Hausdorff mapping invariance theorems # in Localic Topology Jorge Picado Department of Mathematics University of Coimbra PORTUGAL — with J. Gutiérrez García (Bilbao), T. Kubiak (Poznań), A. Pultr (Prague) POINT-FREE TOPOLOGY topological spaces generalized spaces: locales ~~~> POINT-FREE TOPOLOGY topological spaces generalized spaces: locales **CABOOL** SUBOBJECT LATTICES not so nice ... **~~~~** POINT-FREE TOPOLOGY topological spaces generalized spaces: locales **CABOOL** SUBOBJECT LATTICES not so nice ... «(...) a locale has enough complemented sublocales to compensate for this shortcoming: one simply has to make the sublocales which are complemented do more of the work.» JOHN ISBELL [Atomless parts of spaces, Math. Scand. (1972)] POINT-FREE TOPOLOGY topological spaces generalized spaces: locales CABOOL June 25, 2015 SUBOBJECT LATTICES not so nice ... «(...) a locale has enough complemented sublocales to compensate for this shortcoming: one simply has to make the sublocales which are complemented do more of the work.» JOHN ISBELL [Atomless parts of spaces, *Math. Scand.* (1972)] AIM: to illustrate this idea with parts of our work, in the last few years, with J. Gutiérrez García, T. Kubiak, A. Pultr. ### **Mapping Invariance Theorem (HAUSDORFF)** THEOREM: Let $f: X \to Y$ be a CLOSED surjection. If X is normal then Y is also normal. [Fund. Math. (1935)] ### **Mapping Invariance Theorem (HAUSDORFF)** THEOREM: Let $f: X \to Y$ be a CLOSED surjection. If X is normal then Y is also normal. [Fund. Math. (1935)] «(...) what the pointfree formulation adds to the classical theory is a remarkable combination of elegance of statement, simplicity of proof, and increase of extent.» R. Ball & J. Walters-Wayland [C- and C*-quotients in pointfree topology, *Dissert. Math.* (2002)] # **locales (or frames)** ullet Complete lattices L satisfying $$a \wedge \bigvee_{i \in I} b_i = \bigvee_{i \in I} (a \wedge b_i)$$ (= complete Heyting algebras) ullet Complete lattices L satisfying $$a \wedge \bigvee_{i \in I} b_i = \bigvee_{i \in I} (a \wedge b_i)$$ (= complete Heyting algebras) preserves \bigvee (incl. the bottom 0) \wedge (incl. the top 1) # locales (or frames) ullet Complete lattices L satisfying $$a \wedge \bigvee_{i \in I} b_i = \bigvee_{i \in I} (a \wedge b_i)$$ (= complete Heyting algebras) preserves √ (incl. the bottom 0) \wedge (incl. the top 1) We can put it in a more CONCRETE way: Each $h: M \to L$ in Frm has a UNIQUELY defined right adjoint $$h_*\colon L\to M$$ that can be used as a representation of the h as a mapping going in the proper direction. We can put it in a more CONCRETE way: Each $h: M \to L$ in Frm has a UNIQUELY defined right adjoint $$h_*\colon L\to M$$ that can be used as a representation of the h as a mapping going in the proper direction. • MORPHISMS: • $f(\bigwedge S) = \bigwedge f[S]$ We can put it in a more CONCRETE way: Each $h: M \to L$ in Frm has a UNIQUELY defined right adjoint $$h_*\colon L\to M$$ that can be used as a representation of the h as a mapping going in the proper direction. • MORPHISMS: • $$f(\bigwedge S) = \bigwedge f[S]$$ $$\bullet \ f(a) = 1 \Rightarrow a = 1$$ We can put it in a more CONCRETE way: Each $h: M \to L$ in Frm has a UNIQUELY defined right adjoint $$h_*\colon L\to M$$ that can be used as a representation of the h as a mapping going in the proper direction. • $$f(\bigwedge S) = \bigwedge f[S]$$ $$\bullet \ f(a) = 1 \Rightarrow a = 1$$ $$\bullet \ f(f^*(a) \to b) = a \to f(b)$$ DEFINITION: $S \subseteq L$ is a SUBLOCALE of L if DEFINITION: $S \subseteq L$ is a SUBLOCALE of L if (1) $\forall A \subseteq S, \ \bigwedge A \in S$, $\overline{\mathsf{DEFINITION}}\colon\thinspace S\subseteq L \text{ is a SUBLOCALE of } L \text{ if }$ - (1) $\forall A \subseteq S, \land A \in S$, - (2) $\forall a \in L, \forall s \in S, a \rightarrow s \in S$. DEFINITION: $S \subseteq L$ is a SUBLOCALE of L if - (1) $\forall A \subseteq S, \land A \in S$, - (2) $\forall a \in L, \forall s \in S, a \rightarrow s \in S$. $$S$$ is itself a locale: $\bigwedge_S = \bigwedge_L$, $\rightarrow_S = \rightarrow_L$ but $$\bigsqcup s_i = \bigwedge \{s \in S \mid \bigvee s_i \leqslant s\}$$. DEFINITION: $S \subseteq L$ is a SUBLOCALE of L if - (1) $\forall A \subseteq S, \land A \in S$, - (2) $\forall a \in L, \forall s \in S, \ a \to s \in S$. S is itself a locale: $\bigwedge_S = \bigwedge_L$, $\rightarrow_S = \rightarrow_L$ but $$\bigsqcup s_i = \bigwedge \{s \in S \mid \bigvee s_i \leqslant s\}$$. #### Motivation for the definition: ### **PROPOSITION:** $S \subseteq L$ is a sublocale iff the embedding $j_S \colon S \subseteq L$ is a localic map. sublocales of L, ordered by \subseteq : sublocales of L, ordered by \subseteq : $$\mathbf{0} = \{1\}, \quad \mathbf{1} = L, \quad \bigwedge = \bigcap, \quad \bigvee_I S_i = \{\bigwedge A \mid A \subseteq \bigcup_I S_i\}$$ sublocales of L, ordered by \subseteq : $$\mathbf{0} = \{1\}, \quad \mathbf{1} = L, \quad \bigwedge = \bigcap, \quad \bigvee_I S_i = \{\bigwedge A \mid A \subseteq \bigcup_I S_i\}$$ PROPOSITION. This lattice is a co-frame. sublocales of L, ordered by \subseteq : $$\mathbf{0} = \{1\}, \quad \mathbf{1} = L, \quad \bigwedge = \bigcap, \quad \bigvee_{I} S_{i} = \{\bigwedge A \mid A \subseteq \bigcup_{I} S_{i}\}$$ PROPOSITION. This lattice is a co-frame. S(L): the dual lattice sublocales of L, ordered by \subseteq : $$\mathbf{0} = \{1\}, \quad \mathbf{1} = L, \quad \bigwedge = \bigcap, \quad \bigvee_I S_i = \{\bigwedge A \mid A \subseteq \bigcup_I S_i\}$$ PROPOSITION. This lattice is a co-frame. S(L): the dual lattice Special sublocales: $$a \in L$$, $\mathfrak{c}(a) = \uparrow a$ **CLOSED** sublocales of L, ordered by \subseteq : $$\mathbf{0} = \{1\}, \quad \mathbf{1} = L, \quad \bigwedge = \bigcap, \quad \bigvee_I S_i = \{\bigwedge A \mid A \subseteq \bigcup_I S_i\}$$ PROPOSITION. This lattice is a co-frame. S(L): the dual lattice # Special sublocales: $$a \in L$$, $\mathfrak{c}(a) = \uparrow a$ CLOSED $$o(a) = \{a \to x \mid x \in L\} \quad \mathsf{OPEN}$$ sublocales of L, ordered by \subseteq : $$\mathbf{0} = \{1\}, \quad \mathbf{1} = L, \quad \bigwedge = \bigcap, \quad \bigvee_{I} S_{i} = \{\bigwedge A \mid A \subseteq \bigcup_{I} S_{i}\}$$ PROPOSITION. This lattice is a co-frame. S(L): the dual lattice # Special sublocales: $$a \in L, \qquad \mathbf{c}(a) = \uparrow a \qquad \qquad \mathbf{CLOSED}$$ $$\mathbf{o}(a) = \{a \to x \mid x \in L\} \quad \mathsf{OPEN}$$ complemented ### the frame of sublocales $$\mathfrak{c}L := \{\mathfrak{c}(a) \mid a \in L\}$$ $$\mathfrak{c}L$$ $$\mathfrak{c}L := \{\mathfrak{c}(a) \mid a \in L\}$$ $$\bigvee_{i \in I} \mathfrak{c}(a_i) = \mathfrak{c}(\bigvee_{i \in I} a_i)$$ $$\mathfrak{c}(a) \wedge \mathfrak{c}(b) = \mathfrak{c}(a \wedge b)$$ #### the frame of sublocales #### the frame of sublocales localic map $f: L \to M$ \bigcup_{S} is a sublocale of ${\cal M}$ (the image of S under f) is a sublocale of ${\cal M}$ (the image of S under f) IMAGE MAP: $$f[-]: \mathcal{S}(L) \to \mathcal{S}(M)$$ (localic map) ## localic map $f: L \to M$ \bigcup_{S} is a sublocale of ${\cal M}$ (the image of S under f) IMAGE MAP: $$f[-]: \mathcal{S}(L) \to \mathcal{S}(M)$$ (localic map) CLOSED MAP: f[S] is closed for every closed S \bigcup_{S} is a sublocale of ${\cal M}$ (the image of S under f) IMAGE MAP: $$f[-]: \mathcal{S}(L) \to \mathcal{S}(M)$$ (localic map) CLOSED MAP: f[S] is closed for every closed S $$\Leftrightarrow f[\mathfrak{c}(a)] = \mathfrak{c}(f(a)) \quad \forall a \in L$$ PREIMAGES localic map $f \colon L \to M$ • for any $A \subseteq L$ closed under meets: $$\{1\} \subseteq A$$ $$S_i \subseteq A \Rightarrow \bigvee S_i \subseteq A$$ • for any $A \subseteq L$ closed under meets: $$\{1\} \subseteq A$$ $$\overline{T}$$ $$S_i \subseteq A \Rightarrow \bigvee S_i \subseteq A$$ $\{ \bigwedge B \mid B \subseteq \bigcup S_i \}$ • for any $A \subseteq L$ closed under meets: $$\{1\} \subseteq A$$ $$S_i \subseteq A \Rightarrow \bigvee S_i \subseteq A$$ $\{ \bigwedge B \mid B \subseteq \bigcup S_i \}$ So there exists the largest sublocale contained in A: A_{sloc} • for any $A \subseteq L$ closed under meets: $$\{1\} \subseteq A$$ $S_i \subseteq A \Rightarrow \bigvee_i S_i \subseteq A$ $$\{ \bigwedge B \mid B \subseteq \bigcup S_i \}$$ So there exists the largest sublocale contained in A: A_{sloc} • for any $A \subseteq L$ closed under meets: $$\{1\} \subseteq A$$ 1 $$S_i \subseteq A \Rightarrow \bigvee_i S_i \subseteq A$$ $$\{ \bigwedge_i B \mid B \subseteq \bigcup_i S_i \}$$ So there exists the largest sublocale contained in A: A_{sloc} closed under meets (since f preserve meets) \bigcup • for any $A \subseteq L$ closed under meets: $$\{1\} \subseteq A$$ T' $$S_i \subseteq A \Rightarrow \bigvee_i S_i \subseteq A$$ $$\{ \bigwedge_i B \mid B \subseteq \bigcup_i S_i \}$$ So there exists the largest sublocale contained in A: A_{sloc} • $$L \xrightarrow{f} M$$ $$\bigcup I$$ $$f^{-1}[T] \qquad T$$ $$f_{-1}[T] = (f^{-1}[T])_{sloc}$$ (the preimage of T under f) closed under meets (since f preserve meets) • for any $A \subseteq L$ closed under meets: $$\{1\} \subseteq A$$ $$S_i \subseteq A \Rightarrow \bigvee S_i \subseteq A$$ $\{ \bigwedge B \mid B \subseteq \bigcup S_i \}$ So there exists the largest sublocale contained in A: A_{sloc} $\begin{aligned} f_{-1}[T] &= (f^{-1}[T])_{\mathrm{sloc}} \\ \text{the preimage of } T \text{ under } f \end{aligned}$ closed under meets (since f preserve meets) PREIMAGE MAP: $f_{-1}[-]: \mathcal{S}(M) \to \mathcal{S}(L)$ (frame homomorphism) $$f[S] \geqslant T \text{ iff } f[S] \subseteq T$$ $$f[S] \geqslant T \text{ iff } f[S] \subseteq T \text{ iff } S \subseteq f^{-1}[T]$$ $$f[S]\geqslant T \text{ iff } f[S]\subseteq T \text{ iff } S\subseteq f^{-1}[T] \text{ iff } S\subseteq (f^{-1}[T])_{\mathrm{sloc}}$$ $$f[S] \geqslant T$$ iff $f[S] \subseteq T$ iff $S \subseteq f^{-1}[T]$ iff $S \subseteq (f^{-1}[T])_{\text{sloc}}$ iff $S \geqslant
f_{-1}[T]$. $$f[S] \geqslant T$$ iff $f[S] \subseteq T$ iff $S \subseteq f^{-1}[T]$ iff $S \subseteq (f^{-1}[T])_{\text{sloc}}$ iff $S \geqslant f_{-1}[T]$. $$f_{-1}[-] \dashv f[-]$$ AS IT SHOULD BE! $$f[S]\geqslant T \text{ iff } f[S]\subseteq T \text{ iff } S\subseteq f^{-1}[T] \text{ iff } S\subseteq (f^{-1}[T])_{\mathrm{sloc}} \text{ iff } S\geqslant f_{-1}[T].$$ $$f_{-1}[-] \dashv f[-]$$ AS IT SHOULD BE! ### PROPERTIES: 1 $$f_{-1}[\mathfrak{c}(a)] = \mathfrak{c}(f^*(a))$$ and $f_{-1}[\mathfrak{o}(a)] = \mathfrak{o}(f^*(a))$. $$f[S]\geqslant T$$ iff $f[S]\subseteq T$ iff $S\subseteq f^{-1}[T]$ iff $S\subseteq (f^{-1}[T])_{\mathrm{sloc}}$ iff $S\geqslant f_{-1}[T]$. $$f_{-1}[-] \dashv f[-]$$ AS IT SHOULD BE! ### **PROPERTIES:** - 1 $f_{-1}[\mathfrak{c}(a)] = \mathfrak{c}(f^*(a))$ and $f_{-1}[\mathfrak{o}(a)] = \mathfrak{o}(f^*(a))$. - 2 $f_{-1}[-]$ preserves complements. $$f[S]\geqslant T$$ iff $f[S]\subseteq T$ iff $S\subseteq f^{-1}[T]$ iff $S\subseteq (f^{-1}[T])_{\mathrm{sloc}}$ iff $S\geqslant f_{-1}[T]$. $$f_{-1}[-] \dashv f[-]$$ AS IT SHOULD BE! ### **PROPERTIES:** - 1 $f_{-1}[\mathfrak{c}(a)] = \mathfrak{c}(f^*(a)) \text{ and } f_{-1}[\mathfrak{o}(a)] = \mathfrak{o}(f^*(a)).$ - 2 $f_{-1}[-]$ preserves complements. - 3 for surjective f: $ff_{-1}[\mathfrak{c}(a)] = \mathfrak{c}(a)$ and $ff_{-1}[\mathfrak{o}(a)] = \mathfrak{o}(a)$. $$\mathfrak{c}(a)\vee\mathfrak{c}(b)=1$$ ## **DOING TOPOLOGY IN Loc** # **Normality** $$\mathfrak{c}(a) \vee \mathfrak{c}(b) = 1$$ $$\downarrow \downarrow$$ $\exists u, v : \mathfrak{o}(u) \vee \mathfrak{o}(v) = 1, \mathfrak{c}(a) \geqslant \mathfrak{o}(u), \mathfrak{c}(b) \geqslant \mathfrak{o}(v).$ ## **DOING TOPOLOGY IN Loc** # **Normality** $$\mathfrak{c}(a) \vee \mathfrak{c}(b) = 1$$ $$\downarrow \downarrow$$ $\exists u, v : \mathfrak{o}(u) \vee \mathfrak{o}(v) = 1, \mathfrak{c}(a) \geqslant \mathfrak{o}(u), \mathfrak{c}(b) \geqslant \mathfrak{o}(v).$ #### So L is normal iff $$\mathfrak{c}(a) \vee \mathfrak{c}(b) = 1 \Rightarrow \exists u, v \colon \mathfrak{c}(u) \wedge \mathfrak{c}(v) = 1, \mathfrak{c}(a) \vee \mathfrak{c}(u) = 1 = \mathfrak{c}(b) \vee \mathfrak{c}(v)$$ ## **DOING TOPOLOGY IN Loc** # **Normality** $$\begin{split} \mathfrak{c}(a) \vee \mathfrak{c}(b) &= 1 \\ & \downarrow \downarrow \\ \exists u,v \colon \mathfrak{o}(u) \vee \mathfrak{o}(v) = 1, \mathfrak{c}(a) \geqslant \mathfrak{o}(u), \mathfrak{c}(b) \geqslant \mathfrak{o}(v). \end{split}$$ ### So L is normal iff $$\mathfrak{c}(a) \vee \mathfrak{c}(b) = 1 \Rightarrow \exists u, v \colon \mathfrak{c}(u) \wedge \mathfrak{c}(v) = 1, \mathfrak{c}(a) \vee \mathfrak{c}(u) = 1 = \mathfrak{c}(b) \vee \mathfrak{c}(v)$$ Internally in $$L$$: (by $\mathfrak{c}L \cong L$) $$a \lor b = 1 \Rightarrow \exists u, v \colon u \land v = 0, a \lor u = 1 = b \lor v$$ (Conservative extension: X is normal iff the locale $\mathcal{O}(X)$ is normal.) ## THE INVARIANCE THEOREM: first version THEOREM: Let $f: L \to M$ be a CLOSED surjective localic map. If L is normal then M is also normal. ## THE INVARIANCE THEOREM: first version THEOREM: Let $f: L \to M$ be a CLOSED surjective localic map. If L is normal then M is also normal. Proof: later on ... $$\mathcal{B}: L \mapsto \mathcal{B}(L) \subseteq B(\mathcal{S}(L))$$ "sets of complemented sublocales" $$\mathcal{B}: L \mapsto \mathcal{B}(L) \subseteq B(\mathcal{S}(L))$$ "sets of complemented sublocales" | Selection 38 | Members of $\mathcal{B}(L)$ | |--------------|------------------------------------| | ¢ | $\{\mathfrak{c}(a)\colon a\in L\}$ | the standard model $$\mathcal{B}: L \mapsto \mathcal{B}(L) \subseteq B(\mathcal{S}(L))$$ "sets of complemented sublocales" | Selection % | $\text{Members of } \mathscr{B}(L)$ | |-------------|--------------------------------------| | ¢ | $\{\mathfrak{c}(a)\colon a\in L\}$ | | c* | $\{\mathfrak{c}(a^*)\colon a\in L\}$ | $$\mathcal{B}: L \mapsto \mathcal{B}(L) \subseteq B(\mathcal{S}(L))$$ "sets of complemented sublocales" | Selection % | Members of $\mathcal{B}(L)$ | |-------------------------|--| | c | $\{\mathfrak{c}(a)\colon a\in L\}$ | | c* | $\{\mathfrak{c}(a^*)\colon a\in L\}$ | | \mathfrak{c}_{δ} | $\{\mathfrak{c}(a)\colon a \text{ is regular } G_\delta\}$ | regular G_{δ} element: $$a = \bigvee_{n \in \mathbb{N}} a_n \text{ with } a_n < a$$ $$\mathcal{B}: L \mapsto \mathcal{B}(L) \subseteq B(\mathcal{S}(L))$$ "sets of complemented sublocales" | Selection 🤧 | $\mathbf{Members} \ \mathbf{of} \ \boldsymbol{\mathscr{B}}(L)$ | |-------------------------------|--| | c | $\{\mathfrak{c}(a)\colon a\in L\}$ | | c* | $\{\mathfrak{c}(a^*)\colon a\in L\}$ | | \mathfrak{c}_{δ} | $\{\mathfrak{c}(a)\colon a \text{ is regular } G_\delta\}$ | | $\mathfrak{c}_{\mathrm{coz}}$ | $\{\mathfrak{c}(\mathrm{coz}f)\colon f\inC(L)\}$ | regular G_{δ} element: $a = \bigvee_{n \in \mathbb{N}} a_n$ with $a_n < a$ cozero element: $$a = \bigvee_{n \in \mathbb{N}} a_n$$ with $a_n \ll a$ $$\mathcal{B}: L \mapsto \mathcal{B}(L) \subseteq B(\mathcal{S}(L))$$ "sets of complemented sublocales" | Selection 🤧 | Members of $\mathcal{B}(L)$ | |-------------------------------|--| | c | $\{\mathfrak{c}(a)\colon a\in L\}$ | | c* | $\{\mathfrak{c}(a^*)\colon a\in L\}$ | | \mathfrak{c}_{δ} | $\{\mathfrak{c}(a)\colon a \text{ is regular } G_\delta\}$ | | $\mathfrak{c}_{\mathrm{coz}}$ | $\{\mathfrak{c}(\mathrm{coz}f)\colon f\inC(L)\}$ | J. Gutiérrez García & JP, On the parallel between normality and extremal disconnectedness, JPAA (2014) ## Normal: $$\mathfrak{c}(a) \vee \mathfrak{c}(b) = 1 \implies \exists u, v \colon \mathfrak{c}(u) \wedge \mathfrak{c}(v) = 0, \ \mathfrak{c}(a) \vee \mathfrak{c}(u) = 1 = \mathfrak{c}(b) \vee \mathfrak{c}(v).$$ For any $A, B \in \mathcal{B}$, $$A \lor B = 1 \implies \exists U, V \in \mathscr{B} \colon U \land V = 0, \ A \lor U = 1 = B \lor V$$ ### Normal: $$\mathfrak{c}(a) \vee \mathfrak{c}(b) = 1 \implies \exists u, v \colon \mathfrak{c}(u) \wedge \mathfrak{c}(v) = 0, \ \mathfrak{c}(a) \vee \mathfrak{c}(u) = 1 = \mathfrak{c}(b) \vee \mathfrak{c}(v).$$ For any $A, B \in \mathcal{B}$, $$A \lor B = 1 \implies \exists U, V \in \mathscr{B} \colon U \land V = 0, \ A \lor U = 1 = B \lor V$$ Selection % %-normal frames c normal For any $A, B \in \mathcal{B}$, $$A \lor B = 1 \implies \exists U, V \in \mathscr{B} \colon U \land V = 0, \ A \lor U = 1 = B \lor V$$ | Selection 38 | ${\mathscr B}$ -normal frames | |--------------|-------------------------------| | c | normal | | c* | mildly normal | For any $A, B \in \mathcal{B}$, $$A \lor B = 1 \implies \exists U, V \in \mathscr{B} \colon U \land V = 0, \ A \lor U = 1 = B \lor V$$ | Selection % | ${\mathscr B}$ -normal frames | |-----------------------|-------------------------------| | c
c* | normal
mildly normal | | \mathfrak{c}_δ | δ -normal | For any $A, B \in \mathcal{B}$, $$A \lor B = 1 \implies \exists \ U, V \in \mathscr{B} \colon U \land V = 0, \ A \lor U = 1 = B \lor V$$ | Selection 38 | ${\mathscr B}$ -normal frames | |-------------------------------|-------------------------------| | c | normal | | c* | mildly normal | | \mathfrak{c}_δ | δ -normal | | $\mathfrak{c}_{\mathrm{coz}}$ | all frames | localic map $f: L \to M$ THEOREM: Let $f: L \to M$ be a CLOSED surjective localic map. If L is normal then M is also normal. • f is image \mathscr{B} -preserving if f[-] maps elements of $\mathscr{B}(L)$ into $\mathscr{B}(M)$. THEOREM: Let $f: L \to M$ be a CLOSED surjective localic map. If L is normal then M is also normal. - f is image \mathscr{B} -preserving if f[-] maps elements of $\mathscr{B}(L)$ into $\mathscr{B}(M)$. - f is preimage \mathscr{B} -preserving if $f_{-1}[-]$ maps elements of $\mathscr{B}(M)$ into $\mathscr{B}(L)$ THEOREM: Let $f: L \to M$ be a CLOSED surjective localic map. If L is normal then M is also normal. - f is image \mathscr{B} -preserving if f[-] maps elements of $\mathscr{B}(L)$ into $\mathscr{B}(M)$. - f is preimage \mathscr{B} -preserving if $f_{-1}[-]$ maps elements of $\mathscr{B}(M)$ into $\mathscr{B}(L)$ THEOREM: Let $f\colon L\to M$ be a surjective localic map such that f is image \mathscr{B} -preserving and preimage \mathscr{B} -preserving. If L is \mathscr{B} -normal then M is also \mathscr{B} -normal. $$A, B \in \mathcal{B}(M), A \vee B = 1$$ June 25, 2015 $$L \xrightarrow{f} M$$ $$A, B \in \mathcal{B}(M), A \vee B = 1$$ $$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad$$ $$f_{-1}[A] \vee f_{-1}[B] = f_{-1}[1] = 1$$ $$L \xrightarrow{f} M$$ $$A, B \in \mathcal{B}(M), A \vee B = 1$$ $f_{-1}[A], f_{-1}[B] \in \mathcal{B}(L)$ $$f_{-1}[A] \vee f_{-1}[B] = f_{-1}[1] = 1$$ $$L$$ is \mathscr{B} -normal $$\exists U_0, V_0 \in \mathcal{B}(L): U_0 \wedge V_0 = 0, f_{-1}[A] \vee U_0 = 1 = f_{-1}[B] \vee V_0.$$ $$L \xrightarrow{f} M$$ $$A, B \in \mathcal{B}(M), A \vee B = 1$$ $f_{-1}[A], f_{-1}[B] \in \mathcal{B}(L)$ $$f_{-1}[A] \vee f_{-1}[B] = f_{-1}[1] = 1$$ $$L$$ is \mathscr{B} -normal $$\exists U_0, V_0 \in \mathcal{B}(L): U_0 \wedge V_0 = 0, f_{-1}[A] \vee U_0 = 1 = f_{-1}[B] \vee V_0.$$ $$U = f[U_0], V = f[V_0] \in \mathcal{B}(M)$$ satisfy: $$L \xrightarrow{f} M$$ $$A, B \in \mathcal{B}(M), A \vee B = 1$$ $f_{-1}[A], f_{-1}[B] \in \mathcal{B}(L)$ $$f_{-1}[A] \vee f_{-1}[B] = f_{-1}[1] = 1$$ $$L$$ is \mathscr{B} -normal $$\exists U_0, V_0 \in \mathcal{B}(L): U_0 \wedge V_0 = 0, f_{-1}[A] \vee U_0 = 1 = f_{-1}[B] \vee V_0.$$ $$U = f[U_0], V = f[V_0] \in \mathcal{B}(M)$$ satisfy: hyp. • $$U \wedge V = f[U_0] \wedge f[V_0] = f[U_0 \wedge V_0] = f[0] = f[L] = M = 0.$$ $$A, B \in \mathcal{B}(M), A \vee B = 1$$ $f_{-1}[A], f_{-1}[B] \in \mathcal{B}(L)$ $$f_{-1}[A] \vee f_{-1}[B] =
f_{-1}[1] = 1$$ $$L$$ is \mathscr{B} -normal $$\exists U_0, V_0 \in \mathcal{B}(L): U_0 \wedge V_0 = 0, f_{-1}[A] \vee U_0 = 1 = f_{-1}[B] \vee V_0.$$ $$U = f[U_0], V = f[V_0] \in \mathcal{B}(M)$$ satisfy: - $U \wedge V = f[U_0] \wedge f[V_0] = f[U_0 \wedge V_0] = f[0] = f[L] = M = 0.$ - $U = f[U_0] \ge f f_{-1}[A^c] \ge A^c$, i.e. $A \lor U = 1$ (and similarly for V). $$L \xrightarrow{f} M$$ $$A, B \in \mathcal{B}(M), A \vee B = 1$$ $f_{-1}[A], f_{-1}[B] \in \mathcal{B}(L)$ $$f_{-1}[A] \vee f_{-1}[B] = f_{-1}[1] = 1$$ $$L$$ is ${\cal B}$ -normal $$L$$ is \mathscr{B} -norma $$\exists U_0, V_0 \in \mathcal{B}(L): U_0 \wedge V_0 = 0, |f_{-1}[A] \vee U_0 = 1 = f_{-1}[B] \vee V_0.$$ $$U = f[U_0], V = f[V_0] \in \mathcal{B}(M)$$ satisfy: hyp. - $U \wedge V = f[U_0] \wedge f[V_0] = f[U_0 \wedge V_0] = f[0] = f[L] = M = 0.$ - $U = f[U_0] \geqslant ff_{-1}[A^c] \geqslant A^c$, i.e. $A \vee U = 1$ (and similarly for V). $f_{-1}[-]$ preserves complements • image \mathscr{B} -preserving: f[-] maps elements of $\mathscr{B}(L)$ into $\mathscr{B}(M)$. • preimage \mathscr{B} -preserving: $f_{-1}[-]$ maps elements of $\mathscr{B}(M)$ into $\mathscr{B}(L)$. | B | image ${\mathscr B}$ -preserving | preimage B-preserving | |----------|----------------------------------|-----------------------| | c | closed maps | all | • image \mathscr{B} -preserving: f[-] maps elements of $\mathscr{B}(L)$ into $\mathscr{B}(M)$. • preimage \mathscr{B} -preserving: $f_{-1}[-]$ maps elements of $\mathscr{B}(M)$ into $\mathscr{B}(L)$. | B | image ${\mathscr B}$ -preserving | preimage <i>B</i> -preserving | |---|----------------------------------|-------------------------------| | ¢ | closed maps | all | | 0 | open maps | all | - image \mathscr{B} -preserving: f[-] maps elements of $\mathscr{B}(L)$ into $\mathscr{B}(M)$. - preimage \mathscr{B} -preserving: $f_{-1}[-]$ maps elements of $\mathscr{B}(M)$ into $\mathscr{B}(L)$. | B | image ${\mathscr{B}}$ -preserving | preimage ${\mathscr B}$ -preserving | |----------|---|---| | c | closed maps | all | | 0 | open maps | all | | ¢* | $f(\underbrace{a} \lor f^*(b)) = f(a) \lor b$ regular | f^* of type E (e.g. nearly open) [Banaschewski & Pultr] | - image \mathscr{B} -preserving: f[-] maps elements of $\mathscr{B}(L)$ into $\mathscr{B}(M)$. - preimage \mathscr{B} -preserving: $f_{-1}[-]$ maps elements of $\mathscr{B}(M)$ into $\mathscr{B}(L)$. | B | image B-preserving | preimage B-preserving | |-------------------------------|---|---| | c | closed maps | all | | 0 | open maps | all | | ¢* | $f(\underbrace{a} \lor f^*(b)) = f(a) \lor b$ regular | f^* of type E (e.g. nearly open) [Banaschewski & Pultr] | | $\mathfrak{c}_{\mathrm{coz}}$ | $f(\underbrace{a} \vee f^*(b)) = f(a) \vee b$ cozero | all | $\mathscr{B}^{\mathsf{c}} \colon L \mapsto (\mathscr{B}(L))^{\mathsf{c}}$ **%** -normal: $$\mathfrak{c}(a) \vee \mathfrak{c}(b) = 1 \Rightarrow \exists u, v \colon \mathfrak{c}(u) \wedge \mathfrak{c}(v) = 1, \mathfrak{c}(a) \vee \mathfrak{c}(u) = 1 = \mathfrak{c}(b) \vee \mathfrak{c}(v)$$ $\mathscr{B}^{\mathsf{c}} \colon L \mapsto (\mathscr{B}(L))^{\mathsf{c}}$ 36 -normal: 36 -disconnected. $$\mathbf{o}(a) \vee \mathbf{o}(b) = 1 \Rightarrow \exists u, v \colon \mathbf{o}(u) \wedge \mathbf{o}(v) = 1, \mathbf{o}(a) \vee \mathbf{o}(u) = 1 = \mathbf{o}(b) \vee \mathbf{o}(v)$$ $\mathscr{B}^{\mathsf{c}} \colon L \mapsto (\mathscr{B}(L))^{\mathsf{c}}$ 36 -normal: 36 -disconnected. $$\mathbf{o}(a) \vee \mathbf{o}(b) = 1 \Rightarrow \exists u, v \colon \mathbf{o}(u) \wedge \mathbf{o}(v) = 1, \mathbf{o}(a) \vee \mathbf{o}(u) = 1 = \mathbf{o}(b) \vee \mathbf{o}(v)$$ $$\equiv [\mathfrak{c}(a) \wedge \mathfrak{c}(b) = 0 \Rightarrow \exists u, v \colon \mathfrak{c}(u) \vee \mathfrak{c}(v) = 0, \mathfrak{c}(a) \wedge \mathfrak{c}(u) = 0 = \mathfrak{c}(b) \wedge \mathfrak{c}(v)]$$ $\mathscr{B}^{\mathsf{c}} \colon L \mapsto (\mathscr{B}(L))^{\mathsf{c}}$ $$\mathbf{o}(a) \vee \mathbf{o}(b) = 1 \Rightarrow \exists u, v : \mathbf{o}(u) \wedge \mathbf{o}(v) = 1, \mathbf{o}(a) \vee \mathbf{o}(u) = 1 = \mathbf{o}(b) \vee \mathbf{o}(v)$$ $$\equiv [\mathfrak{c}(a) \wedge \mathfrak{c}(b) = 0 \Rightarrow \exists u, v \colon \mathfrak{c}(u) \vee \mathfrak{c}(v) = 0, \mathfrak{c}(a) \wedge \mathfrak{c}(u) = 0 = \mathfrak{c}(b) \wedge \mathfrak{c}(v)]$$ $$\equiv [a \land b = 0 \Rightarrow \exists u, v \in L \colon u \lor v = 1, \ a \land u = 0 = b \land v]$$ $\mathscr{B}^{\mathsf{c}} \colon L \mapsto (\mathscr{B}(L))^{\mathsf{c}}$ 36 -normal: 36 -disconnected. $$\mathbf{o}(a) \vee \mathbf{o}(b) = 1 \Rightarrow \exists u, v : \mathbf{o}(u) \wedge \mathbf{o}(v) = 1, \mathbf{o}(a) \vee \mathbf{o}(u) = 1 = \mathbf{o}(b) \vee \mathbf{o}(v)$$ $$\equiv [\mathfrak{c}(a) \wedge \mathfrak{c}(b) = 0 \implies \exists u, v \colon \mathfrak{c}(u) \vee \mathfrak{c}(v) = 0, \mathfrak{c}(a) \wedge \mathfrak{c}(u) = 0 = \mathfrak{c}(b) \wedge \mathfrak{c}(v)]$$ $$\equiv [a \land b = 0 \Rightarrow \exists u, v \in L \colon u \lor v = 1, \ a \land u = 0 = b \land v]$$ need only for a, b regular $(a \land b = 0 \Leftrightarrow a^{**} \land b^{**} = 0)$ $\mathscr{B}^{\mathsf{c}} \colon L \mapsto (\mathscr{B}(L))^{\mathsf{c}}$ 36 -normal: 36 -disconnected. $$\mathbf{o}(a) \vee \mathbf{o}(b) = 1 \Rightarrow \exists u, v : \mathbf{o}(u) \wedge \mathbf{o}(v) = 1, \mathbf{o}(a) \vee \mathbf{o}(u) = 1 = \mathbf{o}(b) \vee \mathbf{o}(v)$$ $$\equiv [\mathfrak{c}(a) \wedge \mathfrak{c}(b) = 0 \implies \exists u, v \colon \mathfrak{c}(u) \vee \mathfrak{c}(v) = 0, \mathfrak{c}(a) \wedge \mathfrak{c}(u) = 0 = \mathfrak{c}(b) \wedge \mathfrak{c}(v)]$$ $$\equiv \begin{bmatrix} a \land b = 0 \Rightarrow \exists u, v \in L \colon u \lor v = 1, \ a \land u = 0 = b \land v \end{bmatrix}$$ need only for a, b regular $(a \land b = 0 \Leftrightarrow a^{**} \land b^{**} = 0)$ $$\equiv (a \wedge b)^* = a^* \vee b^*$$ [De Morgan frames] $\mathscr{B}^{\mathsf{c}} \colon L \mapsto (\mathscr{B}(L))^{\mathsf{c}}$ | Selection & | ${\mathscr{B}}$ -normal frames | ${\mathscr B}$ -disconnected frames | |-------------|--------------------------------|-------------------------------------| | c | normal | extremally disconnected | $\mathscr{B}^{\mathsf{c}} \colon L \mapsto (\mathscr{B}(L))^{\mathsf{c}}$ & c-normal: & -disconnected. | Selection % | ${\mathscr B}$ -normal frames | ${\mathscr B}$ -disconnected frames | |-------------|-------------------------------|-------------------------------------| | ¢ | normal | extremally disconnected | | c* | mildly normal | extremally disconnected | | | | | $\mathscr{B}^{\mathsf{c}} \colon L \mapsto (\mathscr{B}(L))^{\mathsf{c}}$ &c-normal: &-disconnected. | Selection & | ${\mathscr B}$ -normal frames | ${\mathscr B}$ -disconnected frames | |-------------------------|-------------------------------|-------------------------------------| | c | normal | extremally disconnected | | c* | mildly normal | extremally disconnected | | \mathfrak{c}_{δ} | δ -normal | extremally δ -disconnected | | | | | $\mathscr{B}^{\mathsf{c}} \colon L \mapsto (\mathscr{B}(L))^{\mathsf{c}}$ &c-normal: &-disconnected. | Selection % | ${\mathscr B}$ -normal frames | ${\mathscr B}$ -disconnected frames | |-------------------------------|-------------------------------|-------------------------------------| | c | normal | extremally disconnected | | c* | mildly normal | extremally disconnected | | \mathfrak{c}_{δ} | δ -normal | extremally δ -disconnected | | $\mathfrak{c}_{\mathrm{coz}}$ | all frames | F-frames | F-frame \equiv every cozero sublocale is C^* -embedded. THEOREM: Let $f: L \to M$ be a surjective localic map such that f is image \mathscr{B} -preserving and preimage \mathscr{B} -preserving. If L is \mathcal{B} -normal then M is also \mathcal{B} -normal. $\mathscr{B}^{\mathsf{c}} \colon L \mapsto (\mathscr{B}(L))^{\mathsf{c}}$ COROLLARY: Let $f: L \to M$ be a surjective localic map such that f is image \mathscr{B} -preserving and preimage \mathscr{B} -preserving. disconnected disconnected lf L is \mathscr{B} -normal then M is also \mathscr{B} -normal. COROLLARY: Let $f: L \to M$ be a surjective localic map such that f is image \mathscr{B} -preserving and preimage \mathscr{B} -preserving. disconnected disconnected lf L is \mathscr{B} -normal then M is also \mathscr{B} -normal. preimage \$\mathcal{B}^c\$-preserving = preimage \$\mathcal{B}\$-preserving (because $f_{-1}[-]$ preserves complements) COROLLARY: Let $f: L \to M$ be a surjective localic map such that f is image \mathscr{B} -preserving and preimage \mathscr{B} -preserving. disconnected disconnected lf L is \mathscr{B} -nermal then M is also \mathscr{B} -nermal. preimage \$\mathcal{B}^c\$-preserving = preimage \$\mathcal{B}\$-preserving (because $f_{-1}[-]$ preserves complements) Case $\mathscr{B} = \mathfrak{c}$: ext. disc. locales are invariant under OPEN mappings. • image \mathscr{B}^c -preserving preimage ℬ^c-preserving = preimage ℬ-preserving | B | image ℬ ^c -preserving | preimage $\mathscr{B}^{\mathtt{c}}$ -preserving | |----------|----------------------------------|---| | ¢ | open | all | - image \mathcal{B}^c -preserving - preimage ℬ^c-preserving = preimage ℬ-preserving | B | image $\mathscr{B}^{\mathtt{c}}$ -preserving | preimage B ^c -preserving | |----|--|---| | c | open | all | | c* | nearly open | f^* of type E (e.g. nearly open) [Banaschewski & Pultr] | - image \mathcal{B}^{c} -preserving - preimage ℬ^c-preserving = preimage ℬ-preserving | B | image \mathscr{B}^{c} -preserving | preimage
\mathscr{B}^{c} -preserving | |-------------------------------|-------------------------------------|---| | c | open | all | | c* | nearly open | f^* of type E (e.g. nearly open) [Banaschewski & Pultr] | | $\mathfrak{c}_{\mathrm{coz}}$ | ? | all | # In spaces [Michael 1956]: $$\forall \ U \in \mathcal{O}(X) \ \exists \ (U_n)_{n \in \mathbb{N}} \subseteq \mathcal{O}(X) \colon U = \bigcup_{n \in \mathbb{N}} U_n \ \text{and} \ \overline{U_n} \subseteq U \ \forall n.$$ ## In spaces [Michael 1956]: $$\forall \ U \in \mathcal{O}(X) \ \exists \ (U_n)_{n \in \mathbb{N}} \subseteq \mathcal{O}(X) \colon U = \bigcup_{n \in \mathbb{N}} U_n \ \text{and} \ \overline{U_n} \subseteq U \ \forall n.$$ # In frames [Charalambous 1974]: $$\forall a \in L \ \exists (a_n)_{\mathbb{N}} \subseteq L : \ a = \bigvee a_n \ \text{and} \ a_n < a \ \forall n.$$ ## In spaces [Michael 1956]: $$\forall \ U \in \mathcal{O}(X) \ \exists \ (U_n)_{n \in \mathbb{N}} \subseteq \mathcal{O}(X) \colon U = \bigcup_{n \in \mathbb{N}} U_n \ \text{and} \ \overline{U_n} \subseteq U \ \forall n.$$ ## In frames [Charalambous 1974]: $$\forall a \in L \ \exists (a_n)_{\mathbb{N}} \subseteq L : \ a = \bigvee a_n \ \text{and} \ a_n < a \ \forall n.$$ ## In spaces [Michael 1956]: $$\forall U \in \mathcal{O}(X) \exists (U_n)_{n \in \mathbb{N}} \subseteq \mathcal{O}(X) \colon U = \bigcup_{n \in \mathbb{N}} U_n \text{ and } \overline{U_n} \subseteq U \ \forall n.$$ ## In frames [Charalambous 1974]: $$\forall a \in L \ \exists (a_n)_{\mathbb{N}} \subseteq L : \ a = \bigvee a_n \ \text{and} \ a_n < a \ \forall n.$$ + perfect every open is an F_{σ} -sublocale: $$L \text{ is perfect} \equiv \forall \mathfrak{o}(a), \ \mathfrak{o}(a) = \bigwedge_{n \in \mathbb{N}} \mathfrak{c}(a_n)$$ ## In spaces [Michael 1956]: $$\forall U \in \mathcal{O}(X) \exists (U_n)_{n \in \mathbb{N}} \subseteq \mathcal{O}(X) \colon U = \bigcup_{n \in \mathbb{N}} U_n \text{ and } \overline{U_n} \subseteq U \ \forall n.$$ ## In frames [Charalambous 1974]: $$\forall a \in L \ \exists (a_n)_{\mathbb{N}} \subseteq L : \ a = \bigvee a_n \ \text{and} \ a_n < a \ \forall n.$$ + perfect every open is an F_{σ} -sublocale: $$L \text{ is perfect} \equiv \forall \mathfrak{o}(a), \ \mathfrak{o}(a) = \bigwedge_{n \in \mathbb{N}} \mathfrak{c}(a_n)$$ $$L \text{ is } \mathscr{B}\text{-perfect} \equiv \ \forall \ A \in \mathscr{B}^{\mathsf{c}}, \ A = \bigwedge_{n \in \mathbb{N}} A_n \text{ with each } A_n \in \mathscr{B}$$ \mathscr{B} -perfect \mathscr{B} -perfectly normal \mathscr{B}^{c} -perfect \mathscr{B}^{c} -perfectly normal \mathfrak{c} \mathfrak{c}^* \mathfrak{c} <td | \mathscr{B} | ${\mathscr B}$ -perfect | ℬ-perfectly normal | ℬ ^c -perfect | ℬ ^c -perfectly normal | |-------------------------------|-------------------------|--------------------|--------------------------------|---| | c | perfect | perfectly normal | Boolean | Boolean | | c* | | | | | | $\mathfrak{c}_{\mathrm{coz}}$ | | | | | | B | ℬ -perfect | ${\mathscr B}$ -perfectly normal | ℬ ^c -perfect | ℬ ^c -perfectly normal | |-------------------------------|-------------------|----------------------------------|--------------------------------|---| | c
c* | perfect | perfectly normal OZ frames | Boolean
? | Boolean extremally disconn. | | $\mathfrak{c}_{\mathrm{coz}}$ | | | | | OZ frame = every regular element is a cozero. | B | ${\mathscr B}$ -perfect | ${\mathscr B}$ -perfectly normal | ℬ ^c -perfect | ℬ ^c -perfectly normal | |-------------------------------|-------------------------|----------------------------------|--------------------------------|---| | c | perfect | perfectly normal | Boolean | Boolean | | c* | ? | OZ frames | ? | extremally disconn. | | $\mathfrak{c}_{\mathrm{coz}}$ | ? | all frames | ? | P-frames | OZ frame \equiv every regular element is a cozero. P-frame $\equiv \operatorname{Coz} L$ is complemented. THEOREM: Let $f: L \to M$ be a surjective localic map such that THEOREM: Let $f: L \to M$ be a surjective localic map such that • f is image \mathscr{B} -preserving and preimage \mathscr{B} -preserving THEOREM: Let $f: L \to M$ be a surjective localic map such that - f is image \mathscr{B} -preserving and preimage \mathscr{B} -preserving - $ff_{-1}[B] = B$ for every $B \in \mathscr{B}^{c}(M)$. THEOREM: Let $f: L \to M$ be a surjective localic map such that - f is image \$\mathscr{G}\$-preserving and preimage \$\mathscr{G}\$-preserving - $ff_{-1}[B] = B$ for every $B \in \mathscr{B}^{\mathsf{c}}(M)$. If L is \mathcal{B} -perfect then M is also \mathcal{B} -perfect. THEOREM: Let $f: L \to M$ be a surjective localic map such that - f is image \$\mathscr{G}\$-preserving and preimage \$\mathscr{G}\$-preserving - $ff_{-1}[B] = B$ for every $B \in \mathscr{B}^{\mathsf{c}}(M)$. If L is \mathcal{B} -perfect then M is also \mathcal{B} -perfect. PROOF: $$L \xrightarrow{f} M$$ THEOREM: Let $f: L \to M$ be a surjective localic map such that - f is image \$\mathscr{G}\$-preserving and preimage \$\mathscr{G}\$-preserving - $ff_{-1}[B] = B$ for every $B \in \mathscr{B}^{\mathsf{c}}(M)$. If L is \mathcal{B} -perfect then M is also \mathcal{B} -perfect. PROOF: $$L \xrightarrow{f} M$$ $$B \in \mathscr{B}^{\mathsf{c}}(M)$$ THEOREM: Let $f: L \to M$ be a surjective localic map such that - f is image \$\mathscr{G}\$-preserving and preimage \$\mathscr{G}\$-preserving - $ff_{-1}[B] = B$ for every $B \in \mathscr{B}^{\mathsf{c}}(M)$. If L is \mathcal{B} -perfect then M is also \mathcal{B} -perfect. PROOF: $$L \xrightarrow{f} M$$ $$ff_{-1}[B] = B \in \mathscr{B}^{\mathsf{c}}(M)$$ THEOREM: Let $f: L \to M$ be a surjective localic map such that - f is image \$\mathscr{B}\$-preserving and preimage \$\mathscr{B}\$-preserving - $ff_{-1}[B] = B$ for every $B \in \mathscr{B}^{\mathsf{c}}(M)$. If L is \mathcal{B} -perfect then M is also \mathcal{B} -perfect. PROOF: $$L \xrightarrow{f} M$$ $$ff_{-1}[B] = B \in \mathscr{B}^{c}(M)$$ $$\in \mathscr{B}^{c}(L)$$ $f_{-1}[-]$ preserves complements # THEOREM: Let $f: L \to M$ be a surjective localic map such that - f is image \$\mathscr{B}\$-preserving and preimage \$\mathscr{B}\$-preserving - $ff_{-1}[B] = B$ for every $B \in \mathscr{B}^{\mathsf{c}}(M)$. If L is \mathcal{B} -perfect then M is also \mathcal{B} -perfect. PROOF: $$L \xrightarrow{f} M$$ $$f[\bigwedge_n A_n] = ff_{-1}[B] = B \in \mathscr{B}^{\mathsf{c}}(M)$$ $$\sim \sim \sim$$ $$A_n \in \mathscr{B}(L) \qquad \text{L is \mathscr{B}-perfect} \in \mathscr{B}^{\mathsf{c}}(L)$$ $f_{-1}[-]$ preserves complements THEOREM: Let $f: L \to M$ be a surjective localic map such that - f is image \$\mathscr{B}\$-preserving and preimage \$\mathscr{B}\$-preserving - $ff_{-1}[B] = B$ for every $B \in \mathscr{B}^{\mathsf{c}}(M)$. If L is \mathcal{B} -perfect then M is also \mathcal{B} -perfect. PROOF: $$L \xrightarrow{f} M$$ $f_{-1}[-]$ preserves complements THEOREM: Let $f: L \to M$ be a surjective localic map such that - f is image \$\mathscr{B}\$-preserving and preimage \$\mathscr{B}\$-preserving - $ff_{-1}[B] = B$ for every $B \in \mathscr{B}^{\mathsf{c}}(M)$. If L is \mathcal{B} -perfect then M is also \mathcal{B} -perfect. Hereditary normality: normal spaces whose subspaces are all normal. Hereditary normality: normal spaces whose subspaces are all normal. Hereditary normality: normal spaces whose subspaces are all normal. Hereditary normality: normal spaces whose subspaces are all normal. Hereditary normality: normal spaces whose subspaces are all normal. Hereditary normality: normal spaces whose subspaces are all normal. Hereditary normality: normal spaces whose subspaces are all normal. Completely normal spaces: Completely *3*-normal frames: $$\forall A, B \in \mathcal{B} \ \exists U, V \in \mathcal{B} \colon U \land V = 0, B \leqslant A \lor U, A \leqslant B \lor V.$$ Hereditary normality: normal spaces whose subspaces are all normal. Completely normal spaces: Completely *3*-normal frames: $$\forall A, B \in \mathcal{B} \ \exists U, V \in \mathcal{B} \colon U \land V = 0, B \leqslant A \lor U, A \leqslant B \lor V.$$ Completely \mathscr{B} -disconnected frames \equiv completely \mathscr{B}^{c} -normal. # \$\mathcal{B}\$ closed under arbitrary joins $$\operatorname{cl}_{\mathscr{B}}(S) = \bigvee \{B \in \mathscr{B} \mid B \leqslant S\} \in \mathscr{B}$$ $$\operatorname{cl}_{\mathscr{B}}(S) = \bigvee \{B \in \mathscr{B} \mid B \leqslant S\} \in \mathscr{B} \mid \operatorname{int}_{\mathscr{B}}(S) = \bigwedge \{B \in \mathscr{B}^{\mathsf{c}} \mid B \geqslant S\} \in \mathscr{B}^{\mathsf{c}}$$ # Closed under arbitrary joins $$\operatorname{cl}_{\mathscr{B}}(S) = \bigvee \{B \in \mathscr{B} \mid B \leqslant S\} \in \mathscr{B}$$ $$\operatorname{cl}_{\mathscr{B}}(S) = \bigvee \{B \in \mathscr{B} \mid B \leqslant S\} \in \mathscr{B} \mid \operatorname{int}_{\mathscr{B}}(S) = \bigwedge \{B \in \mathscr{B}^{\mathsf{c}} \mid B \geqslant S\} \in \mathscr{B}^{\mathsf{c}}$$ \mathscr{B} -separated sublocales: $S \vee \operatorname{cl}_{\mathscr{B}}(T) = 1 = \operatorname{cl}_{\mathscr{B}}(S) \vee T$. # \$\mathscr{G}\$ closed under arbitrary joins $$\operatorname{cl}_{\mathscr{B}}(S) = \bigvee \{B \in \mathscr{B} \mid B \leqslant S\} \in \mathscr{B}$$ $$\operatorname{cl}_{\mathscr{B}}(S) = \bigvee \{B \in \mathscr{B} \mid B \leqslant S\} \in \mathscr{B} \mid \operatorname{int}_{\mathscr{B}}(S) = \bigwedge \{B \in \mathscr{B}^{\mathsf{c}} \mid B \geqslant S\} \in \mathscr{B}^{\mathsf{c}}$$ \mathscr{B} -separated sublocales: $S \vee \operatorname{cl}_{\mathscr{B}}(T) = 1 = \operatorname{cl}_{\mathscr{B}}(S) \vee T$. separated by \mathscr{B} -sublocales: $\exists U, V \in \mathscr{B} : U \vee V = 1, S \geqslant U, T \geqslant V$. # \$\mathscr{G}\$
closed under arbitrary joins $$\operatorname{cl}_{\mathscr{B}}(S) = \bigvee \{B \in \mathscr{B} \mid B \leqslant S\} \in \mathscr{B}$$ $$\operatorname{cl}_{\mathscr{B}}(S) = \bigvee \{B \in \mathscr{B} \mid B \leqslant S\} \in \mathscr{B} \mid \operatorname{int}_{\mathscr{B}}(S) = \bigwedge \{B \in \mathscr{B}^{\mathsf{c}} \mid B \geqslant S\} \in \mathscr{B}^{\mathsf{c}}$$ \mathscr{B} -separated sublocales: $S \vee \operatorname{cl}_{\mathscr{B}}(T) = 1 = \operatorname{cl}_{\mathscr{B}}(S) \vee T$. separated by \mathscr{B} -sublocales: $\exists U, V \in \mathscr{B} \colon U \vee V = 1, S \geqslant U, T \geqslant V$. PROPOSITION: Let \(\mathcal{P} \) be a sublocale selection, closed under joins. TFAE for any L: L is completely \mathscr{B} -normal. $$\operatorname{cl}_{\mathscr{B}}(S) = \bigvee \{B \in \mathscr{B} \mid B \leqslant S\} \in \mathscr{B}$$ $$\operatorname{cl}_{\mathscr{B}}(S) = \bigvee \{B \in \mathscr{B} \mid B \leqslant S\} \in \mathscr{B} \mid \operatorname{int}_{\mathscr{B}}(S) = \bigwedge \{B \in \mathscr{B}^{\mathsf{c}} \mid B \geqslant S\} \in \mathscr{B}^{\mathsf{c}}$$ \mathscr{B} -separated sublocales: $S \vee \operatorname{cl}_{\mathscr{B}}(T) = 1 = \operatorname{cl}_{\mathscr{B}}(S) \vee T$. separated by \mathscr{B} -sublocales: $\exists U, V \in \mathscr{B} \colon U \vee V = 1, S \geqslant U, T \geqslant V$. PROPOSITION: Let \(\mathcal{P} \) be a sublocale selection, closed under joins. TFAE for any L: - L is completely \mathscr{B} -normal. - Every pair of \mathscr{B} -separated sublocales is separated by \mathscr{B}^{c} -sublocales. $$\operatorname{cl}_{\mathscr{B}}(S) = \bigvee \{B \in \mathscr{B} \mid B \leqslant S\} \in \mathscr{B}$$ $$\operatorname{cl}_{\mathscr{B}}(S) = \bigvee \{B \in \mathscr{B} \mid B \leqslant S\} \in \mathscr{B} \mid \operatorname{int}_{\mathscr{B}}(S) = \bigwedge \{B \in \mathscr{B}^{\mathsf{c}} \mid B \geqslant S\} \in \mathscr{B}^{\mathsf{c}}$$ \mathscr{B} -separated sublocales: $S \vee \operatorname{cl}_{\mathscr{B}}(T) = 1 = \operatorname{cl}_{\mathscr{B}}(S) \vee T$. separated by \mathscr{B} -sublocales: $\exists U, V \in \mathscr{B} \colon U \vee V = 1, S \geqslant U, T \geqslant V$. PROPOSITION: Let \(\mathcal{P} \) be a sublocale selection, closed under joins. TFAE for any L: - L is completely \mathscr{B} -normal. - Every pair of \mathscr{B} -separated sublocales is separated by \mathscr{B}^{c} -sublocales. - $S \leqslant \operatorname{cl}_{\mathscr{B}}(T)$ and $\operatorname{int}_{\mathscr{B}}(S) \leqslant T \Rightarrow \exists U, V \in \mathscr{B} \colon S \leqslant V \leqslant U^{\mathsf{c}} \leqslant T$. # \$\mathcal{B}\$ closed under arbitrary joins Sublocale S of L # \$\mathcal{B}\$ closed under arbitrary joins Sublocale S of L $\sim\sim\sim$ $\mathscr{B}_S(L)=\{S\vee B\mid B\in\mathscr{B}\}\subseteq B(\mathcal{S}(S))$ # \$\mathcal{B}\$ closed under arbitrary joins Sublocale S of L $\mathscr{B}_S(L) = \{S \vee B \mid B \in \mathscr{B}\} \subseteq B(\mathcal{S}(S))$ L is hereditarily \mathscr{B} -normal: every its sublocate S is \mathscr{B}_S -normal. Sublocate S of L $\sim\sim\sim$ $\mathscr{B}_S(L)=\{S\vee B\mid B\in\mathscr{B}\}\subseteq B(\mathcal{S}(S))$ L is hereditarily \mathscr{B} -normal: every its sublocate S is \mathscr{B}_S -normal. THEOREM: Let \mathscr{B} be a sublocale selection, closed under joins. TFAE for any L: 1 L is completely \mathscr{B} -normal Sublocate S of L $\sim\sim\sim$ $\mathscr{B}_S(L)=\{S\vee B\mid B\in\mathscr{B}\}\subseteq B(\mathcal{S}(S))$ L is hereditarily \mathscr{B} -normal: every its sublocate S is \mathscr{B}_S -normal. THEOREM: Let \mathscr{B} be a sublocale selection, closed under joins. TFAE for any L: - $oldsymbol{1}$ L is completely ${\mathscr B}$ -normal - $oldsymbol{2}$ L is hereditarily ${\mathscr{B}}$ -normal Sublocate S of L $\sim\sim\sim$ $\mathscr{B}_S(L)=\{S\vee B\mid B\in\mathscr{B}\}\subseteq B(\mathcal{S}(S))$ L is hereditarily \mathscr{B} -normal: every its sublocate S is \mathscr{B}_S -normal. THEOREM: Let \mathscr{B} be a sublocale selection, closed under joins. TFAE for any L: - $oldsymbol{1}$ L is completely ${\mathscr B}$ -normal - $oldsymbol{2}$ L is hereditarily ${\mathscr{B}}$ -normal - $oxed{3}$ Each $B\in \mathscr{B}^{\mathsf{c}}$ is \mathscr{B} -normal Sublocate S of L $\sim\sim\sim$ $\mathscr{B}_S(L)=\{S\vee B\mid B\in\mathscr{B}\}\subseteq B(\mathcal{S}(S))$ L is hereditarily \mathscr{B} -normal: every its sublocate S is \mathscr{B}_S -normal. THEOREM: Let \mathscr{B} be a sublocale selection, closed under joins. TFAE for any L: - $oxed{1}{L}$ is completely ${\mathscr{B}}$ -normal - $oldsymbol{2} L$ is hereditarily $oldsymbol{\mathscr{B}}$ -normal - Bach $B \in \mathscr{B}^{\bullet}$ is \mathscr{B}^{\bullet} -normal Sublocate S of L $\sim\sim\sim$ $\mathscr{B}_S(L)=\{S\vee B\mid B\in\mathscr{B}\}\subseteq B(\mathcal{S}(S))$ L is hereditarily \mathscr{B} -normal: every its sublocate S is \mathscr{B}_S -normal. THEOREM: Let \mathscr{B} be a sublocale selection, closed under joins. TFAE for any L: - 1 L is completely \mathscr{B} -normal $\equiv L$ is completely \mathscr{B} -disconnected. - 2 L is hereditarily \mathscr{B} -normal $\equiv L$ is hereditarily \mathscr{B} -disconnected. - Bach $B \in \mathscr{B}^{\mathbf{c}}$ is $\mathscr{B}^{\mathbf{c}}$ -normal \equiv Each $B \in \mathscr{B}$ is \mathscr{B} -disconnected. # REAL FUNCTIONS ON ${\cal L}$ $$f: \mathfrak{L}(\mathbb{R}) \to \mathcal{S}(L)$$ ## REAL FUNCTIONS ON ${\cal L}$ $f: \mathfrak{L}(\mathbb{R}) \to \mathcal{S}(L)$ ### BACKGROUND: the frame of reals $$\mathfrak{L}(\mathbb{R}) := \operatorname{Frm}\langle \ (-,q), (p,-)(p,q \in \mathbb{Q}) \ |$$ #### REAL FUNCTIONS ON ${\cal L}$ $$f: \mathfrak{L}(\mathbb{R}) \to \mathcal{S}(L)$$ #### BACKGROUND: the frame of reals $$\mathfrak{L}(\mathbb{R}) := \operatorname{Frm}\langle (-,q), (p,-)(p,q \in \mathbb{Q}) \mid (1)(-,q) \land (p,-) = 0 \text{ for } q \leqslant p,$$ (1) $$(-,q) \land (p,-) = 0 \text{ for } q \leq p$$ (2) $$(-,q) \lor (p,-) = 1 \text{ for } q > p$$, (3) $$(-,q) = \bigvee_{s < q} (-,s),$$ $$(4) \bigvee_{q \in \mathbb{Q}} (-, q) = 1,$$ (5) $$(p, -) = \bigvee_{r>p} (r, -),$$ (6) $$\bigvee_{p \in \mathbb{Q}} (p, -) = 1 \rangle$$. $$f: \mathfrak{L}(\mathbb{R}) \to \mathcal{S}(L)$$ $$f: \mathfrak{L}(\mathbb{R}) \to \mathcal{S}(L)$$ $$f: \mathfrak{L}(\mathbb{R}) \to \mathcal{S}(L)$$ $$f: \mathfrak{L}(\mathbb{R}) \to \mathcal{S}(L)$$ **TACL2015** – 24 June 25, 2015 $$f: \mathfrak{L}(\mathbb{R}) \to \mathcal{S}(L)$$ $$f \leq g \equiv f(p, -) \leq g(p, -), \ \forall p \in \mathbb{Q}$$ ## $\mathscr{B} ext{-SEMICONTINUITY}$ AND $\mathscr{B} ext{-CONTINUITY}$ $$f: \mathfrak{L}(\mathbb{R}) \to \mathcal{S}(L)$$ $$f \in \mathsf{USC}(L) \iff \forall \, p < q \; \exists \, F_{p,q} \in \mathfrak{c}(L) : \; f(-,p) \leqslant F_{p,q} \leqslant f(-,q).$$ $$f: \mathfrak{L}(\mathbb{R}) \to \mathcal{S}(L)$$ $$f \in \mathsf{USC}(L) \iff \forall \, p < q \; \exists \, F_{p,q} \in \mathfrak{c}(L) : \; f(-,p) \leqslant F_{p,q} \leqslant f(-,q).$$ [" $$\Leftarrow$$ ": $f(-,q) = \bigvee_{r < q} f(-,r) \le \bigvee_{r < q} F_{r,q} \le f(-,q)$.] $$f: \mathfrak{L}(\mathbb{R}) \to \mathcal{S}(L)$$ $$f \in \mathsf{USC}(L) \iff \forall \, p < q \; \exists \, F_{p,q} \in \mathfrak{c}(L) : \; f(-,p) \leqslant F_{p,q} \leqslant f(-,q).$$ [" $$\Leftarrow$$ ": $f(-,q) = \bigvee_{r < q} f(-,r) \leq \bigvee_{r < q} F_{r,q} \leq f(-,q)$.] $$\mathscr{B}\text{-USC}(L) \stackrel{\text{def}}{=} \forall p < q \ \exists F_{p,q} \in \mathscr{B} : \ f(-,p) \leqslant F_{p,q} \leqslant f(-,q).$$ $$f: \mathfrak{L}(\mathbb{R}) \to \mathcal{S}(L)$$ $$f \in \mathsf{USC}(L) \iff \forall \, p < q \; \exists \, F_{p,q} \in \mathfrak{c}(L) : \; f(-,p) \leqslant F_{p,q} \leqslant f(-,q).$$ [" $$\Leftarrow$$ ": $f(-,q) = \bigvee_{r < q} f(-,r) \leq \bigvee_{r < q} F_{r,q} \leq f(-,q)$.] $$\mathscr{B}\text{-USC}(L) \stackrel{\text{def}}{\equiv} \forall p < q \ \exists F_{p,q} \in \mathscr{B} : \ f(-,p) \leqslant F_{p,q} \leqslant f(-,q).$$ $$\mathscr{B}\text{-LSC}(L) \stackrel{\mathrm{def}}{=} \forall p < q \ \exists F_{p,q} \in \mathscr{B} : \ f(q,-) \leqslant F_{p,q} \leqslant f(p,-).$$ $$f: \mathfrak{L}(\mathbb{R}) \to \mathcal{S}(L)$$ $$f \in \mathsf{USC}(L) \iff \forall \, p < q \; \exists \, F_{p,q} \in \mathfrak{c}(L) : \; f(-,p) \leqslant F_{p,q} \leqslant f(-,q).$$ [" $$\Leftarrow$$ ": $f(-,q) = \bigvee_{r < q} f(-,r) \le \bigvee_{r < q} F_{r,q} \le f(-,q)$.] $$\mathscr{B}\text{-USC}(L) \stackrel{\text{def}}{\equiv} \forall p < q \ \exists F_{p,q} \in \mathscr{B} : \ f(-,p) \leqslant F_{p,q} \leqslant f(-,q).$$ $$\mathscr{B}\text{-LSC}(L) \stackrel{\mathrm{def}}{=} \forall p < q \ \exists F_{p,q} \in \mathscr{B} : \ f(q,-) \leqslant F_{p,q} \leqslant f(p,-).$$ $$\mathscr{B}$$ -C(L) = \mathscr{B} -LSC(L) $\cap \mathscr{B}$ -USC(L) $$f \in \mathsf{USC}(L) \iff \forall \, p < q \; \exists \, F_{p,q} \in \mathfrak{c}(L) : \; f(-,p) \leqslant F_{p,q} \leqslant f(-,q).$$ [" $$\Leftarrow$$ ": $f(-,q) = \bigvee_{r < q} f(-,r) \le \bigvee_{r < q} F_{r,q} \le f(-,q)$.] $$\mathscr{B}\text{-USC}(L) \stackrel{\text{def}}{\equiv} \forall p < q \ \exists F_{p,q} \in \mathscr{B} : \ f(-,p) \leqslant F_{p,q} \leqslant f(-,q).$$ $$\mathscr{B}\text{-LSC}(L) \stackrel{\text{def}}{=} \forall p < q \ \exists F_{p,q} \in \mathscr{B} : \ f(q,-) \leqslant F_{p,q} \leqslant f(p,-).$$ $$\mathscr{B}$$ -C(L) = \mathscr{B} -LSC(L) $\cap \mathscr{B}$ -USC(L) f is lower \mathscr{B} -semicontinuous iff it is upper \mathscr{B}^{c} -semicontinuous $$f \in \mathsf{USC}(L) \iff \forall \, p < q \; \exists \, F_{p,q} \in \mathfrak{c}(L) : \; f(-,p) \leqslant F_{p,q} \leqslant f(-,q).$$ [" $$\Leftarrow$$ ": $f(-,q) = \bigvee_{r < q} f(-,r) \leq \bigvee_{r < q} F_{r,q} \leq f(-,q)$.] $$\mathscr{B}\text{-USC}(L) \stackrel{\text{def}}{\equiv} \forall p < q \ \exists F_{p,q} \in \mathscr{B} : \ f(-,p) \leqslant
F_{p,q} \leqslant f(-,q).$$ $$\mathscr{B}\text{-LSC}(L) \stackrel{\text{def}}{=} \forall p < q \ \exists F_{p,q} \in \mathscr{B} : \ f(q,-) \leqslant F_{p,q} \leqslant f(p,-).$$ $$\mathscr{B}$$ -C(L) = \mathscr{B} -LSC(L) $\cap \mathscr{B}$ -USC(L) f is lower \mathscr{B} -semicontinuous iff it is upper \mathscr{B}^{c} -semicontinuous \therefore f is \mathscr{B}^{c} -continuous iff it is \mathscr{B} -continuous. # \mathscr{B} -semicontinuity and \mathscr{B} -continuity: EXAMPLES | B | ℬ-usc | ℬ-Isc | | |----------|-------|--------------|------------| | ¢ | usc | lsc | continuous | # \mathscr{B} -semicontinuity and \mathscr{B} -continuity: EXAMPLES | B | ℬ-usc | ℬ-Isc | ℬ-continuous | |----------|------------|------------|-------------------| | c | usc | Isc | continuous | | c* | normal usc | normal Isc | normal continuous | ## \mathscr{B} -semicontinuity and \mathscr{B} -continuity: EXAMPLES | B | ℬ-usc | ℬ-Isc | ℬ-continuous | |-----------------------|-------------|-------------|--------------------| | ¢ | usc | Isc | continuous | | ¢* | normal usc | normal Isc | normal continuous | | \mathfrak{c}_δ | regular usc | regular Isc | regular continuous | # $\mathscr{B} ext{-SEMICONTINUITY AND }\mathscr{B} ext{-CONTINUITY: EXAMPLES}$ | B | ℬ-usc | ℬ-Isc | ℬ-continuous | |-------------------------------|-------------|-------------|--------------------| | c | usc | Isc | continuous | | ¢* | normal usc | normal Isc | normal continuous | | \mathfrak{c}_δ | regular usc | regular Isc | regular continuous | | $\mathfrak{c}_{\mathrm{coz}}$ | zero usc | zero Isc | zero continuous | #### GENERAL INSERTION THEOREM: TFAE for any frame L and any sublocale selection \mathscr{B} : L is completely \mathscr{B} -normal. #### GENERAL INSERTION THEOREM: TFAE for any frame L and any sublocale selection \mathscr{B} : - 1 L is completely \mathscr{B} -normal. - $\underbrace{f_1, f_2}_{\mathsf{F}(L)} \colon f_1 \leqslant \underbrace{g_1}_{\mathscr{B}-\mathsf{LSC}(L)} \leqslant f_2 \,, \, f_1 \leqslant \underbrace{g_2}_{\mathscr{B}-\mathsf{USC}(L)} \leqslant f_2$ $$\exists l \in \mathscr{B}\text{-LSC}(L), u \in \mathscr{B}\text{-USC}(L) \colon f_1 \leqslant l \leqslant u \leqslant f_2.$$ Corollary 1 (case $\mathscr{B} = \mathfrak{c}$). TFAE for any frame L: - 1 L is completely normal. - $(2) \underbrace{f_1, f_2}_{\mathsf{F}(L)} \colon f_1 \leqslant f_2^{\circ}, \ f_1^{-} \leqslant f_2 \ \Rightarrow \ \exists \ l \in \mathsf{LSC}(L) \colon f_1 \leqslant l \leqslant l^{-} \leqslant f_2.$ Corollary 1 (case $\mathscr{B} = \mathfrak{c}$). TFAE for any frame L: - 1 L is completely normal. - $\underbrace{f_1, f_2}_{\mathsf{F}(L)} \colon f_1 \leqslant f_2^{\circ} \,, \ f_1^{-} \leqslant f_2 \ \Rightarrow \ \exists \ l \in \mathsf{LSC}(L) \colon f_1 \leqslant l \leqslant l^{-} \leqslant f_2.$ Corollary 2 (case $\mathscr{B} = \mathfrak{o}$). TFAE for any frame L: - $oldsymbol{1}$ L is completely extremally disconnected. - $\underbrace{f_1,\ f_2}\colon f_1\leqslant f_2^\circ\,,\ f_1^-\leqslant f_2\ \Rightarrow\ \exists\ l\in\mathsf{LSC}(L),\ \exists\ u\in\mathsf{USC}(L)\colon$ $f_1\leqslant u\leqslant l\leqslant f_2.$ Corollary 1 (case $\mathscr{B} = \mathfrak{c}$). TFAE for any frame L: - 1 L is completely normal. - $(2) \underbrace{f_1, f_2}_{\mathsf{F}(L)} \colon f_1 \leqslant f_2^{\circ}, \ f_1^{-} \leqslant f_2 \ \Rightarrow \ \exists \ l \in \mathsf{LSC}(L) \colon f_1 \leqslant l \leqslant l^{-} \leqslant f_2.$ $L = \mathcal{O}(X)$ Corollary 2 (case $\mathscr{B} = \mathfrak{o}$). TFAE for any frame L: - $oldsymbol{1}$ L is completely extremally disconnected. - $\underbrace{f_1,\ f_2}\colon f_1\leqslant f_2^\circ\,,\ f_1^-\leqslant f_2\ \Rightarrow\ \exists\ l\in\mathsf{LSC}(L),\ \exists\ u\in\mathsf{USC}(L)\colon$ $f_1\leqslant u\leqslant l\leqslant f_2.$ #### COROLLARY 3: ### TFAE for any frame L: - \blacksquare L is completely normal and extremally disconnected. - $igotimes_L$ is normal and completely extremally disconnected. - $\underbrace{f, g}_{\mathsf{F}(L)}, \ f \leqslant g^{\circ}, \ f^{-} \leqslant g \quad \Rightarrow \quad \exists \ h \in \mathsf{C}(L) \colon f \leqslant h \leqslant g.$ #### MAIN REFERENCES - J. Gutiérrez García & JP, On the parallel between normality and extremal disconnectedness, Journal of Pure and Applied Algebra (2014). - J. Gutiérrez García, T. Kubiak & JP, On extremal disconnectedness and its hereditary property, IN PREPARATION. - JP & A. Pultr, Frames and locales: topology without points, Springer Basel (2012). $$f \in \mathsf{F}(L) \text{ s.t. } \{g \in \mathsf{LSC}(L) \mid g \leqslant f\} \neq \emptyset$$ • lower regularization f° $$f^{\circ}(p,-) = \bigvee_{q>p} \overline{f(q,-)}$$ $$f^{\circ}(-,q) = \bigvee_{p < q} \overline{f(p,-)}^*$$ Then: $$f^{\circ} \in LSC(L)$$ $$f^{\circ} \leqslant f$$ $$f^{\circ} = \bigvee \{ g \in \mathsf{LSC}(L) \mid g \leqslant f \}$$ • Dually: the upper regularization $f^- = -(-f)^\circ$.