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REGULARIZATION: INSERTION THEOREM

THEOREM:

The following conditions on a frame L are equivalent:

(1) L is extremally disconnected (i.e. a∗ ∨ a∗∗ = 1).

(2) If f ∈ SUSC(L) then f∨ is continuous.

(3) If g ∈ SLSC(L) then g∧ is continuous.

(4) If g ∈ LSC(L), f ∈ USC(L) and g ≤ f , then there exists
h ∈ C(L) such that g ≤ h ≤ f .

...
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• constructive

• extends the corresponding classical result of M. Stone [1949]
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-�

�
�

�
�

�
�3

SL(R)

L

h

h̃
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

sets P, Q

θ : P → Q

posets (P,≤P ), (Q,≤Q)

θ : (P,≤P ) → (Q,≤Q) is monotone

MONOTONE CONCEPT

usually: specialization

concept different monotonizations

[Classically: Kubiak, Good, Stares, Borges,
Gutiérrez García, de Prada Vicente, ...]

July 27, 2007 XXII Summer Conference on Topology and its Applications – 11



AN ILLUSTRATION L ∈ FRM

July 27, 2007 XXII Summer Conference on Topology and its Applications – 12



AN ILLUSTRATION L ∈ FRM

L is normal if a ∨ b = 1 ⇒ ∃ u, v ∈ L : u ∧ v = 0, a ∨ u = 1 = b ∨ v

July 27, 2007 XXII Summer Conference on Topology and its Applications – 12



AN ILLUSTRATION L ∈ FRM

L is normal if a ∨ b = 1 ⇒ ∃ u, v ∈ L : u ∧ v = 0, a ∨ u = 1 = b ∨ v

⇔ a ∨ b = 1 ⇒ ∃ u ∈ L : a ∨ u = 1 = b ∨ u∗

July 27, 2007 XXII Summer Conference on Topology and its Applications – 12



AN ILLUSTRATION L ∈ FRM

L is normal if a ∨ b = 1 ⇒ ∃ u, v ∈ L : u ∧ v = 0, a ∨ u = 1 = b ∨ v

⇔ a ∨ b = 1 ⇒ ∃ u ∈ L : a ∨ u = 1 = b ∨ u∗

DL = {(a, b) ∈ L × L | a ∨ b = 1}

July 27, 2007 XXII Summer Conference on Topology and its Applications – 12



AN ILLUSTRATION L ∈ FRM

L is normal if a ∨ b = 1 ⇒ ∃ u, v ∈ L : u ∧ v = 0, a ∨ u = 1 = b ∨ v

⇔ a ∨ b = 1 ⇒ ∃ u ∈ L : a ∨ u = 1 = b ∨ u∗

DL = {(a, b) ∈ L × L | a ∨ b = 1}

⇔ ∃ Θ : DL → L : a ∨ Θ(a, b) = 1 = b ∨ Θ(a, b)∗

July 27, 2007 XXII Summer Conference on Topology and its Applications – 12



AN ILLUSTRATION L ∈ FRM

L is normal if a ∨ b = 1 ⇒ ∃ u, v ∈ L : u ∧ v = 0, a ∨ u = 1 = b ∨ v

⇔ a ∨ b = 1 ⇒ ∃ u ∈ L : a ∨ u = 1 = b ∨ u∗

DL = {(a, b) ∈ L × L | a ∨ b = 1}

⇔ ∃ Θ : DL → L : a ∨ Θ(a, b) = 1 = b ∨ Θ(a, b)∗

NORMALITY OPERATOR
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new concept: monotonically normal frame
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MONOTONIZATION

particular result monotonization procedure
monotone variant

pointfree insertion
theorems monotonization procedure

monotone variant ?

Pointfree Katětov-Tong Insertion Theorem:

L is normal iff for every usc real function f : Ll(R) → L and

every lsc real function g : Lu(R) → L with f ≤ g there exists

a continuous real function h : L(R) → L such that f ≤ h ≤ g.
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