A pointfree extension of the Fletcher construction

Jorge Picado Department of Mathematics University of Coimbra

(joint work with Maria João Ferreira)

V CITA, June 11, 2003

FLETCHER CONSTRUCTION IN TOP

 (X, \mathcal{T}) [P. Fletcher, 1970]

 $\mathfrak{A} =$ family of interior-preserving open covers

For each open part $A \in \mathcal{A} \in \mathfrak{A}$ let

$$E_A := (A \times A) \cup (X \setminus A \times X)$$

$$R_{\mathcal{A}} := \bigcap_{A \in \mathcal{A}} E_A \quad (\mathcal{A} \in \mathfrak{A})$$

$$S_{\mathfrak{A}} := \{ R_{\mathcal{A}} \mid \mathcal{A} \in \mathfrak{A} \}.$$

 $S_{\mathfrak{A}}$ is a subbase for a (transitive) quasi-unif. $\mathcal{E}_{\mathfrak{A}}$ on X such that $\mathcal{T}_1(\mathcal{E}_{\mathfrak{A}}) = \mathcal{T}$ $\mathcal{E}_{\mathfrak{A}}$ is compatible with the given \mathcal{T}

PROBLEM [Brümmer, 2001]:

How can one express the Fletcher construction in quasi-uniform frames/locales?

POINTFREE TOPOLOGY

THE CATEGORY OF QUASI-UNIFORM FRAMES

[J. P., 1995]

Entourages

 $E \in L \oplus L$

 $E \subseteq (L \times L, \leq)$ $(x, y) \leq (z, w) \in E \Rightarrow (x, y) \in E$ $\{x\} \times S \subseteq E \Rightarrow (x, \bigvee S) \in E$ $S \times \{x\} \subseteq E \Rightarrow (\bigvee S, x) \in E$

such that $\bigvee_{(x,x)\in E} x = 1.$

 $x \oplus y := \downarrow (x, y) \cup \{(0, a), (a, 0) \mid a \in L\}$

 $E \circ F := \bigvee \{ x \oplus y \mid \exists z \neq 0 : x \oplus z \subseteq E, z \oplus y \subseteq F \}$

2

Objects (L, \mathcal{E}) $\mathcal{E} \neq \emptyset$ filter of $(Ent(L), \subseteq)$ (Q1) $\forall E \in \mathcal{E}$ $\exists F \in \mathcal{E} : F \circ F \subseteq E$ (Q2) $\forall x \in L$ $x = \bigvee \{y \in L \mid y \not \triangleleft_1 x\}$ $\exists E \in \overline{\mathcal{E}} = \mathcal{E} \cup \mathcal{E}^{-1} : E \circ (y \oplus y) \subseteq x \oplus x$

 $y \stackrel{\overline{\mathcal{E}}}{\triangleleft_2} x \equiv \exists E \in \overline{\mathcal{E}} : (y \oplus y) \circ E \subseteq x \oplus x$

 $(L,\mathcal{E}) \in QUFrm \xrightarrow{\mathcal{L}_i(\mathcal{E})} := \{x \in L \mid x = \bigvee \{y \in L \mid y \stackrel{\mathcal{E}}{\triangleleft_i} x\} \\ (L,\mathcal{L}_1(\mathcal{E}),\mathcal{L}_2(\mathcal{E}))$

is a biframe

FRM

THE SUBOBJECT LATTICELocale X

MOTIVATING EXAMPLE [W. Hunsaker, J.P., 2002]

Frame L

 $(\mathfrak{C}L, \nabla L, \Delta L)$

 $\underline{E_a} := (\nabla_a \oplus 1) \lor (1 \oplus \Delta_a) \ (a \in L)$

The E_a $(a \in L)$ generate a quasi-uniformity \mathcal{P} on $\mathfrak{C}L$

$$(\mathfrak{C}L, \mathcal{P})$$

$$\downarrow$$

$$\downarrow$$

$$\mathcal{L}_1(\mathcal{P}) = \nabla L \cong L \quad \text{compatible}$$

The pointfree Császár-Pervin quasi-unif. \mathcal{P}

FLETCHER CONSTRUCTION IN FRM

 $\underline{E_a} := (\nabla_a \oplus 1) \lor (1 \oplus \Delta_a) \quad a \in L$

 \mathcal{A} : family of covers of L **Interior-preserving covers**

Finite covers

Locally finite covers $A \subseteq L$

• \exists cover $C \subseteq L$ s.t., for every $c \in C$,

 $A_c := \{a \in A \mid a \land c \neq 0\} < \infty.$

Spectra covers $A = \{a_n \mid n \in \mathbb{Z}\} \subseteq L$

•
$$a_n \leq a_{n+1}$$

• $\bigvee_{n \in \mathbb{Z}} \Delta_{a_n} = 1$ (in particular, $\bigwedge_{n \in \mathbb{Z}} a_n = 0$).

Well-monotone covers $A \subseteq L$,

• well-ordered by the partial order \leq of L.

THE CONSTRUCTION

 $\mathcal{A} =$ family of int.-pres. Fletcher covers of L

 $\mathcal{S}_{\mathcal{A}} := \{ R_A \mid A \in \mathcal{A} \}$

 $\mathcal{E}_{\mathcal{A}}$:= the filter of $Ent(\mathfrak{C}L)$ generated by $\mathcal{S}_{\mathcal{A}}$

LEMMA. $\bigcup \mathcal{A}$ subbase of $L \Rightarrow \mathcal{L}_1(\mathcal{E}_{\mathcal{A}}) = \nabla L$

PROBLEM But, in general, $\mathcal{L}_2(\mathcal{E}_A) \subseteq \Delta L$

so $(\mathfrak{C}L, \mathcal{L}_1(\mathcal{E}_A), \mathcal{L}_2(\mathcal{E}_A))$ may not be a biframe!

SOLUTION $\mathfrak{C}L' = \langle \nabla L \cup \mathcal{L}_2(\mathcal{E}_A) \rangle$ subframe of $\mathfrak{C}L$

$$\mathbf{R}'_{\mathbf{A}} := R_{\mathbf{A}} \cap (\mathfrak{C}L' \times \mathfrak{C}L')$$

$$\mathcal{S}'_{\mathcal{A}} := \{ R'_{\mathcal{A}} \mid A \in \mathcal{A} \}$$

 $(\mathfrak{C}L', \mathcal{E}'_{\mathcal{A}})$ is a quasi-uniform frame compatible with L transitive

Subbase	Quasi-unif.
$\{R_A \mid A \text{ finite cover of } L\}$	\mathcal{P}
$\{R_A \mid A \text{ intpres. Fletcher cover of } L\}$	\mathcal{FT}
$\{R_A \mid A \text{ locally finite cover of } L\}$	\mathcal{LF}
$\{R_A \mid A \text{ cover of } L, \text{ well-ordered by } \leq\}$	\mathcal{W}
$\{R_A \mid A \text{ open spectrum of } L\}$	SC
$\{R_A \mid A \text{ open spectrum of } L\}$	SC

THE CONSTRUCTION ACCOUNTS FOR ALL TRANSITIVE QUASI-UNIFORMITIES

 ${\mathcal E}$ a transitive quasi-unif. on a subframe ${\mathfrak C} L' \subseteq {\mathfrak C} L$, compatible with L

 ${\mathcal S}$ transitive subbase, $E\in {\mathcal S}$

 $st_1(\theta, E) := \bigvee \{ \alpha \in \mathfrak{C}L' | (\alpha, \beta) \in E, \beta \land \theta \neq 0 \} \in \underbrace{\mathcal{L}_1(\mathcal{E})}_{=\nabla L}$

 $st_1(\theta, E) = \nabla_{E[\theta]}$ for some $E[\theta] \in L$

$$CovE := \{E[\theta] \mid (\theta, \theta) \in E\}$$

PROPOSITION. For each $E \in S$:

(1) CovE is an int.-pres. Fletcher cover of L. (2) $\bigcup_{E \in S} CovE$ is a subbase for L. $\mathcal{A} \subseteq CovL$ induces \mathcal{E} if $\{R'_A \mid A \in \mathcal{A}\}$ is a subbase of \mathcal{E}

THM. 1. Each compatible transitive quasi-unif. on a subframe of $\mathfrak{C}L$ is induced by a set \mathcal{A} of int.-pres. Fletcher covers of L s.t. $\bigcup \mathcal{A}$ is a subbase for L.

THM 2. Let \mathcal{E} be a compatible transitive quasi-unif. on a subframe of $\mathfrak{C}L$ and let

$$\mathcal{A} = \{ A \mid A \in CovL, R'_A \in \mathcal{E} \}.$$

Then:

(1) A is the largest subset of CovL that induces E.
(2) Each A ∈ A is an int.-pres. Fletcher cover of L.
(3) ∪ A is a base for L.