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AIMS

CLASSICAL TOPOLOGY A POINT-FREE TOPOLOGY

topological spaces generalized spaces: locales

CABOOL SUBOBJECT LATTICES not so nice ...

«(...) a locale has enough complemented sublocales to compensate for this
shortcoming: one simply has to make the sublocales which are complemented

do more of the work.» JOHN ISBELL
[Atomless parts of spaces, Math. Scand. (1972)]
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AIMS

CLASSICAL TOPOLOGY ~S> POINT-FREE TOPOLOGY

topological spaces generalized spaces: locales

CABOOL SUBOBJECT LATTICES not so nice ...

«(...) a locale has enough complemented sublocales to compensate for this
shortcoming: one simply has to make the sublocales which are complemented

do more of the work.» JOHN ISBELL
[Atomless parts of spaces, Math. Scand. (1972)]

AIM: to illustrate this idea with parts of our work, in the last few years,
with J. Gutiérrez Garcia, T. Kubiak, A. Pultr.
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Mapping Invariance Theorem (HAUSDORFF)

THEOREM: Let f: X — Y be a surjection.

If X Is then Y Is also
[Fund. Math. (1935)]
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Mapping Invariance Theorem (HAUSDORFF)

THEOREM: Let f: X — Y be a surjection.

If X Is then Y Is also
[Fund. Math. (1935)]

«(...) what the pointfree formulation adds to the classical theory is a
remarkable combination of elegance of statement, simplicity of proof,
and increase of extent.» R. BALL & J. WALTERS-WAYLAND

[C- and C*-quotients in pointfree topology, Dissert. Math. (2002)]
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THE SETTING locales (or frames)

e Complete lattices L satisfying an \/ b; = \/(a A b;)

(= complete Heyting algebras)
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THE SETTING locales (or frames)

e Complete lattices L satisfying an \/ b; = \/(a A b;)

(= complete Heyting algebras)

° L L
A
preserves \/ (incl. the bottom 0)
f
v A (incl. the top 1)
M M
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THE SETTING locales (or frames)

e Complete lattices L satisfying an \/ b; = \/(a A b;)

(= complete Heyting algebras)

+| frame homomorphisms preserves \/ (incl. the bottom 0)

taken backwards A (incl. the top 1)

Y
M M
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THE SETTING

O We can put it in a more CONCRETE way:
Each h: M — L in Frm has a UNIQUELY defined right adjoint
he: L — M

that can be used as a representation of the A as a mapping
going in the proper direction.
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THE SETTING

O We can put it in a more CONCRETE way:

Each h: M — L in Frm has a UNIQUELY defined right adjoint
he: L — M

that can be used as a representation of the A as a mapping
going in the proper direction.

e MORPHISMS: L o f(AS) = A f[S]

localic maps  f e fla)=1=a=1
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BACKGROUND: SUBLOCALES

DEFINITION: S < Lis a SUBLOCALE of L if
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BACKGROUND: SUBLOCALES

DEFINITION: S < L is a SUBLOCALE of [ if
(H)VAC S, ANAeS,

(2)Vae L,Vse S,a—>seS.

Sisitself alocale: Ag = A;, —s=—1L

but | |s; = A{se S|V s <sl.
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BACKGROUND: SUBLOCALES

DEFINITION: S < L is a SUBLOCALE of [ if
(H)VAC S, ANAeS,

(2)Vae L,Vse S,a—>seS.

Sisitself alocale: Ag = A;, —s=—1L

but | |s; = A{se S|V s <sl.

Motivation for the definition:

PROPOSITION:
S < L is a sublocale iff the embedding js: S < L is a localic map.
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BACKGROUND: THE SUBLOCALE LATTICE

sublocales of L, ordered by <
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BACKGROUND: THE SUBLOCALE LATTICE

sublocales of L, ordered by <

0={1}, 1=L, A=) |[ViS={NAlAc;5i}

PROPOSITION. This lattice is a co-frame.
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sublocales of L, ordered by <

0={1}, 1=L, A=) |[ViS={NAlAc;5i}
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BACKGROUND: THE SUBLOCALE LATTICE

sublocales of L, ordered by <

0={1}, 1=L, A=) |[ViS={NAlAc;5i}

PROPOSITION. This lattice is a co-frame. S(L): the dual lattice

Special sublocales:

acel, cla)="Ta CLOSED

o(a)={a —>x|xze L} OPEN

June 25, 2015 Hausdorff mapping invariance theorems in Localic Topology TACL2015 —4




BACKGROUND: THE SUBLOCALE LATTICE

sublocales of L, ordered by <

0={1}, 1=L, A=) |[ViS={NAlAc;5i}

PROPOSITION. This lattice is a co-frame. S(L): the dual lattice

Special sublocales:

acel, cla)="Ta CLOSED
> complemented

o(a)={a—>x|xze L} OPEN |
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BACKGROUND: THE SUBLOCALE LATTICE the frame of sublocales
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localic map f: L — M
Ul
S
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localic map f: L — M
i Ul
S

Js
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localic map f: L — M
i Ul
S

Js regular mono

S > /19]
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IMAGES localicmap f: L - M

f Ul
A A
Js regular mono
S > f[S] s a sublocale of M

epl

Ghe Image of .S under D
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IMAGES localicmap f: L - M

. oy U
>
A A 5
Js regular mono
S —> f[S] is a sublocale of M
Ghe Image of .S under D
IMAGE MAP: fl—]: S(L) - S(M) (localic map)
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IMAGES localicmap f: L - M

N S Ul
—
A A 5
71s regular mono
K —> f[S] is a sublocale of M
Ghe Image of .S under D

IMAGE MAP: fl—]: S(L) - S(M) (localic map)
CLOSED MAP: f|.S] is closed for every closed S

& fle(a)] = e(f(a) Vael
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localicmap f: L - M
Ul
T
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localicmap f: L - M
Ul

e for any A < L closed under meets: {1} < A T

SicA=\/S,c A
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localicmap f: L - M
Ul

e for any A < L closed under meets: {1} < A T

SicA=\/S,c A

{\B|BclJSi}
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PREIMAGES localicmap f: L - M

Ul

e for any A < L closed under meets: {1} < A T
SicA=\/S,c A

{AB|B<Si}

So there exists the largest sublocale contained in A:  Agjoc
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PREIMAGES localicmap f: L - M
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e for any A < L closed under meets: {1} < A T
SicA=\/S,c A
{\B|BcJSi}
So there exists the largest sublocale contained in A:  Agc
° L o M
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PREIMAGES localicmap f: L - M

U
e for any A < L closed under meets: {1} < A T
SicA=\/S,c A
{\B|BcJSi}
So there exists the largest sublocale contained in A:  Agc
° L o M

Ul
[T T

closed under meets (since f preserve meets)

June 25, 2015 Hausdorff mapping invariance theorems in Localic Topology TACL2015 —6




PREIMAGES localicmap f: L - M

U
e for any A < L closed under meets: {1} < A T
SicA=\/S,c A
{\B|BcJSi}
So there exists the largest sublocale contained in A:  Agc
° L o M

U| f—l[T] — (f_l[T])sIoc
T

FUT Ghe preimage of 7" under D

closed under meets (since f preserve meets)
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PREIMAGES localicmap f: L - M

Ul

e for any A < L closed under meets: {1} < A T
SicA=\/S,c A

{AB|B<Si}
So there exists the largest sublocale contained in A:  Agoc
° L Lo M X
Ul f=1[T] = (7T ]Dsloc
FUT T Ghe preimage of T" under D

closed under meets (since f preserve meets)

PREIMAGE MaP:  fq|—|: S(M) — S(L) (frame homomorphism)
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IMAGES AND PREIMAGES

fIS]=Tiff f[S]cT
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IMAGES AND PREIMAGES

fIS]=Tiff f[S] < Tiff S< fT]iff S < (f~HTsloc iff S = f_1[T].

f-1l—=] = fl-] AS IT SHOULD BE!

PROPERTIES:

O rle ¢(f*(a)) and f_1[o(a)] = o(f*(a)).
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IMAGES AND PREIMAGES

fIS]=Tiff f[S] < Tiff S< fHT]iff S < (f~HTDsloc iff S = f_1[T].

f=al=1 4 fl[-] AS IT SHOULD BE!
PROPERTIES:
O fale ¢(f*(a)) and f_1[o(a)] = o(f*(a)).
@) f-1[-] preserves complements.

June 25, 2015 Hausdorff mapping invariance theorems in Localic Topology TACL2015 —7




IMAGES AND PREIMAGES

fIS]=Tiff f[S] < Tiff S< fHT]iff S < (f~HTDsloc iff S = f_1[T].

f-1l—=] = fl-] AS IT SHOULD BE!

PROPERTIES:
@ foilc(@)] = c(£*(a)) and f-1[o(a)] = o(£*(a)).

% f_1[—] preserves complements.

for surjective f: ff_1[c(a)] =c(a)and ff_1|o(a)] = o(a).

Hausdorff mapping invariance theorems in Localic Topology




DOING TOPOLOGY IN Loc Normality

c(a) vc(b) =1
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DOING TOPOLOGY IN Loc Normality

c(a) vc(b) =1

U

Ju,v: o(u) v o(v) =1,c(a) = o(u),c(b) = o(v).

"sV

5

-

|
]
1
I

I\

So L is normal iff

c(a) veb) =1 = Fu,v: c(u) Acv) =1,¢c(a) ve(u) =1=c(b) v c(v)
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DOING TOPOLOGY IN Loc Normality

U
c(a) ve) =1 ST

i DA

,'sV

)

A

i
Ju,v: 0(u) v o(v) =1,c(a) = o(u),c(b) = o(v). '\ Q."\g )

-

—-..
-

So L is normal iff

c(a) veb) =1 = Fu,v: c(u) Acv) =1,¢c(a) ve(u) =1=c(b) v c(v)

Internally in L:
(by ¢L =~ L)

avb=1=du,viuAnv=0avu=1=bvuo

(Conservative extension: X is normal iff the locale O(X) is normal.)
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THE INVARIANCE THEOREM: first version

THEOREM: Let f: L — M be a surjective localic map.

If L Is normal then M Is also normal.
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THE INVARIANCE THEOREM: first version

THEOREM: Let f: L — M be a surjective localic map.

If L Is normal then M Is also normal.

Proor: later on ...
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BOOLEAN SUBLOCALE SELECTIONS

RB:L— AB(L)< B(S(L)) “sets of complemented sublocales”
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BOOLEAN SUBLOCALE SELECTIONS

RB:L— AB(L)< B(S(L)) “sets of complemented sublocales”

Selection 8 Members of % (L)

c {c(a): a € L}

the standard model
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BOOLEAN SUBLOCALE SELECTIONS

RB:L— AB(L)< B(S(L)) “sets of complemented sublocales”

Selection 8 Members of % (L)

c {c(a): a € L}
c* {c(a*): a € L}
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BOOLEAN SUBLOCALE SELECTIONS

RB:L— AB(L)< B(S(L)) “sets of complemented sublocales”

Selection 8 Members of % (L)

c {c(a): a € L}
c* {c(a*): a € L}
C5 {c(a): ais regular Gs}

regular Gs element: |a =\/, . an With a,, < a
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BOOLEAN SUBLOCALE SELECTIONS

RB:L— AB(L)< B(S(L)) “sets of complemented sublocales”

Selection 8 Members of % (L)

c {c(a): a € L}

c* {c(a*): a e L}

C5 {c(a): ais regular G4}
Ceor {c(cozf): feC(L)}

regular Gs element: a =\/,_, an, With a,, < a

cozero element: |a =/, . an With a,, << a
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BOOLEAN SUBLOCALE SELECTIONS

RB:L— AB(L)< B(S(L)) “sets of complemented sublocales”

Selection 8 Members of % (L)

c {c(a): a € L}

c* {c(a*): a e L}

C5 {c(a): ais regular G4}
Ceor {c(cozf): feC(L)}

J. Gutierrez Garcia & JP, On the parallel between normality and extremal
disconnectedness, JPAA (2014)
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B -NORMALITY frame L

Normal:

c(a)ve(d) =1 = Fu,v: c(u)ac(v) =0, c(a)ve(u) =1 =c¢(b) vc(v).
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B -NORMALITY frame L

%-Normal (for any sublocale selection ). Forany A, B € %,

AvB=1=3d1U0UVeAB:UAV=0AvU=1=BvV

Normal:

c(a)ve(d) =1 = Fu,v: c(u)ac(v) =0, c(a)ve(u) =1 =c¢(b) vc(v).
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B -NORMALITY frame L

%-Normal (for any sublocale selection ). Forany A, B € %,

AvB=1=3d1U0UVeAB:UAV=0AvU=1=BvV

Selection 8  ZB-normal frames

C normal
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B -NORMALITY frame L

%-Normal (for any sublocale selection ). Forany A, B € %,

AvB=1=3d1U0UVeAB:UAV=0AvU=1=BvV

Selection 8  ZB-normal frames

C normal

c* mildly normal
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B -NORMALITY frame L

%-Normal (for any sublocale selection ). Forany A, B € %,

AvB=1=3d1U0UVeAB:UAV=0AvU=1=BvV

Selection 8  ZB-normal frames

c normal
c* mildly normal
Cs d-normal
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B -NORMALITY frame L

%-Normal (for any sublocale selection ). Forany A, B € %,

AvB=1=3d1U0UVeAB:UAV=0AvU=1=BvV

Selection 8  ZB-normal frames

c normal

c* mildly normal
Cs d-normal

Cooz all frames
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THE INVARIANCE THEOREM: first version localicmap f: L - M

THEOREM: Let f: L — M be a surjective localic map.

If L. Is normal then M Is also normal.
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THE INVARIANCE THEOREM: first version localicmap f: L - M

o fisimage A-preserving if f|—] maps elements of B(L) into B(M).

THEOREM: Let f: L — M be a surjective localic map.

If L. Is normal then M Is also normal.
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THE INVARIANCE THEOREM: first version localicmap f: L - M

o fisimage A-preserving if f|—] maps elements of B(L) into B(M).

o f is preimage Z-preserving if f_1|—] maps elements of B(M) into B (L)

THEOREM: Let f: L — M be a surjective localic map.

If L. Is normal then M Is also normal.
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THE INVARIANCE THEOREM: general version localicmap f: L - M

e f isimage JB-preserving if f[—] maps elements of (L) into B(M).

o f is preimage A-preserving if f_1|—] maps elements of B(M) into B (L)

THEOREM: Let f: L — M be a surjective localic map such that

fis and

If L I1s 28-normal then M Is also £8-normal.

June 25, 2015 Hausdorff mapping invariance theorems in Localic Topology TACL2015 —12



SKETCH OF PROOF I ! > M

A, Be B(M), AvB=1
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SKETCH OF PROOF I ! > M

A, Be B(M), AvB=1

| (@

f-1lA], f-1[B] € B(L)
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SKETCH OF PROOF I ! > M

A, Be B(M), AvB=1

f-1lA]l v f<1|B] = f[1] =1 f-1lAl, f-1|B] € RB(L)
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. Y
A Be B(M), AvB~=1
| @
f-1lA]l v f<1|B] = f[1] =1 f-1lAl, f-1|B] € RB(L)
W roma

E|U0, %E%(L): UQ/\V():O, f_1[A]\/U0=1=f_1[B]\/‘/0.
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. Y
A Be B(M), AvB~=1
| @
f-1lA]l v f<1|B] = f[1] =1 f-1lAl, f-1|B] € RB(L)
W roma

HUo,Vbegg :UQA%—O f_[]\/UO:l:f_l[B]\/‘/O.

@\

U= flUp], V= f[W]| € B(M) satisfy:
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SKETCH OF PROOF I ! > M

A, Be B(M), AvB=1

| (@

f-1lA]l v f<1|B] = f[1] =1 f-1lAl, f-1|B] € RB(L)
W roma

HUo,VbE% :UQA%—O f_[]\/UO:l:f_l[B]\/‘/O.

@\

U= flUp], V= f[W]| € B(M) satisfy:

e UAV = f[Us] A f[Vo] = f[Uo A Vo] = £[0] = F[L] = M = 0.
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SKETCH OF PROOF I ! > M

A, Be B(M), AvB=1

| (@

f-1lA]l v f<1|B] = f[1] =1 f-1lAl, f-1|B] € RB(L)
W roma

HUo,‘/()E% :U()/\Vb—() f_[]\/U():l:f_l[B]\/‘/o.

@\

U= flUp], V= f[W]| € B(M) satisfy:

e UAV = fUo] A f[Vo] = f[Uo A Vo] = f[0] = f[L] = M = 0.
o U= flUp| = ff_1[A°] = A, i.e. Av U =1 (and similarly for V).
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SKETCH OF PROOF I ! > M

A, Be B(M), AvB=1

| (@

f-1lA]l v f<1|B] = f[1] =1 f-1lAl, f-1|B] € RB(L)
W roma

HUo,‘/E)E% :UQA%—O f_1[A]\/U0=1=f_1[B]\/‘/0.

@\

U= flUp], V= f[W]| € B(M) satisfy:

e UAV = fUo] A f[Vo] = f[Uo A Vo] = f[0] = f[L] = M = 0.
o U= flUp| = ff_1[A°] = A, i.e. Av U =1 (and similarly for V).

f—1[—] preserves complements
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IMAGE AND PREIMAGE %-PRESERVING MAPS localicmap f: L — M

e image ZAB-preserving: f|—]| maps elements of (L) into B(M).

e preimage ZB-preserving: f_i1|—] maps elements of B(M) into B(L).

RB image 93 -preserving preimage 93 -preserving

c closed maps all
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RB image 93 -preserving preimage 93 -preserving
c closed maps all
0 open maps all
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IMAGE AND PREIMAGE %-PRESERVING MAPS localicmap f: L — M

e image ZAB-preserving: f|—]| maps elements of (L) into B(M).

e preimage ZB-preserving: f_i1|—] maps elements of B(M) into B(L).

RB image 93 -preserving preimage 93 -preserving

c closed maps all

0 open maps all

c* flav f*(b)) = f(a) v b f* of type E (e.g. nearly open)
regular [Banaschewski & Pultr]
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IMAGE AND PREIMAGE %-PRESERVING MAPS localicmap f: L — M

e image ZAB-preserving: f|—]| maps elements of (L) into B(M).

e preimage ZB-preserving: f_i1|—] maps elements of B(M) into B(L).

RB image 93 -preserving preimage 93 -preserving

c closed maps all

0 open maps all

c* flav f*(b)) = f(a) v b f* of type E (e.g. nearly open)
regular [Banaschewski & Pultr]

Ccoz flav f*(b)) = f(a) v b all
cozero
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ANOTHER FEATURE: take complements B Lw— (B(L))"

B -normal;

c(a) veb) =1 = FJu,v:c(u) Aclv) =1,¢ca) ve(u) =1=c(b) v c(v)
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ANOTHER FEATURE: take complements B Lw— (B(L))"

PB-normal: #B-disconnected.

o(a) vo(b)=1= Fu,v:o(u) Ao(v) =1,0(a) vo(u) =1=0(b) vo(v)
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ANOTHER FEATURE: take complements B L— (B(L))*

PB-normal: #B-disconnected.

o(a) vo(b)=1= Fu,v:o(u) Ao(v) =1,0(a) vo(u) =1=0(b) vo(v)

= [c(a)Aac(b) =0 = Fu,v: c(u)ve(v) =0,c(a)ac(u) =0 = c(b) Ac(v)]
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ANOTHER FEATURE: take complements B L— (B(L))*

PB-normal: #B-disconnected.

o(a) vo(b)=1= Fu,v:o(u) Ao(v) =1,0(a) vo(u) =1=0(b) vo(v)

[c(a)Anc(b) =0 = Fu,v: c(u)ve(v) =0,c(a)ac(u) =0 = c(b) Ac(v)]

lanb=0= Juvel:uvv=1, arnu=0=bAv]
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ANOTHER FEATURE: take complements B L— (B(L))*

PB-normal: #B-disconnected.

o(a) vo(b)=1= Fu,v:o(u) Ao(v) =1,0(a) vo(u) =1=0(b) vo(v)

[c(a)Anc(b) =0 = Fu,v: c(u)ve(v) =0,c(a)ac(u) =0 = c(b) Ac(v)]

lanb=0= Juvel:uvv=1, arnu=0=bAv]

need only for a,bregular (a Ab=0< a** A b** =0)
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ANOTHER FEATURE: take complements B L— (B(L))*

PB-normal: #B-disconnected.

o(a) vo(b)=1= Fu,v:o(u) Ao(v) =1,0(a) vo(u) =1=0(b) vo(v)

[c(a)Anc(b) =0 = Fu,v: c(u)ve(v) =0,c(a)ac(u) =0 = c(b) Ac(v)]

lanb=0= Juvel:uvv=1, arnu=0=bAv]

need only for a,bregular (a Ab=0< a** A b** =0)

(a AD)* =a* v b* [De Morgan frames]
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ANOTHER FEATURE: take complements B L— (B(L))*

PB-normal: #B-disconnected.

Selection 8  98-normal frames 9B -disconnected frames

c normal extremally disconnected
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ANOTHER FEATURE: take complements B L— (B(L))*

PBe-normal: 2B-disconnected.

Selection 8 %-normal frames A -disconnected frames
c normal extremally disconnected
c* mildly normal extremally disconnected
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ANOTHER FEATURE: take complements B L— (B(L))*

PBe-normal: 2B-disconnected.

Selection 8 %-normal frames A -disconnected frames
c normal extremally disconnected
c* mildly normal extremally disconnected
Cs o-normal extremally §-disconnected
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ANOTHER FEATURE: take complements B L— (B(L))*

PBe-normal: 2B-disconnected.

Selection 8 98-normal frames A -disconnected frames
c normal extremally disconnected
c* mildly normal extremally disconnected
Cs o-normal extremally §-disconnected
Ccoz all frames F-frames

F-frame = every cozero sublocale is C'**-embedded.
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ANOTHER FEATURE: take complements

THEOREM: Let f: L — M be a surjective localic map such that

B L— (B(L))*

fisimage 93-preserving and preimage 93-preserving.

If L I1s 98-normal then M Is also Z8-normal.
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ANOTHER FEATURE: take complements

COROLLARY: Let f: L — M be a surjective localic map such that

B L— (B(L))*

fisimage 93-preserving and preimage 93-preserving.

If LIS AB-normal then M Is also AB-normal.
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ANOTHER FEATURE: take complements

COROLLARY: Let f: L — M be a surjective localic map such that

B L— (B(L))*

fisimage 93-preserving and preimage 93-preserving.

If LIS AB-normal then M Is also AB-normal.

e preimage 93°-preserving = preimage 93-preserving

(because f_i|—| preserves complements)
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ANOTHER FEATURE: take complements

COROLLARY: Let f: L — M be a surjective localic map such that

B L— (B(L))*

fisimage 93-preserving and preimage 93-preserving.

If LIS AB-normal then M Is also AB-normal.

e preimage 93°-preserving = preimage 93-preserving

(because f_i|—| preserves complements)

Case # = c¢: ext. disc. locales are invariant under OPEN mappings.
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ANOTHER FEATURE: take complements localicmap f: L - M

e IMmage ZB°-preserving

e preimage 93°-preserving = preimage 9-preserving

RB image 98 °-preserving preimage 93 °-preserving

c open all
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ANOTHER FEATURE: take complements localicmap f: L - M

e IMmage ZB°-preserving

e preimage 93°-preserving = preimage 9-preserving

RB image 98 °-preserving preimage 93 °-preserving
c open all
c* nearly open f* of type E (e.g. nearly open)

[Banaschewski & Pultr]

June 25, 2015 Hausdorff mapping invariance theorems in Localic Topology TACL2015 —17




ANOTHER FEATURE: take complements localicmap f: L - M

e IMmage ZB°-preserving

e preimage 93°-preserving = preimage 9-preserving

RB image 98 °-preserving preimage 93 °-preserving

c open all

c* nearly open f* of type E (e.g. nearly open)
[Banaschewski & Pultr]

Ccoz ? all

June 25, 2015 Hausdorff mapping invariance theorems in Localic Topology TACL2015 —17




THE PERFECT CASE Perfect normality

In spaces [Michael 1956]:
VUeO(X)I(Un)pen €OX): U=, .yUnand U, €U Vn.
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In frames [Charalambous 1974]:

Vae L I(ap)n<EL: a=\a, and a, <a Vn.
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THE PERFECT CASE Perfect normality

In spaces [Michael 1956]:
VUeO(X)I(Un)nen s OX): U=, Unand U, €U Vn.

In frames [Charalambous 1974]:

Vae L I(ap)n<EL: a=\a, and a, <a Vn.

!
o -
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THE PERFECT CASE Perfect normality

In spaces [Michael 1956]:
VUeO(X)I(Un)pen €OX): U=, .yUnand U, €U Vn.

In frames [Charalambous 1974]:

Vae L I(ap)n<EL: a=\a, and a, <a Vn.

M + m every open is an F,-sublocale:

L is perfect= Y o(a), o(a) = A\, c(an)

June 25, 2015 Hausdorff mapping invariance theorems in Localic Topology TACL2015 —18




THE PERFECT CASE Perfect normality

In spaces [Michael 1956]:
VUeO(X)I(Un)pen €OX): U=, .yUnand U, €U Vn.

In frames [Charalambous 1974]:

Vae L I(ap)n<EL: a=\a, and a, <a Vn.

M + m every open is an F,-sublocale:

L is perfect= Y o(a), o(a) = A\, c(an)

Lis #-perfect= V Ae B, A= )\, An Witheach A, € #
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THE PERFECT CASE Perfect normality

B B-perfect  AB-perfectly normal RB-perfect I8 -perfectly normal

CCOZ
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THE PERFECT CASE Perfect normality

B B-perfect  AB-perfectly normal RB-perfect I8 -perfectly normal

c perfect perfectly normal  Boolean Boolean

CCOZ
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THE PERFECT CASE Perfect normality

B B-perfect  AB-perfectly normal RB-perfect I8 -perfectly normal

c perfect perfectly normal  Boolean Boolean
c* ? OZ frames ? extremally disconn.
CCOZ

OZ frame = every regular element is a cozero.
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THE PERFECT CASE Perfect normality

B B-perfect  AB-perfectly normal RB-perfect I8 -perfectly normal

c perfect perfectly normal  Boolean Boolean
c* ? OZ frames ? extremally disconn.
Coog ? all frames ? P-frames

OZ frame = every regular element is a cozero.

P-frame = Coz L Is complemented.
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THE PERFECT CASE

THEOREM: Let f: L — M be a surjective localic map such that
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THE PERFECT CASE

THEOREM: Let f: L — M be a surjective localic map such that

e fIS and

If L is 93-perfect then M is also %-perfect.
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THE PERFECT CASE

THEOREM: Let f: L — M be a surjective localic map such that
e fIS and

If L is 93-perfect then M is also %-perfect.

PROOF: I f > M
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THEOREM: Let f: L — M be a surjective localic map such that

e fIS and

THE PERFECT CASE

If L is 93-perfect then M is also %-perfect.

PROOF: I > M

B e #°(M)
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THE PERFECT CASE

THEOREM: Let f: L — M be a surjective localic map such that

e fIS and

If L is 93-perfect then M is also %-perfect.

PROOF: I f > M

ff-1[B] = B € #°(M)

June 25, 2015 Hausdorff mapping invariance theorems in Localic Topology TACL2015 — 19




THEOREM: Let f: L — M be a surjective localic map such that

e fIS and

THE PERFECT CASE

If L is 93-perfect then M is also %-perfect.

PROOF: I > M

ff-1[B] = B € #°(M)

e B(L)

f-1[—] preserves complements
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THE PERFECT CASE

THEOREM: Let f: L — M be a surjective localic map such that

e fIS and

If L is 93-perfect then M is also %-perfect.

PROOF: I f > M

A, € B(L) e #°(L)

f-1[—] preserves complements

ff-1[B] = B € #°(M)
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THE PERFECT CASE

THEOREM: Let f: L — M be a surjective localic map such that

e fIS and

If L is 93-perfect then M is also %-perfect.

PROOF: I f > M

A, € B(L) e #°(L)

f-1[—] preserves complements

Nn flAR] ff-1lB] = B e #5(M)

f[—] is a localic map
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THE PERFECT CASE

THEOREM: Let f: L — M be a surjective localic map such that

e fIS and

If L is 93-perfect then M is also %-perfect.

PROOF: L f >
Ao fl4n] = fIALA] = ffa[B] = Be2(M)
f[—] is a localic ma
¥ Ave A() c (L)
l f-1[—] preserves complements

flAn] € B(M).
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THE HEREDITARY CASE

Hereditary normality: normal spaces whose subspaces are all normal.
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THE HEREDITARY CASE

Hereditary normality: normal spaces whose subspaces are all normal.

!

Completely normal spaces:
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THE HEREDITARY CASE

Hereditary normality: normal spaces whose subspaces are all normal.

) )
Completely normal spaces: Q CB)
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THE HEREDITARY CASE

Hereditary normality: normal spaces whose subspaces are all normal.

¢ ,

Completely normal spaces: b

O
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THE HEREDITARY CASE

Hereditary normality: normal spaces whose subspaces are all normal.

) .
Completely normal spaces: Q 5
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THE HEREDITARY CASE

Hereditary normality: normal spaces whose subspaces are all normal.

’ A A

] “ ,‘-s\v
I
Completely normal spaces: ; I \
| 1
! ! ‘Q h
‘\ " ‘\_ ,'

June 25, 2015
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THE HEREDITARY CASE

Hereditary normality: normal spaces whose subspaces are all normal.
@ U'l' - .\\‘
’
A NV .~V

‘l ’ A}
Completely normal spaces: Q I
A0
) ) N '
\

X4

-..

- -

4
V4 ‘_;
A3
~ —’

Completely #-normal frames:

VA BeBIW,VeB:UAV=0B<AVUA<LBVYV.
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THE HEREDITARY CASE

Hereditary normality: normal spaces whose subspaces are all normal.
U'l' - .~\
@ AN -V

’ A}
Completely normal spaces:
‘\
\

4
N Y4
~ —’

’

]

IQ

|

N q

L4
D S

-..

|
1
]
|
]

]

- -

Completely #Z-normal frames:
VA, BeAZ U VeAB - UAV=0BK<AVUALBVYV.

Completely #-disconnected frames = completely %“-normal.
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THE HEREDITARY CASE

% closed under arbitrary joins

clg(S)=\/{Be#B|B<S}eH

intz(S) = N{Be % |B=>S}e H
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THE HEREDITARY CASE

% closed under arbitrary joins

clg(S)=\/{Be#B|B<S}eH

intx(S) = \{Be % |B=S}e S

A-separated sublocales: S v clg(T) =1=-clg(S)vT.
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THE HEREDITARY CASE

% closed under arbitrary joins

clg(S)=\/{Be#B|B<S}eH

intz(S) = N{Be % |B=>S}e H

A-separated sublocales: S v clg(T) =1=-clg(S)vT.

separated by #-sublocales: U, Ve %. UvV =1,5=>2U,T >V.
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THE HEREDITARY CASE

% closed under arbitrary joins

clg(S)=\/{Be#B|B<S}eH

intz(S) = N{Be % |B=>S}e H

A-separated sublocales: S v clg(T) =1=-clg(S)vT.

separated by #-sublocales: U, Ve %. UvV =1,5=>2U,T >V.

PROPOSITION: Let %4 be a sublocale selection, closed under joins.

TFAE for any L:
% L Is completely #-normal.
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THE HEREDITARY CASE % closed under arbitrary joins

clg(S)=\/{BeB|B<SteA||lintyg(S) =/ N\{BeB|B=S5}eH

A-separated sublocales: S v clg(T) =1=-clg(S)vT.

separated by #-sublocales: U, Ve %. UvV =1,5=>2U,T >V.

PROPOSITION: Let %4 be a sublocale selection, closed under joins.
TFAE for any L:

% L Is completely #-normal.

% Every pair of #-separated sublocales is separated by #°-sublocales.
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THE HEREDITARY CASE % closed under arbitrary joins

clg(S)=\/{BeB|B<SteA||lintyg(S) =/ N\{BeB|B=S5}eH

A-separated sublocales: S v clg(T) =1=-clg(S)vT.

separated by #-sublocales: U, Ve %. UvV =1,5=>2U,T >V.

PROPOSITION: Let %4 be a sublocale selection, closed under joins.
TFAE for any L:

% L Is completely #-normal.

% Every pair of #-separated sublocales is separated by #°-sublocales.

%S <clg(T) andintz(S) < T=3U,VeA: S<V <U°<T.
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THE HEREDITARY CASE % closed under arbitrary joins

Sublocale S of L
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THE HEREDITARY CASE % closed under arbitrary joins

Sublocale Sof L ~~~> Hq(L)={Sv B| Be A} < B(S(9))
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THE HEREDITARY CASE % closed under arbitrary joins

Sublocale Sof L ~~~> Hq(L)={Sv B| Be A} < B(S(9))

L i1s hereditarily Z-normal. every its sublocale S Is #Bg-normal.
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THE HEREDITARY CASE % closed under arbitrary joins

Sublocale Sof L ~~~> Hq(L)={Sv B| Be A} < B(S(9))

L i1s hereditarily Z-normal. every its sublocale S Is #Bg-normal.

THEOREM: Let % be a sublocale selection, closed under joins.
TFAE for any L:

% L Is completely #-normal
% L Is hereditarily #Z-normal

% Each B € %4 i1s Z-normal
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THE HEREDITARY CASE % closed under arbitrary joins

Sublocale Sof L ~~~> Hq(L)={Sv B| Be A} < B(S(9))

L i1s hereditarily Z-normal. every its sublocale S Is #Bg-normal.

C
THEOREM: Let £ be a sublocale selectionﬁlosed under joins.
TFAE for any L:

C
% L Is completely #-normal
% L is hereditarily %’C-normal

% Each B € &€ Is %ﬁnormal

June 25, 2015 Hausdorff mapping invariance theorems in Localic Topology TACL2015 —22




THE HEREDITARY CASE % closed under arbitrary joins

Sublocale Sof L ~~~> Hq(L)={Sv B| Be A} < B(S(9))

L i1s hereditarily Z-normal. every its sublocale S Is #Bg-normal.

C
THEOREM: Let £ be a sublocale selectionﬁlosed under joins.
TFAE for any L:

C
% L Is completely #-normal L i1s completely #-disconnected.

% L is hereditarily %’C-normal

L Is hereditarily #-disconnected.

% Each B € &€ Is %ﬁnormal

Each B € £ i1s £-disconnected.

June 25, 2015
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f:&(R) - S(L)
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f:&(R) - S(L)

BACKGROUND: the frame of reals

S(R) = Frm< (_7 Q)7 (pv _)(paq < Q) |
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f:&(R) - S(L)

BACKGROUND: the frame of reals

E(R) == Fm{(—q), (p,—) (P, g€ Q) | (1) (= q) A (p,—) =0forg<p,
(2) (—4q) v (p,—) = 1for g >p,
(3) (=) = Vey(— ),
4) Vyeq(—9) =1,
() (0, =) = Visp(r:—),
6) Vo0, —) =1).
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f:&(R) - S(L)
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[+ &[R) = S(L)
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[+ &[R) = S(L)

f(pa_) = C(L)
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[+ &[R) = S(L)

f(—q) € (L) f(p,—) € ¢(L)
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[+ &[R) = S(L)

f(_7 Q) = C(L)
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feUSCL) & Vp<q IFqec(L): f(—p) < Fpq < f(—0q)

[ =T f(_a Q) — \/r<q f(_7 T) S \/7“<q Fr,q S f(_’ Q). ]

def
#-USC(L) =Vp<q IFpqe P f(—p) < Fpg < fl—0a)

)

def
HB-LSC(L) =Vp<q IFpqe B : flq,—) < Fpq < f(p,—).

Y

B-C(L) = B-LSC(L) ~ B-USC(L)

IS lower Z-semicontinuous iff it is upper Z<-semicontinuous

. fis #c-continuous iff it Is #-continuous.
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AB-semicontinuity and  ZA-continuity: EXAMPLES

PB 9B -Usc PB-Isc 9B -continuous

C usc Isc continuous
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B PB-Usc PB-Isc 2B -continuous
C usc Isc continuous
¢* normal usc normal Isc normal continuous
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AB-semicontinuity and  ZA-continuity: EXAMPLES

B PB-Usc PB-Isc 2B -continuous

C usc Isc continuous

¢* normal usc normal Isc normal continuous
Cs regular usc regular Isc regular continuous
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FB-SEMICONTINUITY AND Z-CONTINUITY: EXAMPLES

B PB-Usc PB-Isc 2B -continuous

C usc Isc continuous

¢* normal usc normal Isc normal continuous
Cs regular usc regular Isc regular continuous
Cooy Zero usc zero Isc Zero continuous
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APPLICATION: insertion theorems

GENERAL INSERTION THEOREM.

TFAE for any frame L and any sublocale selection %:

% L Is completely #-normal.
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APPLICATION: insertion theorems

GENERAL INSERTION THEOREM.

% L Is completely #-normal.

% fi,sfo: i< g1 < fo, i < g2 < [fo
—— — ——
F(L) B—LSC(L) #A—USC(L)

U

1] e B-LSC(L),u e #-USC(L): f1 <1

A

u<f2.

TFAE for any frame L and any sublocale selection %:
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APPLICATION: insertion theorems

CoroLLARY 1 (case & = ¢). TFAE for any frame L:

% L is completely normal.

Of. o h<f. [T <fr = 31elSCL): i <I<I™ < fo
——
F(L)
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APPLICATION: insertion theorems

CoroLLARY 1 (case & = ¢). TFAE for any frame L:

% L is completely normal.

Of. o h<f. [T <fr = 31elSCL): i <I<I™ < fo
——
F(L)

COROLLARY 2 (case & = o). TFAE for any frame L:

% L 1s completely extremally disconnected.

Of o fi<fs, fi <fr = 31eLSC(L), IueUSC(L):
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F(L) J1<u<l<fo
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APPLICATION: insertion theorems

COROLLARY 3.

TFAE for any frame L:

% L is completely normal and extremally disconnected.

% L 1s normal and completely extremally disconnected.

) fi9,f<g¢°, fT<g = FheClL):f<h
—
F(L)

A

g.
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APPLICATION: insertion theorems regularization of a function

feF(L)st {geLSC(L) | g < f} # &
e lower regularization f°

fo(pa_):\/f(Q7_> fo(_7Q):\/f(p7_)*

q>p P<q
Then: f° e LSC(L)

fo<t

f©=VigeLSC(L) [ g < [}
e Dually: the upper regularization f= = —(—f)°.
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