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MOTIVATION

THEOREM. TFAE for a locale L;:

normality vs extremal disconnectedness

ext. disc.
% L IS hormak

% Every two disjoint closed sublocales of L are
completely separated.

Each closed sublocale of L is C*-embedded.

4 f < g = JdheClL): f<h<g.
—
USC LSC

Urysohn

Tietze

Katetov-Tong

% The image of L under any surjective closed localic map is normal.
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MOTIVATION normality vs extremal disconnectedness

THEOREM. TFAE for a locale L;:

ext. disc.
% L IS hermak

open
% Every two disjoint €lesed sublocales of L are
completely separated.

_ open
Each elesed sublocale of L is C*-embedded.

4 ;] < g = JdheClL): f<h<g.
YUSsE +5€C

b€ USC open ext. disc.
The image of L under any surjective €lesed localic map is rermad.
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MOTIVATION normality vs extremal disconnectedness

This shapes the idea that the two notions are somehow dual

to each other and may therefore be studied in parallel.
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e the proofs of the two insertion results are very different in nature:
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e t0 examine this parallel.

e the proofs of the two insertion results are very different in nature:
Katetov-Tong insertion: extends the standard proof of Urysohn...
Stone insertion: needs the semiregularization...

Can we unify them under the same result (with a single proof) ?

e there is a variety of classical insertion type results
(for several variants of normality).

Can we unify them under a single general result ?
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YES, WE CAN.
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NORMALITY vs EXTREMAL DISCONNECTEDNESS

Normal: avb=1= JuvelL:uArv=0,avu=1=bvo.
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NORMALITY vs EXTREMAL DISCONNECTEDNESS

Normal: avb=1= JuvelL:uArv=0,avu=1=bvo.

Extremally disconnected:

a* va*™ =1
< (a Ab)* =a™ v b [De Morgan frames]

Slanb=0= Juvel:uvv=1,aru=0=>bAuv|.

as lattices: L isnormal iff L°P is extremally disconnected.

(FRAME) (Co-FRAME)
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IDEA: goto S(L), take complements the frame of sublocales
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IDEA: goto S(L), take complements the frame of sublocales

oL := {o(a)
No(ai) = o(\/ a)
1€l 1€l

o(a) v o(b) =o0(a A D)
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IDEA: goto S(L), take complements the frame of sublocales

Lis normal & ¢ is normal

< oL is extremally disconnected

July 28, 2013 Variants of normality and their duals: a pointfree unification of insertion and extension theorems TACL 2013 — 4




2/ -normality vs .27 -extremal disconnectedness the frame of sublocales
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2/ -normality vs .27 -extremal disconnectedness the frame of sublocales

Lis «/-normal = Forany A, B € «/,

AvB=1= 31UVed:UAV =0, AvU=1=BvYV.
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2/ -normality vs .27 -extremal disconnectedness the frame of sublocales
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AvB=1= 31UVed:UAV =0, AvU=1=BvYV.
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VARIANTS OF NORMALITY

(Normal} avb=1= du,vel:unrv=0avu=1=0>vw.
(a,b e L)
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VARIANTS OF NORMALITY

@Imost normaD a: regular

N

CNormaD avb=1= du,vel:unrv=0avu=1=0>vw.
(a,b e L)
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VARIANTS OF NORMALITY

(Mildly normaD
@Imost normaD

N

(Normal)

Every x € L is regular Gy

Perfectly normaD

July 28, 2013 Variants of normality and their duals: a pointfree unification of insertion and extension theorems TACL 2013 - 6




VARIANTS OF NORMALITY

(Mildly normaD
@Imost normaD

N

(Normal)

Every x € L is regular Gy

Perfectly normaD T =\, ey ZTn With z,, < x

July 28, 2013 Variants of normality and their duals: a pointfree unification of insertion and extension theorems TACL 2013 - 6




VARIANTS OF NORMALITY

CMiIdIy normaD @-normaD a,b, u,v: regular G

@Imost normaD

N

(Normal)

Every x € L is regular G

Perfectly normal =\, ey Tn Withz, <2z
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VARIANTS OF NORMALITY

CMiIdIy normaD
@Imost normaD

N

(Normal)

Perfectly normal

(x =\, en Tn With 2, << )

a,b, u,v: Coz L
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rmaD a,b, u,v: regular Gy

/

N

Every x € L is regular G
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VARIANTS OF NORMALITY

r—»@LL FRAMES

CMiIdIy normaD
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27 -normality: EXAMPLES

< </ -normal frames ./ -disconnected frames

<y ={c(a): a€ L}
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27 -normality: EXAMPLES

<f ./ -normal frames  .¢f -disconnected frames
) ={c(a): ae L} normal extremally disconn.
ofy = {c(a™): a € L} mildly normal extremally disconn.
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27 -normality: EXAMPLES

< </ -normal frames ./ -disconnected frames

<y ={c(a): a€ L} normal extremally disconn.
o = {c(a*): a e L} mildly normal extremally disconn.

(

(

3 = {c(
.y = {c(cozf): fe C(L)}

a): a reqular Gs}  d-normal extremally d-disconn.
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27 -normality: EXAMPLES

<f ./ -normal frames of -disconnected frames

<y ={c(a): a€ L} normal extremally disconn.
o = {c(a*): a e L} mildly normal extremally disconn.

/3 = {c(a): aregular Gs} dJ-normal extremally J-disconn.
<y = {c(cozf): feC(L)} all frames F-frames

(F-frame: every cozero sublocale is C*-embedded.)
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f: &(R) - S(L)
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f: &(R) - S(L)

BACKGROUND: the frame of reals

E(R) = Fm{(—q), (p,—)(p,q€ Q) |
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f: &(R) - S(L)

BACKGROUND: the frame of reals

E(R) =Fm{(—q),»,—)P,qe Q)| (1) (—q) A (p,—) =0forg<p,
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f: &(R) - S(L)

BACKGROUND: the frame of reals
L(R) =Fm{(—q),(p,—)P,qeQ)| (1) (—q) A (p,—) =0forq<p,

(2) (_7 Q) vV (p7_> = 1 for q > p,
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f: &(R) - S(L)

BACKGROUND: the frame of reals
S(R) — Frm< (_7 Q)v (pv_)(pvq € Q) | (1) (_7 Q) A (pa _) — O for q < D,
(2) (—q) v (p,—) = 1for g > p,

(3) (_7 Q) — \/s<q(_7 S)’

July 28, 2013 Variants of normality and their duals: a pointfree unification of insertion and extension theorems TACL 2013 - 8




f: &(R) - S(L)

BACKGROUND: the frame of reals

ER) =Fm{(—q),(p,—)p,qe Q)| (1) (—q) A (p,—) =0forg<p,
(2) (=) v (p,—) = 1for g > p,
(3) (=) = Vey(— ),
(4) Vyeg(—a) =1,
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f: &(R) - S(L)

BACKGROUND: the frame of reals

ER) =Fm{(—q),(p,—)P,q€Q) | (1) (—q) A (p,—) =0forg<p,
(2) (= q) v (p,—) = Lforg>p,
(3) (—149) = Viseqy(—9),
4) Veq(—a) =1,
() (0, =) = Visp(r:—),

July 28, 2013 Variants of normality and their duals: a pointfree unification of insertion and extension theorems TACL 2013 - 8




f: &(R) - S(L)

BACKGROUND: the frame of reals

ER) =Fm{(—q),(p,—)p,qeQ) | (1) (—q) A (p,—)=0forg<p,
(2) (—4q) v (p,—) = 1for g >p,
(3) (=) = Vey(— ),
(4) Vyeg(—a) =1,
() (0, =) = Visp(r:—),
(6) Vpeo(p,—) =1).
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[+ &R) - S(L)
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[+ &R) - S(L)

f(pa_) € cL
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[+ &R) - S(L)

f(—q)€cL f(p,—) € cL
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[+ &R) - S(L)

f(_7 Q) €clL
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[+ &R) - S(L)

f(—q) €cL ) € cL
) S cL
~ Frm (R),L)

J. GUTIERREZ GARCIA, T. KUBIAK & J. P.
Localic real functions: a general setting, J. Pure Appl. Algebra 213 (2009)
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f: SR) — S(L)

feUSC(L) & Vp<q FF,,ecl : f(—p) < Fpqg< f(—q).
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f: SR) — S(L)

feUSC(L) & Vp<q FF,,ecl : f(—p) < Fpqg< f(—q).

[ =T f(_a Q) — \/r<q f(_7 T) S \/7“<q Ffr,q S f(_’ Q). ]
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f: SR) — S(L)

feUSC(L) & Vp<q FF,,ecl : f(—p) < Fpqg< f(—q).

[ =T f(_a Q) — \/r<q f(_7 T) S \/7“<q Ffr,q S f(_’ Q). ]

/-USC(L)=Vp<q IF, e : f(—p) <Fpq< f(—q).
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f: SR) — S(L)

feUSC(L) & Vp<q FF,,ecl : f(—p) < Fpqg< f(—q).

[ =T f(_a Q) — \/r<q f(_7 T) S \/7“<q Ffr,q S f(_’ Q). ]

/-USC(L)=Vp<q 3Fpq€d : f(—p) < Fpy

<F,, <
o/ -LSC(L)=Vp<q FF,5e o f(q¢,—) < Fpq < f(p,—).
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f: SR) — S(L)

feUSC(L) & Vp<q FF,,ecl : f(—p) < Fpqg< f(—q).

Y

[ =T f(_a Q) — \/r<q f(_7 T) S \/7“<q Ffr,q S f(_’ Q). ]

/-USC(L) =Vp <q 3Fpqe @ f(—p) < Fpq < f(—0)
A-LSC(L)=Vp<q IFpqe o : flq,—) < Fpq < f(p,—).

o/-C(L) = o/-LSC(L) n /-USC(L)
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f: SR) — S(L)

feUSC(L) & Vp<q FF,,ecl : f(—p) < Fpqg< f(—q).

[ =T f(_a Q) — \/r<q f(_7 T) S \/7“<q Ffr,q S f(_’ Q). ]

/-USC(L) =Vp<q IFpqe o : f(—p) < Fpq

Y

<F,, <
o/ -LSC(L)=Vp<q FF,5e o f(q¢,—) < Fpq < f(p,—).

o/-C(L) = o/-LSC(L) n /-USC(L)

Clearly: f is upper o7-semicont. iff it is lower .o7“-semicont.

f is o/“-continuous Iiff it Is .7 -continuous.
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27 -semicontinuity and .27 -continuity: EXAMPLES

of upper .&f-sc lower .&f/-sc  .¢f-continuous

/1 = {c(a): ae L} usc Isc continuous
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27 -semicontinuity and .27 -continuity: EXAMPLES

upper .&f-sc lower .&f/-sc  .¢f-continuous

<y ={c(a): a€ L}
oo = {c(a*): a€ L}

usc Isc continuous

normal usc normal Ilsc normal cont.
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27 -semicontinuity and .27 -continuity: EXAMPLES

upper .&f-sc lower .&f/-sc  .¢f-continuous

<y ={c(a): a€ L}
oo = {c(a*): a€ L}

usc Isc continuous

normal usc normal Ilsc normal cont.

< () =1
[Dilworth, 1950]
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27 -semicontinuity and .27 -continuity: EXAMPLES

of upper .&/-sc lower .&/-sc  .f-continuous
/1 = {c(a): ae L} usc Isc continuous
ofy = {c(a™): a € L} normal usc normal Isc normal cont.

/3 = {c(a): aregular Gs} regularusc regulariIsc regular cont.

[Lane, 1983]
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27 -semicontinuity and .27 -continuity: EXAMPLES

of upper .&/-sc lower .&/-sc  .f-continuous

/1 = {c(a): ae L} usc Isc continuous
ofy = {c(a™): a € L} normal usc normal Isc normal cont.

/3 = {c(a): aregular Gs} regularusc regulariIsc regular cont.
</, = {c(cozf): fe C(L)} zerousc zero Isc zero cont.

[Stone, 1949]
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MAIN RESULT: Kat étov-Tong insertion = Stone insertion S, T eS(L)

SCyT=dU0ed,IVedt: SKVSUKLT
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MAIN RESULT: Kat étov-Tong insertion = Stone insertion S, T eS(L)

SCyT=3d1U0ed,IVed: SKVSUKLT Katétov relation?
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MAIN RESULT: Kat étov-Tong insertion = Stone insertion S, T eS(L)

SCyT=3d1U0ed,IVed: SKVSUKLT Katétov relation?

(Kl)Sc,y,T=5<T.
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MAIN RESULT: Kat étov-Tong insertion = Stone insertion S, T eS(L)

SCyT=3d1U0ed,IVed: SKVSUKLT Katétov relation?
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(K2)S'<Sey, T<T' =5, T.
(K)yScyTandS"cy, T=(SvS)ecyT.

(KA Scy,Tand SEC, T'=SCy (T AT").

S, T eS(L)

Katétov relation?

<7 1S a
Katéetov class
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(K2)S'<Sey, T<T' =5, T.
(K)yScyTandS"cy, T=(SvS)ecyT.

(KA Scy,Tand SEC, T'=SCy (T AT").

LEMMA 1. <7 IS a Katétov class if it is
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S, T eS(L)

Katétov relation?

<7 1S a
Katéetov class
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MAIN RESULT: Kat etov-Tong insertion = Stone insertion

SCyT=3d1Ued,dVed " S<VSUKLT

(Kl)Sc,y,T=5<T.
(K2)S'<Sey, T<T' =5, T.
(K)yScyTandS"cy, T=(SvS)ecyT.

(KA Scy,Tand SEC, T'=SCy (T AT").

LEMMA 1. <7 IS a Katétov class if it is
e a Sublattice

e or closed under binary meets and

S, T eS(L)

Katétov relation?

<7 1S a
Katéetov class

Lo/, o3, ]

Ul,UQE:Q%,Ul\/U2<V€%C:>E|U/€</Q%:UlVU2<U/<V[%]
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MAIN RESULT: Kat etov-Tong insertion = Stone insertion

SCyT=3d1Ued,dVed " S<VSUKLT

(Kl)Sc,y,T=5<T.
(K2)S'<Sey, T<T' =5, T.
(K)yScyTandS"cy, T=(SvS)ecyT.

(KA Scy,Tand SEC, T'=SCy (T AT").
(KE)SE€y T=3dUeS(L): SCy Ucy,T.

LEMMA 1. <7 IS a Katétov class if it is
e a Sublattice

e or closed under binary meets and

S, T eS(L)

Katétov relation?

<7 1S a
Katéetov class

Lo/, o3, ]

U1,U2€:527,U1\/UQ<V€:527C=>E|UIEV<27:Ul\/UgéUlé‘/[%]
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SCyT=3d1U0ed,IVed: SKVSUKLT Katétov relation?

K)SCy,T=S5<T.

(K2)S'"<Sey, T<T' =5 cyT.

(K3) S€yTand S €y T = (Sv )€y T. | s a
KA Sey,Tand SE, T = S Ey (T AT). Katetov class

(KE)SE€y T=3dUeS(L): SCy Ucy,T. o L is «/-normal
LEMMA 2

LEMMA 1. <7 IS a Katétov class if it is
e a sublattice |.ot , a5, o]

e or closed under binary meets and
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MAIN RESULT: Kat etov-Tong insertion = Stone insertion

THEOREM. TFAE for any Katetov class & < B(S(L)):

% L 1S «/-normal.
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MAIN RESULT: Kat etov-Tong insertion = Stone insertion

THEOREM. TFAE for any Katetov class & < B(S(L)):

% L 1S «/-normal.

% f o< g = 3dheod —CL): f<h<yg.
—
o/ —USC o/ —LSC
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MAIN RESULT: Kat etov-Tong insertion = Stone insertion

Then the dual result for extremal .o7-disconnectedness follows just by

COMPLEMENTATION:

THEOREM. TFAE for any Katetov class & < B(S(L)):

C
% L 1S «/-normal.

© 5 < g = Jhed-CL): f<h<y.
= C
o/ —USC of —LSC
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MAIN RESULT: Kat etov-Tong insertion = Stone insertion

Then the dual result for extremal .o/ -disconnectedness follows just by

COMPLEMENTATION:

COROLLARY. TFAE for any Katétov class .« < B(S(L)):

% L Is o7 -extremally disconnected.

O 5 < g = Jheod —C(L): f<h<yg.
—
o/ —LSC o/ —USC
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SeS(L)

CONTINUOUS EXTENSION:
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SeS(L)

CONTINUOUS EXTENSION:

S(L) A
3 feC(L). 7
Ys

£(R) e C(9) > S(9) Sv A
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SeS(L)

CONTINUOUS EXTENSION:

S(L)
3 fe c(e)/.ff \L@s

<~~~

£(R) e C(9) > S(9) Sv A

(RELATIVE) CONTINUOUS EXTENSION: o/ < B(S(L))
s ={SvA|Ae .}
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S(L)

3 feC(L)..~7 lﬁ"
S

<~~~

£(R) e C(9) > S(9) Sv A

(RELATIVE) CONTINUOUS EXTENSION: o/ < B(S(L))
s ={SvA|Ae .}

£(R)

> S(5)

a/g-continuous
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(RELATIVE) CONTINUOUS EXTENSION: o/ < B(S(L))
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CONTINUOUS EXTENSION:

S(L)
3 fe c(e)/.wv’ \LSOS

<~~~

£(R) e C(9) > S(9) Sv A

(RELATIVE) CONTINUOUS EXTENSION: o/ < B(S(L))

ds=1{SvA|Ae o
S(L)
o/-continuous 37 .7 lgps

> S(5)

a/g-continuous
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SeS(L)

CONTINUOUS EXTENSION:

S(L)
3 fe c(e)/.wv’ \LSOS

<~~~

£(R) e C(9) > S(9) Sv A

(RELATIVE) CONTINUOUS EXTENSION: o/ < B(S(L))

ds=1{SvA|Ae o
S(L)
o/-continuous 37 .7 lgps

“C's-embedded”
L(R)

> S(5)

a/g-continuous
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CONTINUOUS EXTENSION:

S(L)

3 feC(L)..~7 lﬁ"
S

<~~~

£(R) e C(9) > S(9) Sv A

(RELATIVE) CONTINUOUS EXTENSION: o/ < B(S(L))
s ={SvA|Ae .}

o/-continuous  3f .7 lﬁp
S
“C's-embedded”

S(R) “C%,-embedded”

> S(5)

a/g-continuous
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EXTENSION: Tietze-type = Stone-type

CONDITIONS ON &
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EXTENSION: Tietze-type = Stone-type

CONDITIONS ON &

(1) <7 Is closed under finite meets
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(1) <7 Is closed under finite meets
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(2') o is closed under countable joins

THEOREM. Let & be a Tietze class of L. TFAE:
% L 1S o/-normal.
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EXTENSION: Tietze-type = Stone-type

CONDITIONS ON &7 -

(1) <7 Is closed under finite meets

(2") < is closed under countable joins </ 1sa TIETZE class

THEOREM. Let & be a Tietze class of L. TFAE:
% L 1S o/-normal.
% Every Se &/ Is C7,-embedded in L.
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EXTENSION: Tietze-type = Stone-type

CONDITIONS ON &7 -

(1) <7 Is closed under finite meets
a7 1s a TIETZE class

(2') o is closed under countable joins

COROLLARY.
THESREM: Let (/)¢ be a Tietze class of L. TFAE:

% L is o/ -nermal. extremally disconnected
% Every S e (#)° is CF,-embedded in L.
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EXTENSION: Tietze-type = Stone-type

CONDITIONS ON &7 -

(1) <7 Is closed under finite meets

(2") < is closed under countable joins </ 1sa TIETZE class

COROLLARY.
THESREM: Let (/)¢ be a Tietze class of L. TFAE:

% L is o/ -nermal. extremally disconnected
% Every S e (#)° is CF,-embedded in L.

Homomorphic IMAGES (Hausdorff): see the preprint ...
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