L)

≤ g − f

⇒ f +
k

2︸ ︷︷ ︸
LSC

≤ g −
k

2︸ ︷︷ ︸
USC

⇒ f + k
2 ≤ h︸︷︷︸

C(L)

≤ g − k
2 (by Katětov-Tong).
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PARTICULAR CASE: L = OX X normal and countably paracompact
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PARTICULAR CASE: L = OX X normal and countably paracompact

f, g : X → R, f usc, g lsc, f < g
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PARTICULAR CASE: L = OX X normal and countably paracompact

f, g : X → R, f usc, g lsc, f < g

{c(g−1(]p,+∞[)) | p ∈ Q}

scale in OX
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f, g : X → R, f usc, g lsc, f < g

{c(g−1(]p,+∞[)) | p ∈ Q}

scale in OX

induces
g̃ : L(R) → S(OX)
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PARTICULAR CASE: L = OX X normal and countably paracompact

f, g : X → R, f usc, g lsc, f < g

{c(g−1(]p,+∞[)) | p ∈ Q}

scale in OX

induces
g̃ : L(R) → S(OX)

g̃(p,—) =
∨

r>p

c(g−1(]r,+∞[)) = c(g−1(]p,+∞[))

lsc

{o(f−1(]−∞, q[)) | q ∈ Q}

scale in OX

induces
f̃ : L(R) → S(OX)
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PARTICULAR CASE: L = OX X normal and countably paracompact

f, g : X → R, f usc, g lsc, f < g

{c(g−1(]p,+∞[)) | p ∈ Q}

scale in OX

induces
g̃ : L(R) → S(OX)

g̃(p,—) =
∨

r>p

c(g−1(]r,+∞[)) = c(g−1(]p,+∞[))

lsc

{o(f−1(]−∞, q[)) | q ∈ Q}

scale in OX

induces
f̃ : L(R) → S(OX)

f̃(—, q) =
∨

s<q

c(f−1(]−∞, s[)) = c(f−1(]−∞, q[))

usc
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PARTICULAR CASE: L = OX X normal and countably paracompact

f̃ < g̃ ⇔ ι(f̃ , g̃) = 1 ⇔
∨

p∈Q

(
c(f−1(]−∞, p[)) ∧ c(g−1(]p,+∞[))

)
= 1

⇔ c
(⋃

p∈Q

(
f−1(]−∞, q[) ∩ g−1(]p,+∞[)

))
= 1

⇔
⋃

p∈Q

(
f−1(]−∞, q[) ∩ g−1(]p,+∞[)

)
= X

⇔ f(x) < g(x) for every x ∈ X.
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f̃ < g̃ ⇔ ι(f̃ , g̃) = 1 ⇔
∨
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c(f−1(]−∞, p[)) ∧ c(g−1(]p,+∞[))

)
= 1

⇔ c
(⋃

p∈Q

(
f−1(]−∞, q[) ∩ g−1(]p,+∞[)

))
= 1

⇔
⋃

p∈Q

(
f−1(]−∞, q[) ∩ g−1(]p,+∞[)

)
= X

⇔ f(x) < g(x) for every x ∈ X.

Hence there is h̃ ∈ C(OX) such that

f̃ < h̃ < g̃

h : X → R
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PARTICULAR CASE: L = OX X normal and countably paracompact

f̃ < g̃ ⇔ ι(f̃ , g̃) = 1 ⇔
∨

p∈Q

(
c(f−1(]−∞, p[)) ∧ c(g−1(]p,+∞[))

)
= 1

⇔ c
(⋃

p∈Q

(
f−1(]−∞, q[) ∩ g−1(]p,+∞[)

))
= 1

⇔
⋃

p∈Q

(
f−1(]−∞, q[) ∩ g−1(]p,+∞[)

)
= X

⇔ f(x) < g(x) for every x ∈ X.

Hence there is h̃ ∈ C(OX) such that

f̃ < h̃ < g̃

h : X → R defined by

h(x) ∈]p, q[ iff x ∈ h̃(p, q).
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MICHAEL’S STRICT INSERTION [Ann. Math. 63 (1956)]

TFAE for a space X: (i) X is perfectly normal

(ii) f︸︷︷︸
USC

≤ g︸︷︷︸
LSC

⇒ ∃ h ∈ C(X) : f ≤ h ≤ g and

f(x) < h(x) < g(x) whenever f(x) < g(x).
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MICHAEL’S STRICT INSERTION [Ann. Math. 63 (1956)]

TFAE for a space X: (i) X is perfectly normal

(ii) f︸︷︷︸
USC

≤ g︸︷︷︸
LSC

⇒ ∃ h ∈ C(X) : f ≤ h ≤ g and

f(x) < h(x) < g(x) whenever f(x) < g(x).

TFAE for a locale L: (i) L is perfectly normal

(ii) f︸︷︷︸
USC

≤ g︸︷︷︸
LSC

⇒ ∃ h ∈ C(L) : f ≤ h ≤ g and

ι(f, h) = ι(h, g) = ι(f, g).
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