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OUTLINE

• AIM: to give an overview of the basics of point-free topology.
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OUTLINE

• AIM: to give an overview of the basics of point-free topology.

• Part I. Frames: the algebraic facet of spaces

• Part II. Locales: the geometric facet of frames

• Part III. Categorical aspects of Frm and Loc

• Part IV. Doing topology in Loc
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WHAT IS POINT-FREE TOPOLOGY?

• It is an approach to topology taking the lattices of open sets as the
primitive notion.
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WHAT IS POINT-FREE TOPOLOGY?

• It is an approach to topology taking the lattices of open sets as the
primitive notion.

• The techniques may hide some geometrical intuition, but often
offers powerful algebraic tools and opens new perspectives.
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‘lattice theory applied to topology’ ‘topology itself’

Loc � Frmop


locales

localic maps

«The topological structure of a locale cannot live in its points: the
points, if any, live on the open sets rather than the other way about.»

P. T. Johnstone

[The art of pointless thinking, Category Theory at Work (1991)]
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WHAT IS POINT-FREE TOPOLOGY?

it is developed in the categories

Frm


frames

frame homomorphisms

‘lattice theory applied to topology’ ‘topology itself’

Loc � Frmop


locales

localic maps

«(...) what the pointfree formulation adds to the classical theory is a
remarkable combination of elegance of statement, simplicity of proof,
and increase of extent.» R. Ball & J. Walters-Wayland

[C- and C∗-quotients in pointfree topology,Dissert. Math. (2002)]

MORE: different categorical properties with advantage to the
point-free side.
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SOME HISTORY

The idea of approaching topology via algebra (lattice theory) goes
back to the ’30s-40’s:

Stone, Tarski, Wallman, ...
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• ORIGINS:

Seminar C. Ehresmann (1958) “local lattices”

1st talk (H. Dowker, Prague Top. Symp. 1966)

groundbreaking paper (J. Isbell, Atomless parts of spaces, 1972)

1st book (P. T. Johnstone, Stone Spaces, CUP 1982)
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SOME HISTORY

The idea of approaching topology via algebra (lattice theory) goes
back to the ’30s-40’s:

Stone, Tarski, Wallman, ...

• ORIGINS:

Seminar C. Ehresmann (1958) “local lattices”

1st talk (H. Dowker, Prague Top. Symp. 1966)

groundbreaking paper (J. Isbell, Atomless parts of spaces, 1972)

1st book (P. T. Johnstone, Stone Spaces, CUP 1982)

Later: autonomous subject with

• RAMIFICATIONS: category theory, topos theory, logic and
computer science.
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SOME HISTORY: MILESTONES

1. F. Hausdorff (1914). Neighborhood or open as primitive notion.
This notion supplanted speedily any previous attempt (Fréchet) to
give a notion of abstract space. As early as in 1914 it was already
known that a topological space had a lattice of open subsets.

2. M.H. Stone (1934). Revolutionary idea: the possibility of
constructing interesting spaces from purely algebraic data.
Lattice-theoretic approach to topology. Stone, walking from
geometric to algebraic contents, brings to us the algebraic flavour of
topology.

3. Séminaire Ehresmann (1959). J. Bénabou, C. Ehresmann, D. and S.
Pappert. (Don’t forget H. Dowker). Fundamental change (the
means became an end). Lattices with appropriate distributivity,
considered as generalized topological spaces.

4. J. Isbell (1972). Introduced the category of locales, as a substitute for
(and in many ways an improvement on) the category of topological
spaces. Revolutionary step of turning the arrows around.
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PART I.
Frames: the algebraic facet of spaces



FROM SPACES TO FRAMES

Top

(X,Ω(X))
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FROM SPACES TO FRAMES

Top

(X,Ω(X)) // (Ω(X), ⊆)

• complete lattice:∨
Ui �

⋃
Ui , 0 � ∅

U ∧ V � U ∩ V , 1 � X∧
Ui � int(⋂ Ui)
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Top

(X,Ω(X)) // (Ω(X), ⊆)

• complete lattice:∨
Ui �

⋃
Ui , 0 � ∅

U ∧ V � U ∩ V , 1 � X∧
Ui � int(⋂ Ui)

more:

U ∧∨
I Vi �

∨
I(U ∧ Vi)

f

��
(Y,Ω(Y)) // (Ω(Y), ⊆)

f −1
[−]

OO

• f −1[−] preserves ∨
and ∧
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FROM SPACES TO FRAMES

Top

(X,Ω(X)) // (Ω(X), ⊆)

• complete lattice L∨
Ui �

⋃
Ui , 0 � ∅

U ∧ V � U ∩ V , 1 � X∧
Ui � int(⋂ Ui)

frame:

a ∧∨
I bi �

∨
I(a ∧ bi)

f

��
(Y,Ω(Y)) // (Ω(Y), ⊆)

f −1
[−]

OO

• frame homomorphisms: h : M → L preserves
∨

and ∧
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(X,Ω(X)) // (Ω(X), ⊆)

• complete lattice L∨
Ui �

⋃
Ui , 0 � ∅

U ∧ V � U ∩ V , 1 � X∧
Ui � int(⋂ Ui)
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I bi �
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f −1
[−]

OO

• frame homomorphisms: h : M → L preserves
∨
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FROM SPACES TO FRAMES

Top

(X,Ω(X)) // (Ω(X), ⊆)

• complete lattice L∨
Ui �

⋃
Ui , 0 � ∅

U ∧ V � U ∩ V , 1 � X∧
Ui � int(⋂ Ui)

frame:

a ∧∨
I bi �

∨
I(a ∧ bi)

f

��
(Y,Ω(Y)) // (Ω(Y), ⊆)

f −1
[−]

OO

• frame homomorphisms: h : M → L preserves
∨

and ∧

Ω // Frm

The algebraic nature of the category Frm is obvious.
More about that later on...
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MORE EXAMPLES of frames

• Finite distributive lattices, complete Boolean algebras, complete
chains.

1:
0 � 1

2:

• subframe of a frame L: S ⊆ L closed under arbitrary joins
(in part. 0 ∈ S) and finite meets (in part. 1 ∈ S).

• intervals of a frame L: a , b ∈ L, a ≤ b
[a , b] � {x ∈ L | a ≤ x ≤ b}, ↓b � [0, b], ↑a � [a , 1].

September 2019: Summer School Frames and locales – 8 –



MORE EXAMPLES of frames

• Finite distributive lattices, complete Boolean algebras, complete
chains.

1:
0 � 1

2:

• subframe of a frame L: S ⊆ L closed under arbitrary joins
(in part. 0 ∈ S) and finite meets (in part. 1 ∈ S).

• intervals of a frame L: a , b ∈ L, a ≤ b
[a , b] � {x ∈ L | a ≤ x ≤ b}, ↓b � [0, b], ↑a � [a , 1].

September 2019: Summer School Frames and locales – 8 –



MORE EXAMPLES of frames

• Finite distributive lattices, complete Boolean algebras, complete
chains.

1:
0 � 1

2:

• subframe of a frame L: S ⊆ L closed under arbitrary joins
(in part. 0 ∈ S) and finite meets (in part. 1 ∈ S).

• intervals of a frame L: a , b ∈ L, a ≤ b
[a , b] � {x ∈ L | a ≤ x ≤ b}, ↓b � [0, b], ↑a � [a , 1].

September 2019: Summer School Frames and locales – 8 –



MORE EXAMPLES of frames

• Finite distributive lattices, complete Boolean algebras, complete
chains.

1:
0 � 1

2:

• subframe of a frame L: S ⊆ L closed under arbitrary joins
(in part. 0 ∈ S) and finite meets (in part. 1 ∈ S).

• intervals of a frame L: a , b ∈ L, a ≤ b
[a , b] � {x ∈ L | a ≤ x ≤ b}, ↓b � [0, b], ↑a � [a , 1].

September 2019: Summer School Frames and locales – 8 –



MORE EXAMPLES of frames: relatives of Frm

• For any ∧-semilattice (A,∧, 1),D(A) � {down-sets of A} is a
frame: ∧

�
⋂
,

∨
�

⋃
.

SLat
D //

Frm
G

oo (forgetful functor)
⊥
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• For any ∧-semilattice (A,∧, 1),D(A) � {down-sets of A} is a
frame: ∧

�
⋂
,

∨
�

⋃
.

SLat
D //

Frm
G

oo (forgetful functor)⊥

HomFrm(D(A), L) ' HomSLat(A,G(L))
h 7→ (h̃ : a 7→ h(↓a))

(g : S 7→ ∨
g[S]) 7→ g
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MORE EXAMPLES of frames: relatives of Frm

• For any distributive lattice A, I(A) � {ideals of A} is a frame:∧
�

⋂
, J ∨ K � {a ∨ b | a ∈ J, b ∈ K}.

DLat
I //

Frm
E

oo (inclusion as a non-full
subcategory)

⊥
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EXAMPLES of frame homomorphisms

• All homomorphisms of finite distributive lattices.

• Complete homomorphisms of complete Boolean algebras.

• For any frame L, a ∈ L:

∆a : L → ↓a
x 7→ x ∧ a

∇a : L → ↑a
x 7→ x ∨ a

• For any frame L, there exist unique 2→ L, L→ 1.
initial object terminal object

• ∨
: I(L) → L

J 7→ ∨
J

∨
: D(L) → L

S 7→ ∨
S
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BACKGROUND: POSETS AS CATEGORIES

(A, ≤) as a thin category



September 2019: Summer School Frames and locales – 12 –



BACKGROUND: POSETS AS CATEGORIES

(A, ≤) as a thin category


OBJECTS: a ∈ A

September 2019: Summer School Frames and locales – 12 –



BACKGROUND: POSETS AS CATEGORIES

(A, ≤) as a thin category


OBJECTS: a ∈ A

MORPHISMS: a
∃!−→ b whenever a ≤ b

(there is at most one arrow between any pair of objects)

September 2019: Summer School Frames and locales – 12 –
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(A, ≤) as a thin category


OBJECTS: a ∈ A

MORPHISMS: a
∃!−→ b whenever a ≤ b

(there is at most one arrow between any pair of objects)

a b

c

f

1a

g ◦ f g

1c

1b

In fact, a preorder suffices:
(1) reflexivity: provides the identity morphisms 1a .

(2) transitivity: provides the composition of morphisms g ◦ f .
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BACKGROUND: PREORDERS AS CATEGORIES

(A, ≤) as a thin category


OBJECTS: a ∈ A

MORPHISMS: a
∃!−→ b whenever a ≤ b

FUNCTORS: f : A // B

a //

≤
��

f (a)
≤
��

a′ // f (a′)

order-preserving maps

(binary) PRODUCTS: a ?oo // b

c

OOaa ==
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
OBJECTS: a ∈ A

MORPHISMS: a
∃!−→ b whenever a ≤ b

FUNCTORS: f : A // B

a //

≤
��

f (a)
≤
��

a′ // f (a′)

order-preserving maps

(binary) COPRODUCTS: a //

!!

a ∨ b

��

boo

}}
c

joins
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BACKGROUND: PREORDERS AS THIN CATEGORIES

“Existence of limits” means “existence of coproducts”

(because equalizers exist trivially in thin categories)

so “existence of limits” (i.e. “complete category”)

means “complete lattice”.

From this point of view:

category theory is an extension of lattice theory
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1 f g f � f and g f g � g.

2 (A, ≤)
f // (B, ≤)
g

oo

g[B]

⊆

f [A]

⊆

'
g[B] � {a ∈ A | g f (a) � a}

f [A] � {b ∈ B | f g(b) � b}
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(GALOIS) ADJUNCTIONS

ADJOINT FUNCTOR THEOREM
Let f : A→ B be an order-preserving map between posets. Then:

(1) If f has a right adjoint, then f preserves all joins that exist in A.

(2) If A has all joins and f preserves them, then f has a right adjoint
g, uniquely determined by f :

g(b) � ∨{a ∈ A | f (a) ≤ b}.
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∨

S exists. f (∨ S) ?
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f (∨ S) ≤ b iff
∨
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ADJOINT FUNCTOR THEOREM
Let f : A→ B be an order-preserving map between posets. Then:

(1) If f has a right adjoint, then f preserves all joins that exist in A.
(2) If A has all joins and f preserves them, then f has a right adjoint

g, uniquely determined by f :
g(b) � ∨{a ∈ A | f (a) ≤ b}.

Proof:
f (a) ≤ b iff a ≤ g(b)

?

⇒: obvious by the definition of g.

⇐: a ≤ g(b) ⇒ f (a) ≤ f g(b) � f (∨{a ∈ A | f (a) ≤ b})
�

∨{ f (a) | f (a) ≤ b} ≤ b.
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FRAMES as HEYTING ALGEBRAS

Heyting algebra: lattice L with an extra→ satisfying

a ∧ b ≤ c iff b ≤ a → c
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FRAMES as HEYTING ALGEBRAS

Heyting algebra: lattice L with an extra→ satisfying

a ∧ b ≤ c iff b ≤ a → c

i.e.
a ∧ (−) a a → (−).

A complete lattice is an Heyting algebra iff it is a frame.

Proof: This is the ADJOINT FUNCTOR THEOREM!

⇒: a ∧ (−) is a left adjoint⇒ preserves joins.

⇐: a ∧ (−) preserves joins (=colimits)⇒ it has a right adjoint. �

∴ frames = cHa. BUT different categories (morphisms).
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FRAMES as HEYTING ALGEBRAS

PropertiesH1 a → (∧ bi) �
∧(a → bi).
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FRAMES as HEYTING ALGEBRAS

PropertiesH1 a → (∧ bi) �
∧(a → bi).

H2 a ≤ b → c iff b ≤ a → c.

H3 (∨ ai) → b �
∧(ai → b).

H4 a → b � a → (a ∧ b).

H5 a ∧ (a → b) � a ∧ b.

H6 a ∧ b � a ∧ c iff a → b � a → c.
H7 (a ∧ b) → c � a → (b → c) � b → (a → c).

H8 a � (a ∨ b) ∧ (b → a).

H9 a ≤ (a → b) → b.

H10 ((a → b) → b) → b � a → b.
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Pseudocomplement: a∗ � a → 0 �
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FRAMES as HEYTING ALGEBRAS

PropertiesH1 a → (∧ bi) �
∧(a → bi).

H2 a ≤ b → c iff b ≤ a → c.

H3 (∨ ai) → b �
∧(ai → b).

...

Pseudocomplement: a∗ � a → 0 �
∨{b | b ∧ a � 0}.

in Ω(X): U∗ � int (X rU).

P1 a ≤ b ⇒ b∗ ≤ a∗. Properties

P2 a ≤ a∗∗ , a∗∗∗ � a∗.

P3 (∨ ai)∗ �
∧

a∗i . [De Morgan law] (Caution: not for
∧
)
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PART II.
Locales: the geometric facet of frames



MAKING THE PICTURE COVARIANT: the category of locales

Top Ω // Frm Contravariant

(X,Ω(X)) // (Ω(X), ⊆)

f

��
(Y,Ω(Y)) // (Ω(Y), ⊆)

f −1
[−]

OO
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MAKING THE PICTURE COVARIANT: the category of locales

Top Ω // Frm Contravariant

Loc � Frmop Covariant

• OBJECTS: locales = frames (=cHa)

•MORPHISMS: L

f

��
M

L

M

h

OO

preserves
∨

(incl. 0)

∧ (incl. 1)

Loc Frm

frame homomorphisms
taken backwards
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MAKING THE PICTURE COVARIANT: the category of locales

We can put this in a more CONCRETE way:
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MAKING THE PICTURE COVARIANT: the category of locales

We can put this in a more CONCRETE way:

Each h : M → L in Frm has a UNIQUELY defined right adjoint

h∗ : L→ M

that can be used as a representation of the h as a mapping going in
the proper direction.
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MAKING THE PICTURE COVARIANT: the category of locales

We can put this in a more CONCRETE way:

Each h : M → L in Frm has a UNIQUELY defined right adjoint

h∗ : L→ M

that can be used as a representation of the h as a mapping going in
the proper direction.

LOCALIC MAP:
amap f : L→ M that has a left adjoint f ∗ inFrm, i.e., preserving
finite meets:
(1) f ∗(1) � 1.
(2) f ∗(a ∧ b) � f ∗(a) ∧ f ∗(b).
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MAKING THE PICTURE COVARIANT: the category of locales

PROPOSITION
Let f : L→ M have a left adjoint f ∗. Then:
(1) f ∗(1) � 1 iff f [L r {1}] ⊆ M r {1}.

(2) f ∗(a ∧ b) � f ∗(a) ∧ f ∗(b) ∀a , b ∈ L iff

f ( f ∗(a) → b) � a → f (b) ∀a , b ∈ L.
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Proof: (1)

⇒:
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MAKING THE PICTURE COVARIANT: the category of locales

Loc

• OBJECTS: locales = frames (=cHa)

•MORPHISMS: L

f

��
M

• f (∧ S) � ∧
f [S]

• f (a) � 1⇒ a � 1

• f ( f ∗(a) → b) � a → f (b)
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MAKING THE PICTURE COVARIANT: the category of locales

Top Ω // Frm is immediately modifiable to a functor
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MAKING THE PICTURE COVARIANT: the category of locales

Top Ω // Frm is immediately modifiable to a functor

Top Lc // Loc

X � //

f
��

Ω(X)
Ω( f )∗�Lc( f )
��

Y � // Ω(Y)

Ω( f )

>>
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MAKING THE PICTURE COVARIANT: the category of locales

Top Ω // Frm is immediately modifiable to a functor

Top Lc // Loc

X � //

f
��

Ω(X)
Ω( f )∗�Lc( f )
��

Y � // Ω(Y)

Ω( f )

>> U

��

Y r f [X rU]
Why?

f −1[V] ⊆ U iff V ⊆ Y r f [X rU] (since f −1[−] a f [−c]c)

iff V ⊆ int (Y r f [X rU]) � Y r f [X rU].
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THE SPECTRUMOF A LOCALE

Top a point x of X is a continuous map {∗} −→ X
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��
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Abstraction: a point of a general locale L is a localic map
p : 2 → L
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��

Ω({∗}) � 2 −→ Ω(X)

Abstraction: a point of a general locale L is a localic map
p : 2 → L

1 7→ 1
0 7→ a , 1.
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Top a point x of X is a continuous map {∗} −→ X

Loc

Lc
��

Ω({∗}) � 2 −→ Ω(X)

Abstraction: a point of a general locale L is a localic map
p : 2 → L

1 7→ 1
0 7→ a , 1.

x ∧ y ≤ a � p(0) iff p∗(x) ∧ p∗(y) ≤ 0
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THE SPECTRUMOF A LOCALE

Top a point x of X is a continuous map {∗} −→ X

Loc

Lc
��

Ω({∗}) � 2 −→ Ω(X)

Abstraction: a point of a general locale L is a localic map
p : 2 → L

1 7→ 1
0 7→ a , 1.

x ∧ y ≤ a � p(0) iff p∗(x) ∧ p∗(y) ≤ 0

⇒ p∗(x) � 0 or p∗(y) � 0

iff x ≤ p(0) � a or y ≤ p(0) � a.


a , 1

∧-irreducibles
(Prime elements)
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THE SPECTRUMOF A LOCALE

Top a point x of X is a continuous map {∗} −→ X

Loc

Lc
��

Ω({∗}) � 2 −→ Ω(X)

Abstraction: a point of a general locale L is a localic map
p : 2 → L

1 7→ 1
0 7→ a , 1.

x ∧ y ≤ a � p(0) iff p∗(x) ∧ p∗(y) ≤ 0

⇒ p∗(x) � 0 or p∗(y) � 0

iff x ≤ p(0) � a or y ≤ p(0) � a.


a , 1

∧-irreducibles
(Prime elements)

Pt(L)
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THE SPECTRUMOF A LOCALE

a ∈ L, Σa � {p ∈ Pt(L) | a � p}.
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��
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THE SPECTRUMOF A LOCALE

a ∈ L, Σa � {p ∈ Pt(L) | a � p}.

This is a TOPOLOGY in Pt(L):

Σ0 � ∅, Σ1 � Pt(L), Σa ∩ Σb � Σa∧b ,
⋃
Σai � Σ

∨
ai .

SPECTRUM of L

Loc Pt // Top

L

f

��

// Pt(L)

f|Pt(L)

��
M // Pt(M)

Localic maps send points to points

Pt( f )−1(Σb) � {p ∈ Pt(L) | b � f (p)} � {p | f ∗(b) � p} � Σ f ∗(b).
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SPACES AND LOCALES

Top
Lc //

Pt
oo Loc
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Lc //

Pt
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A frame is SPATIAL if it is isomorphic to some topology.

September 2019: Summer School Frames and locales – 7 –



SPACES AND LOCALES

Top
Lc //

Pt
oo Loc

A frame is SPATIAL if it is isomorphic to some topology.

Lc(X) is always spatial.

September 2019: Summer School Frames and locales – 7 –



SPACES AND LOCALES

Top
Lc //

Pt
oo Loc

A frame is SPATIAL if it is isomorphic to some topology.

Lc(X) is always spatial.

A space X is SOBER if every meet-irreducible open is of the form

X r {x}

for a unique x ∈ X. T2 ⊂ Sob ⊂ T0

no relation with T1
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A frame is SPATIAL if it is isomorphic to some topology.

Lc(X) is always spatial.

A space X is SOBER if every meet-irreducible open is of the form

X r {x}

for a unique x ∈ X. T2 ⊂ Sob ⊂ T0

no relation with T1
Pt(L) is always sober.
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SPACES AND LOCALES

Top
Lc //

Pt
oo Loc⊥

UNIT: ηX : X → Pt Lc(X)
x 7→ X r {x}
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SPACES AND LOCALES

Top
Lc //

Pt
oo Loc⊥

UNIT: ηX : X → Pt Lc(X)
x 7→ X r {x}

PROPOSITION. ηX is a homeomorphism iff X is sober.
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PROPOSITION. ηX is a homeomorphism iff X is sober.

COUNIT: εL : Lc Pt(L) → L
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SPACES AND LOCALES

Top Loc
Lc

&&

Pt

ff ⊥
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SPACES AND LOCALES

Top Loc
Lc

&&

Pt

ff ⊥

Sob
SpLoc

oo ' //

equivalence

Perception: Sob more representative of all of Top than SpLoc of Loc.
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SPACES AND LOCALES

Top Loc
Lc

&&

Pt

ff ⊥

Sob
SpLoc

oo ' //

equivalence

•X

Pt Lc

��
•Pt Lc(X)

“sobrification” of a space
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SPACES AND LOCALES

Top Loc
Lc

&&

Pt

ff ⊥

Sob
SpLoc

oo ' //

equivalence

•X

Pt Lc

��
•Pt Lc(X)

“sobrification” of a space

•L

Lc Pt

��
•Lc Pt(L)

“spatialization” of a locale
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POINT-FREE REPRESENTATION OF TOPOLOGICAL DATA

Each SOBER space can be reconstructed from the lattice Ω(X).
Moreover:

September 2019: Summer School Frames and locales – 10 –



POINT-FREE REPRESENTATION OF TOPOLOGICAL DATA

Each SOBER space can be reconstructed from the lattice Ω(X).
Moreover:

Top(X, Y) Ω // Loc(Ω(X),Ω(Y))

September 2019: Summer School Frames and locales – 10 –



POINT-FREE REPRESENTATION OF TOPOLOGICAL DATA

Each SOBER space can be reconstructed from the lattice Ω(X).
Moreover:

Top(X, Y) Ω // Loc(Ω(X),Ω(Y))

for SOBER Y: '

September 2019: Summer School Frames and locales – 10 –



POINT-FREE REPRESENTATION OF TOPOLOGICAL DATA

Each SOBER space can be reconstructed from the lattice Ω(X).
Moreover:

Top(X, Y) Ω // Loc(Ω(X),Ω(Y))

for SOBER Y: '
(less well-known: this characterizes the sobriety of Y)
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Top(X, Y) Ω // Loc(Ω(X),Ω(Y))

for SOBER Y: '
MORE: axiom TD characterizes other facts...
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POINT-FREE REPRESENTATION OF TOPOLOGICAL DATA

Each SOBER space can be reconstructed from the lattice Ω(X).
Moreover:

Top(X, Y) Ω // Loc(Ω(X),Ω(Y))

for SOBER Y: '
MORE: axiom TD characterizes other facts...

Singletons are locally closed i.e. each {x} is closed in some open U:

∀x ∈ X ∃ open U 3 x : {x} � U ∩ {x}.

T2 T1

Sob

TD T0
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THE BOOLEAN CASE: non-spatial locales

PROPOSITION. L is spatial iff each a , 1 is a meet of points of L.
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Proof: Let p < x, p meet-irreducible. Then

0 � x ∧ ¬x ≤ p ��
⇒ ¬x ≤ p ⇒ ¬x ≤ x ⇒ x � 1.

By the Proposition,

B spatial ⇒ each a , 1 in B is a meet of co-atoms

⇔ each a , 1 in B is a join of atoms (by complement.). �
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Generalized subspaces: SUBLOCALES

S ⊆ L is a SUBLOCALE of L if:
L

1

0

•

•
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L

1

0

•

•

•∧
S

•1

S

(S1) ∀A ⊆ S,
∧

A ∈ S.

(S2) ∀a ∈ L, ∀s ∈ S, a → s ∈ S.

S is itself a locale:
∧

S �
∧

L, →S�→L

but
⊔

si �
∧{s ∈ S | ∨ si ≤ s}.

Motivation for the definition:

Proposition
S ⊆ L is a sublocale iff the embedding jS : S ⊆ L is a localic map.
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THE SUBLOCALE LATTICE

S(L): sublocales of L, ordered by ⊆
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∧
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(H6)
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Then x � a ∧ bi , ∀i
(H6)
⇒ a → bi︸ ︷︷ ︸

b∈
⋂
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does not depend on i.

(H5)
� a ∧ (a → bi) � a ∧ b ∈ A ∨ (⋂ Bi). �
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PART III.
Categorical aspects of Frm



ALGEBRAIC ASPECTS OF Frm

1 Frm is equationally presentable i.e.
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Objects are described by a (proper class of) operations and equations:

OPERATIONS:
– 0-ary: 0, 1: L0 → L
– binary: L2 → L, (a , b) 7→ a ∧ b
– κ-ary (any cardinal κ): Lκ → L, (ai)κ 7→

∨
κ ai
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OPERATIONS:
– 0-ary: 0, 1: L0 → L
– binary: L2 → L, (a , b) 7→ a ∧ b
– κ-ary (any cardinal κ): Lκ → L, (ai)κ 7→

∨
κ ai

EQUATIONS:
– (L,∧, 1) is an idempotent commutative monoid
– with a zero 0 sat. the absorption law a ∧ 0 � 0 � 0 ∧ a ∀a.
–

∨
0 ai � 0, a j ∧

∨
κ ai � a j , a ∧∨

κ ai �
∨
κ(a ∧ ai).
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ALGEBRAIC ASPECTS OF Frm

Then, by general results of category theory

[E. Manes, Algebraic Theories, Springer, 1976]:
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ALGEBRAIC ASPECTS OF Frm

Then, by general results of category theory

[E. Manes, Algebraic Theories, Springer, 1976]:

COROLLARY
Frm has all (small) limits (i.e., it is a complete category)
and they are constructed exactly as in Set
(i.e., the forgetful functor Frm→ Set preserves them).

September 2019: Summer School Frames and locales – 2 –



ALGEBRAIC ASPECTS OF Frm

2 Frm has free objects: there is a free functor Set→ Frm (i.e., a left
adjoint of the forgetful functor Frm→ Set):
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adjoint of the forgetful functor Frm→ Set):

CONSTRUCTION (in two steps):

Set
F

**
SLat

forgets ∧
oo

D

**
Frm

forgets
∨oo

THE UNIT: X
ηX //

f
--

F(X)

∃! ϕ ∈SLat

��

x // {x}

A
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ALGEBRAIC ASPECTS OF Frm

Then, by general results of category theory

[E. Manes, Algebraic Theories, Springer, 1976]
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ALGEBRAIC ASPECTS OF Frm

Then, by general results of category theory

[E. Manes, Algebraic Theories, Springer, 1976]

COROLLARY
Frm is monadic over sets. In particular:

(1) It has all (small) colimits (i.e., it is a cocomplete category).
(2) Monomorphisms = injective.
(3) Epimorphisms need not be surjective; Regular epis = surjective.
(4) (Re gEpi ,Mono) is a factorization system.
(5) Quotients are described by congruences.
(6) And there exist presentations by generators and relations:

just take the quotient of the free frame on the given set of
generators modulo the congruence generated by the pairs (u , v)
for the given relations u � v.
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EXAMPLE 1: PRESENTATIONS

Frame of reals L(R)

Generators: ordered pairs (p , q), p , q ∈ Q,

Relations:
(R1) (p , q) ∧ (r, s) � (p ∨ r, q ∧ s),
(R2) (p , q) ∨ (r, s) � (p , s)whenever p ≤ r < q ≤ s,
(R3) (p , q) � ∨{(r, s) | p < r < s < q},
(R4)

∨
p ,q∈Q(p , q) � 1.

( )
p ∨ r q ∧ s

( )p q
( )r s
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EXAMPLE 1: PRESENTATIONS

Frame of reals L(R)

Nice features: (1) Rings C(L) of continuous real functions,

(2) Semicontinuous real functions, ...
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EXAMPLE 2: PRESENTATIONS

Loc The product L ×M of L and M

Generators: pairs a ⊗ b, a ∈ L, b ∈ M

M

L

b

a
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COPRODUCTS in Frm concretely

like tensor products...

Frm The coproduct L ⊕M of L and M:
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L
uL // L ⊕M M

uMoo

a // a ⊕ 1
1 ⊕ b boo
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PRODUCTS in Loc

like tensor products...

Nice features: (1) Tychonoff’s Theorem is Choice-free,

fully constructive (in the sense of topos theory).

(2) Paracompactness and Lindelöfness are

productive properties, ...

... behave better than products of spaces!
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PART IV.
Doing topology in Loc



SPECIAL SUBLOCALES

a ∈ L, c(a) � ↑a CLOSED
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(1) a ≤ b iff c(a) ⊇ c(b) iff o(a) ⊆ o(b).

(2)
⋂
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∨
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SPECIAL SUBLOCALES
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SPECIAL SUBLOCALES

It is a co-frame!

S(L)

L o(L)
c(L)

Boolean part
∨
o(ai) � o(

∨
ai)

o(a) ∩ o(b) � o(a ∧ b)

L
'

⋂
c(ai) � c(

∨
ai)

c(a) ∨ c(b) � c(a ∧ b)
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Starting doing topology: CLOSURE and INTERIOR operators

CLOSURE: S �
∧{c(a) | S ⊆ c(a)}
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Starting doing topology: CLOSURE and INTERIOR operators

CLOSURE: S �
∧{c(a) | S ⊆ c(a)} � c(∨{a | a ≤ ∧

S}) � c(∧ S).
↑a

INTERIOR: int S �
∨{o(a) | o(a) ⊆ S}.

EXAMPLE
o(b) � c(∧o(b)) � c(b → 0) � c(b∗).
By complementation, int c(b) � o(b∗).

[M.M. Clementino, PhD Thesis, 1992]
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ISBELL’S DENSITY THEOREM!

CLOSURE: S �
∧{c(a) | S ⊆ c(a)} � c(∨{a | a ≤ ∧

S}) � c(∧ S).
↑a

INTERIOR: int S �
∨{o(a) | o(a) ⊆ S}.

S is DENSE: S � L
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INTERIOR: int S �
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S � 0⇔ 0 ∈ S.

Hence: intersections of dense sublocales are dense,

i.e., there exists the smallest dense sublocale of a locale!
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↑a

INTERIOR: int S �
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↑a
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Proof: • BL is a sublocale:
∧

x∗i � (
∨

xi)∗.
a → x∗ � a → (x → 0) � a ∧ x → 0 � (a ∧ x)∗.

• 0 ∈ BL so BL is dense.
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ISBELL’S DENSITY THEOREM!

CLOSURE: S �
∧{c(a) | S ⊆ c(a)} � c(∨{a | a ≤ ∧

S}) � c(∧ S).
↑a

INTERIOR: int S �
∨{o(a) | o(a) ⊆ S}.

S is DENSE: S � L⇔ ↑(∧ S) � L⇔ ∧
S � 0⇔ 0 ∈ S.

THEOREM [J. Isbell, 1972]
BL � {x∗ | x ∈ L} � {x | x∗∗ � x} is the least dense sublocale.

Proof: • BL is a sublocale:
∧

x∗i � (
∨

xi)∗.
a → x∗ � a → (x → 0) � a ∧ x → 0 � (a ∧ x)∗.

• 0 ∈ BL so BL is dense.

• S dense⇒ BL ⊆ S: x∗ � x → 0
∈S

∈ S. �
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ISBELL’S DENSITY THEOREM: consequences

j : Y ⊆ X // h : Ω(X) → Ω(Y)
U 7→ U ∩ Y

in Frm
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ISBELL’S DENSITY THEOREM: consequences

j : Y ⊆ X // h : Ω(X) → Ω(Y)
U 7→ U ∩ Y

in Frm
Ω

��

h∗ : Ω(Y) → Ω(X)
V 7→ int[(X r Y) ∪ V] in Loc

The sublocale induced by Y SY � h∗[Ω(Y)]

X � R, Y1 � Q, Y2 � I (irrationals) SY1 , SY2 dense sublocales

⇐

SY1 ∩ SY2 is a dense sublocale of Ω(R)

BUT, of course, SY1 ∩ SY2 is a pointless sublocale:

Pt(SY1 ∩ SY2) ⊆ Y1 ∩ Y2 � ∅.
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For each p ∈ Pt(L),

x → p �

{
1 x ≤ p
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For each p ∈ Pt(L),

x → p �

{
1 x ≤ p

p x � p

thus
b(p) � {1, p} one-point sublocales.

Conversely, if b(a) � {1, a} then a ∈ Pt(L):
if x ∧ y ≤ a and x � a (i.e. x → a � 1) then y ≤ x → a � a.
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(The b(a), a ∈ L, are precisely the Boolean sublocales of L.)

For each p ∈ Pt(L),

x → p �

{
1 x ≤ p

p x � p

thus
b(p) � {1, p} one-point sublocales.

Conversely, if b(a) � {1, a} then a ∈ Pt(L):
if x ∧ y ≤ a and x � a (i.e. x → a � 1) then y ≤ x → a � a.

p ∈ Pt(L) iff b(p) is a one-point sublocale
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localic map f : L −→ M
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f [S]
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epi is a sublocale of M
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localic map f : L −→ M

⊆

S

L M

S

f

jS

f [S]

regular mono

epi is a sublocale of M

the image of S under f

Closed maps f [c(a)] is closed for every a ∈ L

⇔ f [↑a] � ↑b for some b ∈ M; of course, b � f (a).

Open maps f [o(a)] is open for every a ∈ L
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⊆
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PREIMAGES

localic map f : L −→ M

⊆

T
for any A ⊆ L closed under meets: {1} ⊆ A

Si ⊆ A⇒ ∨
Si ⊆ A

{∧ B | B ⊆ ⋃
Si}

So there is the largest sublocale contained in A: sloc(A)

L M

f −1[T] T

f

⊆

closed under meets (since f preserve meets)

f−1[T] � sloc( f −1[T])
the preimage of T under f

Preimage Map: f−1[−] : S(M) → S(L)
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Properties of the PREIMAGE MAP

[M.M. Clementino, PhD Thesis, 1992]

1 f−1[c(b)] � f −1[c(b)] � c( f ∗(b))
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f ∗(b) ≤ x ⇔ b ≤ f (x).

2 f−1[o(b)] � o( f ∗(b))

• o( f ∗(a)) ⊆ f −1[o(a)]: f ( f ∗(a) → x) � a → f (x) ∈ o(a).
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f ∗(b) ≤ x ⇔ b ≤ f (x).

2 f−1[o(b)] � o( f ∗(b))

• o( f ∗(a)) ⊆ f −1[o(a)]: f ( f ∗(a) → x) � a → f (x) ∈ o(a).

• S ⊆ f −1[o(a)] ⇒ S ⊆ o( f ∗(a)):
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f ∗(b) ≤ x ⇔ b ≤ f (x).

2 f−1[o(b)] � o( f ∗(b))

• o( f ∗(a)) ⊆ f −1[o(a)]: f ( f ∗(a) → x) � a → f (x) ∈ o(a).

• S ⊆ f −1[o(a)] ⇒ S ⊆ o( f ∗(a)): Let s ∈ S. Then

( f ∗(a) → s) → s ∈ S ⊆ f −1[o(a)] ⇒ f (( f ∗(a) → s) → s) �
� a → f (( f ∗(a) → s) → s) � f ( f ∗(a) → (( f ∗(a) → s) → s)) �
f (( f ∗(a) ∧ ( f ∗(a) → s)) → s) � f (( f ∗(a) ∧ s) → s) � f (1)� 1.
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1 f−1[c(b)] � f −1[c(b)] � c( f ∗(b))

f ∗(b) ≤ x ⇔ b ≤ f (x).

2 f−1[o(b)] � o( f ∗(b))

• o( f ∗(a)) ⊆ f −1[o(a)]: f ( f ∗(a) → x) � a → f (x) ∈ o(a).

• S ⊆ f −1[o(a)] ⇒ S ⊆ o( f ∗(a)): Let s ∈ S. Then

( f ∗(a) → s) → s ∈ S ⊆ f −1[o(a)] ⇒ f (( f ∗(a) → s) → s) �
� a → f (( f ∗(a) → s) → s) � f ( f ∗(a) → (( f ∗(a) → s) → s)) �
f (( f ∗(a) ∧ ( f ∗(a) → s)) → s) � f (( f ∗(a) ∧ s) → s) � f (1)� 1.

⇒ ( f ∗(a) → s) → s � 1, that is, f ∗(a) → s � s.
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THE BIG PICTURE

f [S] ⊆ T ⇔ S ⊆ f −1[T] ⇔ S ⊆ f−1[T].
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af [−] f−1[−]

as it should be!
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JOYAL-TIERNEY THEOREM

THEOREM
TFAE for a localic map f : L→ M:

(1) f is open.

(2) f ∗ : M → L is a complete Heyting homomorphism.

(3) f ∗ admits a left adjoint f! that satisfies the (Frobenius) identity

f!(a ∧ f ∗(b)) � f!(a) ∧ b ∀a ∈ L, b ∈ M.

(4) f ∗ admits a left adjoint f! that satisfies the identity

f (a → f ∗(b)) � f!(a) → b ∀a ∈ L, b ∈ M.
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JOYAL-TIERNEY THEOREM

Proof. (3) ⇔ (2):

f!(a ∧ f ∗(b)) � f!(a) ∧ b

L M

L M

#

f!

f!

(−) ∧ f ∗(b) (−) ∧ b
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Right adjoints
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#
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#
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Right adjoints
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JOYAL-TIERNEY THEOREM

Proof. (1) ⇒ (3): By assumption, ∀a ∈ L ∃b ∈ M : f [o(a)] � o(b).
The b is necessarily unique so we have a map f! : L→ M (a 7→ b).

September 2019: Summer School Frames and locales – 13 –



JOYAL-TIERNEY THEOREM

Proof. (1) ⇒ (3): By assumption, ∀a ∈ L ∃b ∈ M : f [o(a)] � o(b).
The b is necessarily unique so we have a map f! : L→ M (a 7→ b).

ADJUNCTION: f!(a) ≤ b ⇔ o( f!(a)) ⊆ o(b)
f [o(a)]

September 2019: Summer School Frames and locales – 13 –



JOYAL-TIERNEY THEOREM

Proof. (1) ⇒ (3): By assumption, ∀a ∈ L ∃b ∈ M : f [o(a)] � o(b).
The b is necessarily unique so we have a map f! : L→ M (a 7→ b).

ADJUNCTION: f!(a) ≤ b ⇔ o( f!(a)) ⊆ o(b)
f [o(a)]

⇔ o(a) ⊆ f−1[o(b)] � o( f ∗(b))

September 2019: Summer School Frames and locales – 13 –



JOYAL-TIERNEY THEOREM

Proof. (1) ⇒ (3): By assumption, ∀a ∈ L ∃b ∈ M : f [o(a)] � o(b).
The b is necessarily unique so we have a map f! : L→ M (a 7→ b).

ADJUNCTION: f!(a) ≤ b ⇔ o( f!(a)) ⊆ o(b)
f [o(a)]

⇔ o(a) ⊆ f−1[o(b)] � o( f ∗(b))

FROBENIUS:
o( f!(a ∧ f ∗(b))) � f [o(a ∧ f ∗(b))] � f [o(a) ∩ o( f ∗(b))] �

� f [o(a)] ∩ o(b) � o( f!(a) ∧ b).

September 2019: Summer School Frames and locales – 13 –



JOYAL-TIERNEY THEOREM

Proof. (1) ⇒ (3): By assumption, ∀a ∈ L ∃b ∈ M : f [o(a)] � o(b).
The b is necessarily unique so we have a map f! : L→ M (a 7→ b).

ADJUNCTION: f!(a) ≤ b ⇔ o( f!(a)) ⊆ o(b)
f [o(a)]

⇔ o(a) ⊆ f−1[o(b)] � o( f ∗(b))

FROBENIUS:
o( f!(a ∧ f ∗(b))) � f [o(a ∧ f ∗(b))] � f [o(a) ∩ o( f ∗(b))] �

� f [o(a)] ∩ o(b) � o( f!(a) ∧ b).

LEMMA. f [o(a) ∩ o( f ∗(b))] � f [o(a)] ∩ o(b)
Proof. ⊆: f [o( f ∗(b))] � f f−1[o(b)] ⊆ o(b).
⊇: If y ∈ f [o(a)] ∩ o(b) then b → y � y and y � f (a → x) (some x).

Then y � b → y � b → f (a → x) � f ( f ∗(b) → (a → x))
� f (( f ∗(b) ∧ a) → x︸              ︷︷              ︸) in o(a ∧ f ∗(b)) � o(a) ∩ o( f ∗(b))

September 2019: Summer School Frames and locales – 13 –



JOYAL-TIERNEY THEOREM

Proof. (1) ⇒ (3): By assumption, ∀a ∈ L ∃b ∈ M : f [o(a)] � o(b).
The b is necessarily unique so we have a map f! : L→ M (a 7→ b).

ADJUNCTION: f!(a) ≤ b ⇔ o( f!(a)) ⊆ o(b)
f [o(a)]

⇔ o(a) ⊆ f−1[o(b)] � o( f ∗(b))

FROBENIUS:
o( f!(a ∧ f ∗(b))) � f [o(a ∧ f ∗(b))] � f [o(a) ∩ o( f ∗(b))] �

� f [o(a)] ∩ o(b) � o( f!(a) ∧ b).

LEMMA. f [o(a) ∩ o( f ∗(b))] � f [o(a)] ∩ o(b)
Proof. ⊆: f [o( f ∗(b))] � f f−1[o(b)] ⊆ o(b).
⊇: If y ∈ f [o(a)] ∩ o(b) then b → y � y and y � f (a → x) (some x).

Then y � b → y � b → f (a → x) � f ( f ∗(b) → (a → x))
� f (( f ∗(b) ∧ a) → x︸              ︷︷              ︸) in o(a ∧ f ∗(b)) � o(a) ∩ o( f ∗(b))

September 2019: Summer School Frames and locales – 13 –



JOYAL-TIERNEY THEOREM

Proof. (1) ⇒ (3): By assumption, ∀a ∈ L ∃b ∈ M : f [o(a)] � o(b).
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Proof. (1) ⇒ (3): By assumption, ∀a ∈ L ∃b ∈ M : f [o(a)] � o(b).
The b is necessarily unique so we have a map f! : L→ M (a 7→ b).

ADJUNCTION: f!(a) ≤ b ⇔ o( f!(a)) ⊆ o(b)
f [o(a)]

⇔ o(a) ⊆ f−1[o(b)] � o( f ∗(b))

FROBENIUS:
o( f!(a ∧ f ∗(b))) � f [o(a ∧ f ∗(b))] � f [o(a) ∩ o( f ∗(b))] �

� f [o(a)] ∩ o(b) � o( f!(a) ∧ b).

LEMMA. f [o(a) ∩ o( f ∗(b))] � f [o(a)] ∩ o(b)
Proof. ⊆: f [o( f ∗(b))] � f f−1[o(b)] ⊆ o(b).
⊇: If y ∈ f [o(a)] ∩ o(b) then b → y � y and y � f (a → x) (some x).

Then y � b → y � b → f (a → x) � f ( f ∗(b) → (a → x))
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JOYAL-TIERNEY THEOREM

Proof. (4) ⇒ (1):

Suffices: f [o(a)] � o( f!(a)) for every a ∈ L.
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JOYAL-TIERNEY THEOREM

Proof. (4) ⇒ (1):

Suffices: f [o(a)] � o( f!(a)) for every a ∈ L.

⊇: f!(a) → x
(4)
� f (a → f ∗(x)) ∈ f [o(a)].
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JOYAL-TIERNEY THEOREM

Proof. (4) ⇒ (1):

Suffices: f [o(a)] � o( f!(a)) for every a ∈ L.

⊇: f!(a) → x
(4)
� f (a → f ∗(x)) ∈ f [o(a)].

⊆: Need: f (a → x) ∈ o( f!(a)) i.e. f!(a) → f (a → x) ≤ f (a → x).
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JOYAL-TIERNEY THEOREM

Proof. (4) ⇒ (1):

Suffices: f [o(a)] � o( f!(a)) for every a ∈ L.

⊇: f!(a) → x
(4)
� f (a → f ∗(x)) ∈ f [o(a)].

⊆: Need: f (a → x) ∈ o( f!(a)) i.e. f!(a) → f (a → x) ≤ f (a → x).

f!(a) → f (a → x) (4)� f (a → f ∗ f (a → x))
≤ f (a → (a → x))
� f (a → x).
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A REMARK: Localic maps as continuous maps

THEOREM
TFAE for any mapping f : L→ M between locales:

(1) f is localic.

(2) f is a right adjoint and f−1[o(b)] � o( f ∗(b)) ∀b ∈ M.

(3) ∀b ∈ M ∃a ∈ L : f −1[c(b)] � c(a) and f−1[o(b)] � o(a).
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Doing topology in Loc: REGULARITY

F

• x

September 2019: Summer School Frames and locales – 15 –



Doing topology in Loc: REGULARITY

F

• x

U

V

September 2019: Summer School Frames and locales – 15 –



Doing topology in Loc: REGULARITY

F

• x

U

V

A � X r F

∀A ∈ Ω(X), ∀x ∈ A, ∃V ∈ Ω(X) : x ∈ V ⊆ V ⊆ A.
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A � X r F

∀A ∈ Ω(X), ∀x ∈ A, ∃V ∈ Ω(X) : x ∈ V ⊆ V ⊆ A.

⇔ ∀A ∈ Ω(X), A �
⋃{V ∈ Ω(X) | V ⊆ A}
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• x

U

V

A � X r F

∀A ∈ Ω(X), ∀x ∈ A, ∃V ∈ Ω(X) : x ∈ V ⊆ V ⊆ A.

⇔ ∀A ∈ Ω(X), A �
⋃{V ∈ Ω(X) | V ⊆ A}

V ≺ A
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• x
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V

A � X r F

∀A ∈ Ω(X), ∀x ∈ A, ∃V ∈ Ω(X) : x ∈ V ⊆ V ⊆ A.

⇔ ∀A ∈ Ω(X), A �
⋃{V ∈ Ω(X) | V ⊆ A}

V ≺ A

(V ≺ A ⇔ X rV ⊇ X rA ⇔ (X rV)∪A � X ⇔ V∗∪A � X.)
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Doing topology in Loc: REGULARITY
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• x

U

V

A � X r F

∀A ∈ Ω(X), ∀x ∈ A, ∃V ∈ Ω(X) : x ∈ V ⊆ V ⊆ A.

⇔ ∀A ∈ Ω(X), A �
⋃{V ∈ Ω(X) | V ⊆ A}

V ≺ A

(V ≺ A ⇔ X rV ⊇ X rA ⇔ (X rV)∪A � X ⇔ V∗∪A � X.)

In a general locale L: ∀o(a), o(a) � ∨{o(b) | o(b) ⊆ o(a)}
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Doing topology in Loc: REGULARITY

F

• x

U

V

A � X r F

∀A ∈ Ω(X), ∀x ∈ A, ∃V ∈ Ω(X) : x ∈ V ⊆ V ⊆ A.

⇔ ∀A ∈ Ω(X), A �
⋃{V ∈ Ω(X) | V ⊆ A}

V ≺ A

(V ≺ A ⇔ X rV ⊇ X rA ⇔ (X rV)∪A � X ⇔ V∗∪A � X.)

In a general locale L: ∀o(a), o(a) � ∨{o(b) | o(b) ⊆ o(a)}
∩c(a) � 0

September 2019: Summer School Frames and locales – 15 –



Doing topology in Loc: REGULARITY
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• x

U

V

A � X r F

∀A ∈ Ω(X), ∀x ∈ A, ∃V ∈ Ω(X) : x ∈ V ⊆ V ⊆ A.

⇔ ∀A ∈ Ω(X), A �
⋃{V ∈ Ω(X) | V ⊆ A}

V ≺ A

(V ≺ A ⇔ X rV ⊇ X rA ⇔ (X rV)∪A � X ⇔ V∗∪A � X.)

In a general locale L: ∀o(a), o(a) � ∨{o(b) | o(b) ⊆ o(a)}
c(b∗)∩c(a) � 0
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Doing topology in Loc: REGULARITY

F

• x

U

V

A � X r F

∀A ∈ Ω(X), ∀x ∈ A, ∃V ∈ Ω(X) : x ∈ V ⊆ V ⊆ A.

⇔ ∀A ∈ Ω(X), A �
⋃{V ∈ Ω(X) | V ⊆ A}

V ≺ A

(V ≺ A ⇔ X rV ⊇ X rA ⇔ (X rV)∪A � X ⇔ V∗∪A � X.)

In a general locale L: ∀o(a), o(a) � ∨{o(b) | o(b) ⊆ o(a)}
c(b∗ ∨ a) � c(1)
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Doing topology in Loc: REGULARITY

F

• x

U

V

A � X r F

∀A ∈ Ω(X), ∀x ∈ A, ∃V ∈ Ω(X) : x ∈ V ⊆ V ⊆ A.

⇔ ∀A ∈ Ω(X), A �
⋃{V ∈ Ω(X) | V ⊆ A}

V ≺ A

(V ≺ A ⇔ X rV ⊇ X rA ⇔ (X rV)∪A � X ⇔ V∗∪A � X.)

In a general locale L: ∀o(a), o(a) � ∨{o(b) | o(b) ⊆ o(a)}
c(b∗ ∨ a) � c(1)

b ≺ a ≡ b∗ ∨ a � 1 ∀a ∈ L, a �
∨{b ∈ L | b ≺ a}
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Doing topology in Loc: REGULARITY

F

• x

U

V

A � X r F

∀A ∈ Ω(X), ∀x ∈ A, ∃V ∈ Ω(X) : x ∈ V ⊆ V ⊆ A.

⇔ ∀A ∈ Ω(X), A �
⋃{V ∈ Ω(X) | V ⊆ A}

V ≺ A

(V ≺ A ⇔ X rV ⊇ X rA ⇔ (X rV)∪A � X ⇔ V∗∪A � X.)

In a general locale L: ∀o(a), o(a) � ∨{o(b) | o(b) ⊆ o(a)}
c(b∗ ∨ a) � c(1)

b ≺ a ≡ b∗ ∨ a � 1 ∀a ∈ L, a �
∨{b ∈ L | b ≺ a}

(Conservative extension: X is regular iff the locale Ω(X) is regular)
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Doing topology in Loc: REGULARITY

partial order ≺
Properties

1 a ≺ b ⇒ a ≤ b.
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Doing topology in Loc: REGULARITY

partial order ≺
Properties

1 a ≺ b ⇒ a ≤ b.

2 a ≤ b ≺ c ≤ d ⇒ a ≺ d.
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Doing topology in Loc: REGULARITY

partial order ≺
Properties

1 a ≺ b ⇒ a ≤ b.

2 a ≤ b ≺ c ≤ d ⇒ a ≺ d.

3

ai ≺ bi (i � 1, 2) ⇒


a1 ∨ a2 ≺ b1 ∨ b2

a1 ∧ a2 ≺ b1 ∧ b2
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Doing topology in Loc: COMPLETE REGULARITY

F

• x

X
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Doing topology in Loc: COMPLETE REGULARITY

F

• x

XX [0, 1]f

f (x) � 0
f [F] � {1}
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Doing topology in Loc: COMPLETE REGULARITY

F

• x

XX [0, 1]f

f (x) � 0
f [F] � {1}

By Urysohn’s Lemma,

X is completely regular iff ∀U ∈ Ω(X), U � {V ∈ Ω(X) | V ≺≺ U}
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Doing topology in Loc: COMPLETE REGULARITY

F

• x

XX [0, 1]f

f (x) � 0
f [F] � {1}

By Urysohn’s Lemma,

X is completely regular iff ∀U ∈ Ω(X), U � {V ∈ Ω(X) | V ≺≺ U}

V ≺≺ U ≡ ∃ (Wq)q∈Q∩[0,1] : W0 � V, W1 � U, p < q ⇒Wp ≺ Wq .

[B. Banaschewski (1953)]
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Doing topology in Loc: COMPLETE REGULARITY

F

• x

XX [0, 1]f

f (x) � 0
f [F] � {1}

By Urysohn’s Lemma,

X is completely regular iff ∀U ∈ Ω(X), U � {V ∈ Ω(X) | V ≺≺ U}

≺≺ ≡ the largest INTERPOLATIVE relation contained in ≺
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Doing topology in Loc: COMPLETE REGULARITY

F

• x

XX [0, 1]f

f (x) � 0
f [F] � {1}

By Urysohn’s Lemma,

X is completely regular iff ∀U ∈ Ω(X), U � {V ∈ Ω(X) | V ≺≺ U}

≺≺ ≡ the largest INTERPOLATIVE relation contained in ≺

Thus, for a general locale L:

L is completely regular if ∀a ∈ L, a �
∨{b ∈ L | b ≺≺ a}
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Doing topology in Loc: COMPLETE REGULARITY

F

• x

XX [0, 1]f

f (x) � 0
f [F] � {1}

By Urysohn’s Lemma,

X is completely regular iff ∀U ∈ Ω(X), U � {V ∈ Ω(X) | V ≺≺ U}

≺≺ ≡ the largest INTERPOLATIVE relation contained in ≺

Thus, for a general locale L:

L is completely regular if ∀a ∈ L, a �
∨{b ∈ L | b ≺≺ a}

(Conservative extension: X is c. regular iff Ω(X) is c. regular)
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Doing topology in Loc: COMPLETE REGULARITY

partial order ≺≺
Properties

1 a ≺≺ b ⇒ a ≺ b.
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Doing topology in Loc: COMPLETE REGULARITY

partial order ≺≺
Properties

1 a ≺≺ b ⇒ a ≺ b.

2 a ≺≺ b ⇒ ∃c : a ≺≺ c ≺≺ b. [interpolative]
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Doing topology in Loc: COMPLETE REGULARITY

partial order ≺≺
Properties

1 a ≺≺ b ⇒ a ≺ b.

2 a ≺≺ b ⇒ ∃c : a ≺≺ c ≺≺ b. [interpolative]

3 ≺≺ is the largest interpolative partial order contained in ≺.
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Doing topology in Loc: COMPACTNESS

A ⊆ L is a cover of L if
∨

A � 1.
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Doing topology in Loc: COMPACTNESS

A ⊆ L is a cover of L if
∨

A � 1.

A frame L is compact if every cover of L has a finite subcover.
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Doing topology in Loc: COMPACTNESS

A ⊆ L is a cover of L if
∨

A � 1.

A frame L is compact if every cover of L has a finite subcover.

(Conservative extension: X is compact iff the frame Ω(X) is compact)
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Doing topology in Loc: an illustrative result

PROPOSITION
Each compact regular locale is completely regular.
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PROPOSITION
Each compact regular locale is completely regular.

Proof: Suffices: ≺�≺≺ (i.e., ≺ interpolates).
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Doing topology in Loc: an illustrative result

PROPOSITION
Each compact regular locale is completely regular.

Proof: Suffices: ≺�≺≺ (i.e., ≺ interpolates).

Let a ≺ b ≡ a∗ ∨ b � 1.
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Doing topology in Loc: an illustrative result

PROPOSITION
Each compact regular locale is completely regular.

Proof: Suffices: ≺�≺≺ (i.e., ≺ interpolates).

Let a ≺ b ≡ a∗ ∨ b � 1.

regularity
33b �

∨{x ∈ L | x ≺ b}
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Each compact regular locale is completely regular.

Proof: Suffices: ≺�≺≺ (i.e., ≺ interpolates).

Let a ≺ b ≡ a∗ ∨ b � 1.

regularity
33b �

∨{x ∈ L | x ≺ b}

Therefore {a∗} ∪ {x | x ≺ b} is a cover.
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Doing topology in Loc: an illustrative result

PROPOSITION
Each compact regular locale is completely regular.

Proof: Suffices: ≺�≺≺ (i.e., ≺ interpolates).

Let a ≺ b ≡ a∗ ∨ b � 1.

regularity
33b �

∨{x ∈ L | x ≺ b}

Therefore {a∗} ∪ {x | x ≺ b} is a cover.

compactness
��

a∗ ∨ x1 ∨ · · · ∨ xn � 1
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Doing topology in Loc: an illustrative result

PROPOSITION
Each compact regular locale is completely regular.

Proof: Suffices: ≺�≺≺ (i.e., ≺ interpolates).

Let a ≺ b ≡ a∗ ∨ b � 1.

regularity
33b �

∨{x ∈ L | x ≺ b}

Therefore {a∗} ∪ {x | x ≺ b} is a cover.

compactness
��

a∗ ∨ x1 ∨ · · · ∨ xn︸         ︷︷         ︸
c

� 1 ⇔ a ≺ c.
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Doing topology in Loc: an illustrative result

PROPOSITION
Each compact regular locale is completely regular.

Proof: Suffices: ≺�≺≺ (i.e., ≺ interpolates).

Let a ≺ b ≡ a∗ ∨ b � 1.

regularity
33b �

∨{x ∈ L | x ≺ b}

Therefore {a∗} ∪ {x | x ≺ b} is a cover.

compactness
��

a∗ ∨ x1 ∨ · · · ∨ xn︸         ︷︷         ︸
c

� 1 ⇔ a ≺ c.
On the other hand

xi ≺ b (i � 1, . . . , n) ⇒ c ≺ b. �
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The (constructive) STONE-ČECH compactification of locales

Ideals of L: I(L) (I1) b ≤ a ∈ J ⇒ b ∈ J, (I2) a , b ∈ J ⇒ a ∨ b ∈ J
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The (constructive) STONE-ČECH compactification of locales

Ideals of L: I(L) (I1) b ≤ a ∈ J ⇒ b ∈ J, (I2) a , b ∈ J ⇒ a ∨ b ∈ J

LEMMA 1. I(L) is a compact frame.
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The (constructive) STONE-ČECH compactification of locales

Ideals of L: I(L) (I1) b ≤ a ∈ J ⇒ b ∈ J, (I2) a , b ∈ J ⇒ a ∨ b ∈ J

LEMMA 1. I(L) is a compact frame.

Proof:
•∧

�
⋂

(any intersection of ideals is an ideal).
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The (constructive) STONE-ČECH compactification of locales

Ideals of L: I(L) (I1) b ≤ a ∈ J ⇒ b ∈ J, (I2) a , b ∈ J ⇒ a ∨ b ∈ J

LEMMA 1. I(L) is a compact frame.

Proof:
•∧

�
⋂

(any intersection of ideals is an ideal).

•∨
Ji � {

∨
F | F finite, F ⊆ ⋃

Ji}.
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The (constructive) STONE-ČECH compactification of locales

Ideals of L: I(L) (I1) b ≤ a ∈ J ⇒ b ∈ J, (I2) a , b ∈ J ⇒ a ∨ b ∈ J

LEMMA 1. I(L) is a compact frame.

Proof:
•∧

�
⋂

(any intersection of ideals is an ideal).

•∨
Ji � {

∨
F | F finite, F ⊆ ⋃

Ji}.

• (∨ Ji) ∩ K �
∨(Ji ∩ K).

⊇: obvious
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The (constructive) STONE-ČECH compactification of locales

Ideals of L: I(L) (I1) b ≤ a ∈ J ⇒ b ∈ J, (I2) a , b ∈ J ⇒ a ∨ b ∈ J

LEMMA 1. I(L) is a compact frame.

Proof:
•∧

�
⋂

(any intersection of ideals is an ideal).

•∨
Ji � {

∨
F | F finite, F ⊆ ⋃

Ji}.

• (∨ Ji) ∩ K �
∨(Ji ∩ K).

⊆: x � x1 ∨ · · · ∨ xn ∈ (
∨

Ji) ∩ K (x j ∈ Ji j )
(I1) x j≤x∈K��

x j ∈ Ji j ∩ K ⇒ x ∈ ∨(Ji ∩ K)

•∨
Ji � L 3 1⇒ 1 � x1 ∨ · · · ∨ xn (some x j ∈ Ji j ).

Then 1 ∈ ∨n
j�1 Ji j ⇒ L �

∨n
j�1 Ji j . �
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The (constructive) STONE-ČECH compactification of locales

Regular ideal: (I3) ∀a ∈ J, ∃b ∈ J : a ≺≺ b. R(L)
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The (constructive) STONE-ČECH compactification of locales

Regular ideal: (I3) ∀a ∈ J, ∃b ∈ J : a ≺≺ b. R(L)

EXAMPLES: a ∈ L, ↓↓ a � {x ∈ L | x ≺≺ a}.
(Just by the interpolation property of ≺≺)

September 2019: Summer School Frames and locales – 17 –
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(Just by the interpolation property of ≺≺)

LEMMA 2
R(L) is a subframe of I(L), hence compact.

Proof:
• intersections of regular ideals are (obviously) regular.

• Ji regular ideals, a ∈ ∨
Ji ⇒ a � x1 ∨ · · · ∨ xn , some x j ∈ Ji j .

Then ∃y j ∈ Ji j : x j ≺≺ y j . Hence b � y1 ∨ · · · yn ∈
∨

Ji and a ≺≺ b
(since ≺ is a sublattice of L × L).
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Then ∃y j ∈ Ji j : x j ≺≺ y j . Hence b � y1 ∨ · · · yn ∈
∨

Ji and a ≺≺ b
(since ≺ is a sublattice of L × L).

• subframes of compact frames are (obviously) compact. �
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The (constructive) STONE-ČECH compactification of locales
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LEMMA 3
R(L) is completely regular.

Proof: By the Proposition it suffices to show that R(L) is regular.
For each J ∈ R(L),

J �
⋃{↓↓ a | a ∈ J} � ∨{↓↓ a | a ∈ J}
⊆ ∨{K ∈ R(L) | K ≺ J} ⊆ J.
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The (constructive) STONE-ČECH compactification of locales

LEMMA 3
R(L) is completely regular.

Proof: By the Proposition it suffices to show that R(L) is regular.
For each J ∈ R(L),

J �
⋃{↓↓ a | a ∈ J} � ∨{↓↓ a | a ∈ J}
⊆ ∨{K ∈ R(L) | K ≺ J} ⊆ J.
OO

a ≺≺ b in L ⇒ ↓↓ a ≺ ↓↓ b in R(L)

(easy to check...) �
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The (constructive) STONE-ČECH compactification of locales

LEMMA 4
For each completely regular locale L,

βL : L β(L) :� R(L)
a ↓↓ a

is a dense embedding.
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The (constructive) STONE-ČECH compactification of locales

LEMMA 4
For each completely regular locale L,

βL : L β(L) :� R(L)
a ↓↓ a

is a dense embedding.

Localic embedding: Let υL : J ∈ R(L) 7→ ∨
J ∈ L. Clearly:

• υLβL(a) � a and βLυL(J) ⊇ J. In particular: υL a βL; βL is injective.

• υL(L) � 1.

• υL(J1) ∧ υL(J2) �
∨{x ∧ y | x ∈ J1 , y ∈ J2} ≤

∨{z | z ∈ J1 ∩ J2} �
� υL(J1 ∩ J2).
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The (constructive) STONE-ČECH compactification of locales

LEMMA 4
For each completely regular locale L,

βL : L β(L) :� R(L)
a ↓↓ a

is a dense embedding.

Density:

f : L→ M such that f [L] is dense in M
⇔ f (0) � 0.
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The (constructive) STONE-ČECH compactification of locales

THEOREM
There is a functor β : CRegLoc→ CRegLoc

L β(L)

M β(M)
f β( f )

and a natural transformation Id
•→ β

L β(L)

M β(M)

βL

βM

f β( f )

such that:
(1) Each β(L) is compact.
(2) Each βL is a dense embedding.
(3) βL is an isomorphism iff L is compact.
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The (constructive) STONE-ČECH compactification of locales

PROOF
There is a functor β : CRegLoc→ CRegLoc

L β(L)

M β(M)
f β( f )

and a natural transformation Id
•→ β

L β(L)

M β(M)

βL

βM

f β( f )

such that:
(1) Each β(L) is compact.
(2) Each βL is a dense embedding.
(3) βL is an isomorphism iff L is compact.

⇐:
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L β(L)

M β(M)

βL
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such that:
(1) Each β(L) is compact.
(2) Each βL is a dense embedding.
(3) βL is an isomorphism iff L is compact.

⇐: If L is compact then βLυL(J) ⊆ J and υL is the inverse of βL:

x ∈ βLυL(J) ⇒ x ≺ ∨
J ⇔ x∗ ∨∨

J � 1
compactness

⇒
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The (constructive) STONE-ČECH compactification of locales

PROOF
There is a functor β : CRegLoc→ CRegLoc

L β(L)

M β(M)
f β( f )

and a natural transformation Id
•→ β

L β(L)

M β(M)

βL

βM

f β( f )

such that:
(1) Each β(L) is compact.
(2) Each βL is a dense embedding.
(3) βL is an isomorphism iff L is compact.

⇐: If L is compact then βLυL(J) ⊆ J and υL is the inverse of βL:

x ∈ βLυL(J) ⇒ x ≺ ∨
J ⇔ x∗ ∨∨

J � 1
compactness

⇒

⇒ x∗ ∨ a1 ∨ · · · ∨ an � 1︸               ︷︷               ︸
a∈ J

⇒ x ≺ a ∈ J ⇒ x ∈ J. �
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