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REAL-VALUED FUNCTIONS?

TOP

h : X → (R,Te) CONTINUOUS

FRM

h : L(R)→ L

C(L) = FRM(L(R), L)

[P. T. Johnstone, Stone Spaces]

[B. Banaschewski, The Real Numbers in PT, 1997]
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REAL-VALUED FUNCTIONS?

TOP

h : X → (R,Te) CONTINUOUS

FRM

h : L(R)→ L

C(L) = FRM(L(R), L)

[P. T. Johnstone, Stone Spaces]

[B. Banaschewski, The Real Numbers in PT, 1997]

h : X → R GENERAL ?
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MOTIVATION point-set topology

[L. Gillman and M. Jerison, Rings of Continuous Functions]
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MOTIVATION point-set topology

[L. Gillman and M. Jerison, Rings of Continuous Functions]

≪The set C(X) of all continuous, real-valued functions on a topologi-
cal space X will be provided with an algebraic structure and an order
structure. Since their definitions do not involve continuity, we begin by

imposing these structures on the collection RX of all functions from X
into the set R of real numbers.≫
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MOTIVATION point-set topology

[L. Gillman and M. Jerison, Rings of Continuous Functions]

≪The set C(X) of all continuous, real-valued functions on a topologi-
cal space X will be provided with an algebraic structure and an order
structure. Since their definitions do not involve continuity, we begin by

imposing these structures on the collection RX of all functions from X
into the set R of real numbers.≫

≪(...) In fact, it is clear that RX is a commutative ring with unity element
(provided that X is non empty).≫

≪(...) Therefore C(X) is a commutative ring, a subring of RX .≫
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AIMS point-set topology

• Insertion theorem for completely normal spaces
[Kubiak, 1993]
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• Insertion theorem for completely normal spaces
[Kubiak, 1993]

THEOREM. TFAE for a space X:

(1) X is completely normal.

(2) For every f1, f2 ∈ RX , if f−

1 ≤ f2 and f1 ≤ f◦
2 , then there

exists a g ∈ LSC(X) such that f1 ≤ g ≤ g− ≤ f2.
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AIMS point-set topology

• Insertion theorem for completely normal spaces
[Kubiak, 1993]

THEOREM. TFAE for a space X:

(1) X is completely normal.

(2) For every f1, f2 ∈ RX , if f−

1 ≤ f2 and f1 ≤ f◦
2 , then there

exists a g ∈ LSC(X) such that f1 ≤ g ≤ g− ≤ f2.

• Insertion characterizations for normality (Katětov-Tong), extremal
disconnectedness (Stone), perfect normality (Michael), monotone
normality (Kubiak), countable paracompactness (Dowker)...

Remains to be done: complete regularity.
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for each a ∈ L
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c(ai) = c(
∨

i∈I

ai)

c(a) ∧ c(b) = c(a ∧ b)

subframe cL := {c(a) | a ∈ L} ≃ L

(the geometric motivation reads backwards)

∧

i∈I

o(ai) = o(
∨

i∈I

ai)

o(a) ∨ o(b) = o(a ∧ b)

subframe oL := 〈{o(a) | a ∈ L}〉
op
←֓ L
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THE SETTING FRM(L(R),SL) ring F(L)

• f : L(R)→ SL usc

s.t. f(Ll(R)) ⊆ cL

USC(L)

• g : L(R)→ SL lsc

s.t. g(Lu(R)) ⊆ cL

LSC(L)

• h : L(R)→ SL continuous C(L)

s.t. h(L(R)) ⊆ cL

USC(L) ∩ LSC(L) = C(L)
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THE SETTING FRM(L(R),SL) ring F(L)

• f : L(R)→ SL usc

s.t. f(Ll(R)) ⊆ cL

USC(L)

• g : L(R)→ SL lsc

s.t. g(Lu(R)) ⊆ cL

LSC(L)

• h : L(R)→ SL continuous C(L)

s.t. h(L(R)) ⊆ cL

f ≤ g ≡ f(p,−) ≤ g(p,−), ∀p ∈ Q ⇔ g(−, q) ≤ f(−, q), ∀q ∈ Q
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s.t. f(Ll(R)) ⊆ cL

USC(L)

• g : L(R)→ SL lsc

s.t. g(Lu(R)) ⊆ cL

LSC(L)

• h : L(R)→ SL continuous C(L)

s.t. h(L(R)) ⊆ cL

J. GUTIÉRREZ GARCÍA, T. KUBIAK & J. PICADO

[Localic real-valued functions: a general setting, J. Pure Appl. Algebra
213 (2009) 1064-1074]
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COMPLETELY NORMAL FRAMES [J. Isbell, 1985]
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COMPLETELY NORMAL FRAMES [J. Isbell, 1985]

Classically:

L is completely normal if ∀ S, T ∈ SL

S ∨ T = 1 = S ∨ T
︸ ︷︷ ︸

separated sublocales

⇒ ∃ open U, V : U ∨ V = 1, U ≤ S, V ≤ T
︸ ︷︷ ︸

separated by open sublocales
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(1) L is completely normal.

(2) For every S, T ∈ SL such that S ≤ T and S◦ ≤ T there exist
an open U and a closed F such that S ≤ F ≤ U ≤ T .
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PROPOSITION. TFAE for a frame L:

(1) L is completely normal.

(2) For every S, T ∈ SL such that S ≤ T and S◦ ≤ T there exist
an open U and a closed F such that S ≤ F ≤ U ≤ T .

(3) For every S, T ∈ SL such that S ∧ T ◦ = 0 = S◦ ∧ T there exist
closed F,G such that F ∧G = 0, S ≤ F and T ≤ G.

(4) ∀ a, b ∈ L, ∃ x, y ∈ L : x ∧ y = 0, b ≤ a ∨ x, a ≤ b ∨ y.

[H. Simmons, 1978]: a space X is CN iff L = OX sat. (4).

CN is lattice-invariant. Corrects a wrong statement in [Y.-M. Wong,

Lattice-invariant properties of top. spaces, Proc. AMS 26 (1970)]
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CHARACTERIZATIONS OF CN

THEOREM. TFAE for a frame L:

(1) L is completely normal.

(2) L is hereditarily normal (= every its sublocale is normal).

(3) Every open sublocale of L is normal.
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TOOLS FOR THE INSERTION: UPPER AND LOWER REGULARIZATIONS

f ∈ F(L), lower regularization f◦:
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f ∈ F(L), lower regularization f◦:

f◦(−, q) =
∨

s<q

¬ f(s,−) f◦(p,−) =
∨

r>p

f(r,−)

Then:

f◦ ∈ LSC(L), f◦ ≤ f

g ∈ LSC(L), g ≤ f ⇒ g ≤ f◦.

J. GUTIÉRREZ GARCÍA & T. KUBIAK J. PICADO

[Lower and upper regularizations of frame semicontinuous real functions,
Algebra Universalis 60 (2009) 169-184]
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CN: INSERTION L is CN, f1, f2 ∈ F(L), f−

1 ≤ f2, f1 ≤ f◦
2
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CN: INSERTION L is CN, f1, f2 ∈ F(L), f−

1 ≤ f2, f1 ≤ f◦
2

∀ p ∈ Q f1(p,−) ∧ f2(−, p)◦ = 0 = f1(p,−)◦ ∧ f2(−, p).

CN

∀ p ∈ Q ∃xp, yp ∈ L : c(xp) ∧ c(yp) = 0, f1(p,−) ≤ c(xp)

f2(−, p) ≤ c(yp)

∃ g ∈ LSC(L) : f1 ≤ g ≤ g− ≤ f2.

LEMMA. Let {hn}n∈N ⊆ USC(L) and {gn}n∈N ⊆
LSC(L).

If f1 ≤
∨

n gn,
∧

n hn ≤ f2, g−n ≤ f2 and f1 ≤ h◦
n,

then there exists a g ∈ LSC(L) such that

f1 ≤ g ≤ g− ≤ f2.
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CN: INSERTION

THEOREM. TFAE on a frame L:

(1) L is completely normal.

(2) For every f1, f2 ∈ F(L), if f−

1 ≤ f2 and f1 ≤ f◦
2 , then

there exists a g ∈ LSC(L) such that f1 ≤ g ≤ g− ≤ f2.
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(1) L is completely normal.

(2) For every f1, f2 ∈ F(L), if f−

1 ≤ f2 and f1 ≤ f◦
2 , then

there exists a g ∈ LSC(L) such that f1 ≤ g ≤ g− ≤ f2.

THEOREM. TFAE on a frame L:

(1) L is normal.

(2) For every f1 =
∨

n f1
n, with f1

n ∈ USC(L), and f2 =
∧

n f2
n,

with f2
n ∈ LSC(L), if f−

1 ≤ f2 and f1 ≤ f◦
2 , then there

exists a g ∈ LSC(L) such that f1 ≤ g ≤ g− ≤ f2.

Urysohn’s characterization:
Every two separated Fσ-sublocales are separated by open sublocs.
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THEOREM. TFAE on a frame L:

(1) L is completely normal.

(2) For every f1, f2 ∈ F(L), if f−

1 ≤ f2 and f1 ≤ f◦
2 , then

there exists a g ∈ LSC(L) such that f1 ≤ g ≤ g− ≤ f2.

THEOREM. TFAE on a frame L:

(1) L is normal.

(2) For every f1 =
∨

n f1
n, with f1

n ∈ USC(L), and f2 =
∧

n f2
n,

with f2
n ∈ LSC(L), if f−

1 ≤ f2 and f1 ≤ f◦
2 , then there

exists a g ∈ LSC(L) such that f1 ≤ g ≤ g− ≤ f2.

M. J. FERREIRA & J. GUTIÉRREZ GARCÍA & J. PICADO

[Completely normal frames and real-valued functions,
Topology and its Applications, in press]
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CN: INSERTION

QUESTION: When and only when can one insert a continuous

function between such f1 ≤ f2 ?
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CN: INSERTION

QUESTION: When and only when can one insert a continuous

function between such f1 ≤ f2 ?

On extremally disconnected frames

g ∈ LSC(L) ⇒ g− ∈ C(L)

f1 ≤ g ≤ g− ≤ f2
︸︷︷︸

∈C(L)

COROLLARY. TFAE on a frame L:

(1) L is completely normal and extremally disconnected.

(2) For every f1, f2 ∈ F(L), if f−

1 ≤ f2 and f1 ≤ f◦
2 , then

there exists a g ∈ C(L) such that f1 ≤ g ≤ g− ≤ f2.
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COMPLETELY REGULAR FRAMES ∀ a ∈ L a =
∨
{b ∈ L | b ≺≺ a}
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INSERTION FOR CR: achievements so far ...

(1) L is completely regular.
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(2) If S ∨ T = 1, S compact, T closed, then S and T are completely
separated.
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INSERTION FOR CR: achievements so far ...

(1) L is completely regular.

⇓

(2) If S ∨ T = 1, S compact, T closed, then S and T are completely
separated.

⇓

(3) If f, g ∈ F(L), f ≤ g, f compact-like, g ∈ LSC(L),

f(−,q) compact, ∀q
︷ ︸︸ ︷

then there
exists h ∈ C(L) such that f ≤ h ≤ g.

Further:

(3)⇒ (2) if every compact is complemented (e.g. Hausdorff)

(2)⇒ (1) if every open is a meet of compacts

(work in progress...)
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