Variants of normality and their duals: a pointfree unification of insertion and extension theorems for real-valued functions

Jorge Picado

Department of Mathematics University of Coimbra PORTUGAL

— joint work with J. Gutiérrez García (UPV-EHU, Bilbao, Spain)

THEOREM. TFAE for a locale *L*:

THEOREM. TFAE for a locale *L*:

THEOREM. TFAE for a locale *L*:

1) L is normal.

Every two disjoint closed sublocales of L are completely separated.

THEOREM. TFAE for a locale *L*:

Every two disjoint closed sublocales of L are completely separated.

Each closed sublocale of L is C^* -embedded.

THEOREM. TFAE for a locale *L*:

Every two disjoint closed sublocales of L are completely separated.

Each closed sublocale of L is C^* -embedded.

v-long

$$4 \quad \underbrace{f}_{\text{USC}} \leq \underbrace{g}_{\text{LSC}} \quad \Rightarrow \quad \exists \ h \in \mathsf{C}(L) \colon \ f \leq h \leq g \ .$$
 (Katětov

THEOREM. TFAE for a locale *L*:

This shapes the idea that the two notions are somehow dual

to each other and may therefore be studied in parallel.

• to examine this parallel.

- to examine this parallel.
- the proofs of the two insertion results are very different in nature: Katětov-Tong insertion: extends the standard proof of Urysohn...
 Stone insertion: needs the semiregularization...

- to examine this parallel.
- the proofs of the two insertion results are very different in nature: Katětov-Tong insertion: extends the standard proof of Urysohn...
 Stone insertion: needs the semiregularization...
 - Can we unify them under the same result (with a single proof)?

- to examine this parallel.
- the proofs of the two insertion results are very different in nature: Katětov-Tong insertion: extends the standard proof of Urysohn...
 Stone insertion: needs the semiregularization...
 - Can we unify them under the same result (with a single proof)?
- there is a variety of classical insertion type results (for several variants of normality).

- to examine this parallel.
- the proofs of the two insertion results are very different in nature: Katětov-Tong insertion: extends the standard proof of Urysohn...
 Stone insertion: needs the semiregularization...
 - Can we unify them under the same result (with a single proof)?
- there is a variety of classical insertion type results (for several variants of normality).

Can we unify them under a single general result?

Normal: $a \lor b = 1 \Rightarrow \exists u, v \in L : u \land v = 0, a \lor u = 1 = b \lor v.$

Normal: $a \lor b = 1 \Rightarrow \exists u, v \in L : u \land v = 0, a \lor u = 1 = b \lor v.$

Extremally disconnected:

$$a^* \lor a^{**} = 1$$

Normal: $a \lor b = 1 \Rightarrow \exists u, v \in L : u \land v = 0, a \lor u = 1 = b \lor v.$

Extremally disconnected:

$$a^* \lor a^{**} = 1$$

$$\Leftrightarrow (a \land b)^* = a^* \lor b^*$$

[De Morgan frames]

Normal: $a \lor b = 1 \Rightarrow \exists u, v \in L : u \land v = 0, a \lor u = 1 = b \lor v.$

Extremally disconnected:

 $a^* \lor a^{**} = 1$

 $\Leftrightarrow (a \land b)^* = a^* \lor b^*$ [De Morgan frames]

 $\Leftrightarrow [a \land b = 0 \Rightarrow \exists u, v \in L \colon u \lor v = 1, \ a \land u = 0 = b \land v].$

Normal: $a \lor b = 1 \Rightarrow \exists u, v \in L : u \land v = 0, a \lor u = 1 = b \lor v.$

Extremally disconnected:

 $a^* \lor a^{**} = 1$

 $\Leftrightarrow (a \land b)^* = a^* \lor b^*$ [De Morgan frames]

 $\Leftrightarrow [a \land b = 0 \Rightarrow \exists u, v \in L \colon u \lor v = 1, \ a \land u = 0 = b \land v].$

as lattices: L is normal iff L^{op} is extremally disconnected. (FRAME) (CO-FRAME)

IDEA: go to $\mathcal{S}(L)$, take complements

the frame of sublocales

 $\Leftrightarrow \mathfrak{o}L$ is extremally disconnected

 $A \lor B = 1 \implies \exists U, V \in \mathscr{A} : U \land V = 0, \ A \lor U = 1 = B \lor V.$

L is \mathscr{A} -extremally disconnected $\equiv L$ is \mathscr{A}^{c} -normal.

July 28, 2013

Variants of normality and their duals: a pointfree unification of insertion and extension theorems

$$a \lor b = 1 \implies \exists u, v \in L \colon u \land v = 0, a \lor u = 1 = b \lor v.$$

$$(a, b \in L)$$

Every $x \in L$ is regular G_{δ}

Every $x \in L$ is regular G_{δ}

$$x = \bigvee_{n \in \mathbb{N}} x_n$$
 with $x_n < x$

July 28, 2013

Variants of normality and their duals: a pointfree unification of insertion and extension theorems

Mildly normal

Almost normal

Normal

\mathscr{A} -normal frames \mathscr{A} -disconnected frames

 $\mathscr{A}_1 = \{ \mathfrak{c}(a) \colon a \in L \}$

Å

A	\mathscr{A} -normal frames	\mathscr{A} -disconnected frames
$\mathscr{A}_1 = \{ \mathfrak{c}(a) \colon a \in L \}$	normal	extremally disconn.

\mathcal{A}	\mathscr{A} -normal frames	\mathscr{A} -disconnected frames
$\mathscr{A}_1 = \{ \mathfrak{c}(a) \colon a \in L \}$	normal	extremally disconn.
$\mathscr{A}_2 = \{ \mathfrak{c}(a^*) \colon a \in L \}$		

\mathcal{A}	\mathcal{A} -normal frames	\mathcal{A} -disconnected frames
$\mathscr{A}_1 = \{ \mathfrak{c}(a) \colon a \in L \}$	normal	extremally disconn.
$\mathscr{A}_2 = \{ \mathfrak{c}(a^*) \colon a \in L \}$	mildly normal	extremally disconn.

\mathcal{A}	\mathscr{A} -normal frames	\mathcal{A} -disconnected frames
$\mathscr{A}_1 = \{ \mathfrak{c}(a) \colon a \in L \}$	normal	extremally disconn.
$\mathscr{A}_2 = \{ \mathfrak{c}(a^*) \colon a \in L \}$	mildly normal	extremally disconn.
$\mathscr{A}_3 = \{\mathfrak{c}(a) \colon a \text{ regular } G_\delta\}$		

\mathcal{A}	\mathscr{A} -normal frames	\mathscr{A} -disconnected frames
$\mathscr{A}_1 = \{ \mathfrak{c}(a) \colon a \in L \}$	normal	extremally disconn.
$\mathscr{A}_2 = \{ \mathfrak{c}(a^*) \colon a \in L \}$	mildly normal	extremally disconn.
$\mathscr{A}_3 = \{ \mathfrak{c}(a) \colon a \text{ regular } G_\delta \}$	δ -normal	extremally δ -disconn.

Å	\mathscr{A} -normal frames	\mathscr{A} -disconnected frames
$\mathscr{A}_1 = \{ \mathfrak{c}(a) \colon a \in L \}$	normal	extremally disconn.
$\mathscr{A}_2 = \{ \mathfrak{c}(a^*) \colon a \in L \}$	mildly normal	extremally disconn.
$\mathscr{A}_3 = \{ \mathfrak{c}(a) \colon a \text{ regular } G_\delta \}$	δ -normal	extremally δ -disconn.
$\mathscr{A}_4 = \{ \mathfrak{c}(\mathrm{coz} f) \colon f \in C(L) \}$		

\mathcal{A}	\mathscr{A} -normal frames	\mathscr{A} -disconnected frames
$\mathscr{A}_1 = \{ \mathfrak{c}(a) \colon a \in L \}$	normal	extremally disconn.
$\mathscr{A}_2 = \{ \mathfrak{c}(a^*) \colon a \in L \}$	mildly normal	extremally disconn.
$\mathscr{A}_3 = \{ \mathfrak{c}(a) \colon a \text{ regular } G_\delta \}$	δ -normal	extremally δ -disconn.
$\mathscr{A}_4 = \{ \mathfrak{c}(\operatorname{coz} f) \colon f \in C(L) \}$	all frames	F-frames

(*F*-frame: every cozero sublocale is C^* -embedded.)

 $f: \mathfrak{L}(\mathbb{R}) \to \mathcal{S}(L)$

REAL FUNCTIONS ON L

 $f: \mathfrak{L}(\mathbb{R}) \to \mathcal{S}(L)$

BACKGROUND: the frame of reals

 $\mathfrak{L}(\mathbb{R}) = \mathrm{Frm}\, \big\langle \, (-,q), (p,-)(p,q\in \mathbb{Q}) \mid$

$$f: \mathfrak{L}(\mathbb{R}) \to \mathcal{S}(L)$$

 $\mathfrak{L}(\mathbb{R}) = \operatorname{Frm} \langle (-,q), (p,-)(p,q \in \mathbb{Q}) \mid (-,q) \land (p,-) = 0 \text{ for } q \leq p,$

$$f: \mathfrak{L}(\mathbb{R}) \to \mathcal{S}(L)$$

$\mathfrak{L}(\mathbb{R}) = \mathrm{Frm}\, \langle \, (-,q), (p,-)(p,q\in\mathbb{Q}) \mid \quad \textbf{(1)} \ (-,q) \ \land \ (p,-) = 0 \ \text{for} \ q \leqslant p \text{,}$

(2) $(-,q) \lor (p,-) = 1$ for q > p,

$$f: \mathfrak{L}(\mathbb{R}) \to \mathcal{S}(L)$$

 $\mathfrak{L}(\mathbb{R}) = \operatorname{Frm} \langle (-,q), (p,-)(p,q \in \mathbb{Q}) \mid (-,q) \land (p,-) = 0 \text{ for } q \leq p,$

(2) $(-,q) \lor (p,-) = 1$ for q > p,

(3)
$$(-,q) = \bigvee_{s < q} (-,s),$$

$$f: \mathfrak{L}(\mathbb{R}) \to \mathcal{S}(L)$$

 $\mathfrak{L}(\mathbb{R}) = \operatorname{Frm} \langle (-,q), (p,-)(p,q \in \mathbb{Q}) \mid (-,q) \land (p,-) = 0 \text{ for } q \leq p,$

(2) $(-,q) \lor (p,-) = 1$ for q > p,

(3) $(-,q) = \bigvee_{s < q} (-,s),$

 $(4) \bigvee_{q \in \mathbb{Q}} (-, q) = 1,$

$$f: \mathfrak{L}(\mathbb{R}) \to \mathcal{S}(L)$$

 $\mathfrak{L}(\mathbb{R}) = \operatorname{Frm} \langle (-,q), (p,-)(p,q \in \mathbb{Q}) \mid (1) (-,q) \land (p,-) = 0 \text{ for } q \leq p,$

(2) $(-,q) \lor (p,-) = 1$ for q > p,

(3)
$$(-,q) = \bigvee_{s < q} (-,s),$$

$$(4) \bigvee_{q \in \mathbb{Q}} (-, q) = 1,$$

(5)
$$(p,-) = \bigvee_{r>p} (r,-),$$

$$f: \mathfrak{L}(\mathbb{R}) \to \mathcal{S}(L)$$

 $\mathfrak{L}(\mathbb{R}) = \operatorname{Frm} \langle (-,q), (p,-)(p,q \in \mathbb{Q}) \mid (1) (-,q) \land (p,-) = 0 \text{ for } q \leq p,$

(2) $(-,q) \lor (p,-) = 1$ for q > p,

(3)
$$(-,q) = \bigvee_{s < q} (-,s),$$

(4)
$$\bigvee_{q \in \mathbb{Q}} (-, q) = 1$$
,

(5)
$$(p,-) = \bigvee_{r>p} (r,-),$$

(6)
$$\bigvee_{p \in \mathbb{Q}} (p, -) = 1$$
.

 $f: \mathfrak{L}(\mathbb{R}) \to \mathcal{S}(L)$

 $f: \mathfrak{L}(\mathbb{R}) \to \mathcal{S}(L)$

J. GUTIÉRREZ GARCÍA, T. KUBIAK & J. P. Localic real functions: a general setting, J. Pure Appl. Algebra 213 (2009)

July 28, 2013

Variants of normality and their duals: a pointfree unification of insertion and extension theorems

TACL 2013 - 9

$f \in \mathsf{USC}(L) \iff \forall p < q \ \exists F_{p,q} \in \mathsf{c}L : f(-,p) \leq F_{p,q} \leq f(-,q).$

 $f \in \mathsf{USC}(L) \iff \forall p < q \ \exists F_{p,q} \in \mathfrak{c}L : f(-,p) \leq F_{p,q} \leq f(-,q).$ [" \Leftarrow ": $f(-,q) = \bigvee_{r < q} f(-,r) \leq \bigvee_{r < q} F_{r,q} \leq f(-,q)$.]

$$f \in \mathsf{USC}(L) \iff \forall p < q \; \exists F_{p,q} \in \mathsf{c}L : \; f(-,p) \leq F_{p,q} \leq f(-,q).$$

$$[``\leftarrow": f(-,q) = \bigvee_{r < q} f(-,r) \leq \bigvee_{r < q} F_{r,q} \leq f(-,q).]$$

 $\mathscr{A}\text{-}\mathsf{USC}(L) \equiv \forall \, p < q \; \exists F_{p,q} \in \mathscr{A} : \; f(-,p) \leqslant F_{p,q} \leqslant f(-,q).$

$$\begin{split} f \in \mathsf{USC}(L) \iff \forall \, p < q \; \exists F_{p,q} \in \mathfrak{c}L : \; f(-,p) \leqslant F_{p,q} \leqslant f(-,q). \\ [``\Leftarrow": \; f(-,q) = \bigvee_{r < q} f(-,r) \leqslant \bigvee_{r < q} F_{r,q} \leqslant f(-,q).] \end{split}$$

$$\mathscr{A}\operatorname{-USC}(L) \equiv \forall p < q \; \exists F_{p,q} \in \mathscr{A} : \; f(-,p) \leq F_{p,q} \leq f(-,q).$$
$$\mathscr{A}\operatorname{-LSC}(L) \equiv \forall p < q \; \exists F_{p,q} \in \mathscr{A} : \; f(q,-) \leq F_{p,q} \leq f(p,-).$$

$$\begin{split} f \in \mathsf{USC}(L) \iff \forall \, p < q \; \exists F_{p,q} \in \mathfrak{c}L : \; f(-,p) \leqslant F_{p,q} \leqslant f(-,q). \\ [``\Leftarrow": \; f(-,q) = \bigvee_{r < q} f(-,r) \leqslant \bigvee_{r < q} F_{r,q} \leqslant f(-,q).] \end{split}$$

$$\mathscr{A}\operatorname{-USC}(L) \equiv \forall p < q \ \exists F_{p,q} \in \mathscr{A} : f(-,p) \leq F_{p,q} \leq f(-,q).$$
$$\mathscr{A}\operatorname{-LSC}(L) \equiv \forall p < q \ \exists F_{p,q} \in \mathscr{A} : f(q,-) \leq F_{p,q} \leq f(p,-).$$
$$\mathscr{A}\operatorname{-C}(L) = \mathscr{A}\operatorname{-LSC}(L) \cap \mathscr{A}\operatorname{-USC}(L)$$

$$\begin{split} f \in \mathsf{USC}(L) \iff \forall \, p < q \; \exists F_{p,q} \in \mathfrak{c}L : \; f(-,p) \leqslant F_{p,q} \leqslant f(-,q). \\ [``\Leftarrow": \; f(-,q) = \bigvee_{r < q} f(-,r) \leqslant \bigvee_{r < q} F_{r,q} \leqslant f(-,q).] \end{split}$$

$$\mathscr{A}\operatorname{-USC}(L) \equiv \forall p < q \ \exists F_{p,q} \in \mathscr{A} : f(-,p) \leq F_{p,q} \leq f(-,q).$$
$$\mathscr{A}\operatorname{-LSC}(L) \equiv \forall p < q \ \exists F_{p,q} \in \mathscr{A} : f(q,-) \leq F_{p,q} \leq f(p,-).$$
$$\mathscr{A}\operatorname{-C}(L) = \mathscr{A}\operatorname{-LSC}(L) \cap \mathscr{A}\operatorname{-USC}(L)$$

Clearly: f is upper \mathscr{A} -semicont. iff it is lower \mathscr{A}^{c} -semicont. f is \mathscr{A}^{c} -continuous iff it is \mathscr{A} -continuous.

\mathscr{A} -semicontinuity and \mathscr{A} -continuity: EXAMPLES

\mathcal{A}	upper A-sc	lower A-sc	\mathscr{A} -continuous
$\mathscr{A}_1 = \{ \mathfrak{c}(a) \colon a \in L \}$	USC	lsc	continuous

A	upper A-sc	lower A-sc	\mathscr{A} -continuous
$\mathscr{A}_1 = \{ \mathfrak{c}(a) \colon a \in L \}$	USC	lsc	continuous
$\mathscr{A}_2 = \{ \mathfrak{c}(a^*) \colon a \in L \}$	normal usc	normal lsc	normal cont.

 $p < q \colon f(-,p) \leqslant \mathfrak{c}(a_{p,q}^*) \leqslant f(-,q)$

A	upper A-sc	lower A-sc	\mathscr{A} -continuous
$\mathscr{A}_1 = \{ \mathfrak{c}(a) \colon a \in L \}$	USC	lsc	continuous
$\mathscr{A}_2 = \{ \mathfrak{c}(a^*) \colon a \in L \}$	normal usc	normal lsc	normal cont.

 $p < q \colon f(-,p) \leqslant \mathfrak{c}(a_{p,q}^*) \leqslant f(-,q)$

 $\Leftrightarrow (f^{\circ})^{-} = f$

[Dilworth, 1950]
\mathcal{A}	upper A-sc	lower A-sc	A-continuous
$\mathscr{A}_1 = \{ \mathfrak{c}(a) \colon a \in L \}$	USC	lsc	continuous
$\mathscr{A}_2 = \{ \mathfrak{c}(a^*) \colon a \in L \}$	normal usc	normal lsc	normal cont.
$\mathscr{A}_3 = \{ \mathfrak{c}(a) \colon a \text{ regular } G_\delta \}$	regular usc	regular lsc	regular cont.

[Lane, 1983]

A	upper A-sc	lower A-sc	\mathscr{A} -continuous
$\mathscr{A}_1 = \{ \mathfrak{c}(a) \colon a \in L \}$	USC	lsc	continuous
$\mathscr{A}_2 = \{ \mathfrak{c}(a^*) \colon a \in L \}$	normal usc	normal lsc	normal cont.
$\mathscr{A}_3 = \{ \mathfrak{c}(a) \colon a \text{ regular } G_\delta \}$	regular usc	regular lsc	regular cont.
$\mathscr{A}_4 = \{ \mathfrak{c}(\mathrm{coz} f) \colon f \in C(L) \}$	zero usc	zero Isc	zero cont.

[Stone, 1949]

 $S, T \in \mathcal{S}(L)$

$S \Subset_{\mathscr{A}} T \equiv \exists U \in \mathscr{A}, \exists V \in \mathscr{A}^{\mathsf{c}} \colon S \leqslant V \leqslant U \leqslant T$

July 28, 2013 Variants of normality and their duals: a pointfree unification of insertion and extension theorems TACL 2013 – 12

 $S, T \in \mathcal{S}(L)$

 $S \Subset_{\mathscr{A}} T \equiv \exists U \in \mathscr{A}, \exists V \in \mathscr{A}^{\mathsf{c}} \colon S \leqslant V \leqslant U \leqslant T$

Katětov relation?

 $S, T \in \mathcal{S}(L)$

 $S \Subset_{\mathscr{A}} T \equiv \exists U \in \mathscr{A}, \exists V \in \mathscr{A}^{\mathsf{c}} \colon S \leqslant V \leqslant U \leqslant T$

Katětov relation?

(K1) $S \Subset_{\mathscr{A}} T \Rightarrow S \leqslant T$.

 $S \Subset_{\mathscr{A}} T \equiv \exists U \in \mathscr{A}, \exists V \in \mathscr{A}^{\mathsf{c}} \colon S \leqslant V \leqslant U \leqslant T$

Katětov relation?

(K1) $S \Subset_{\mathscr{A}} T \Rightarrow S \leqslant T$. (K2) $S' \leqslant S \Subset_{\mathscr{A}} T \leqslant T' \Rightarrow S' \Subset_{\mathscr{A}} T'$.

 $S \Subset_{\mathscr{A}} T \equiv \exists U \in \mathscr{A}, \exists V \in \mathscr{A}^{\mathsf{c}} \colon S \leqslant V \leqslant U \leqslant T$

Katětov relation?

(K1) $S \Subset_{\mathscr{A}} T \Rightarrow S \leqslant T$. (K2) $S' \leqslant S \Subset_{\mathscr{A}} T \leqslant T' \Rightarrow S' \Subset_{\mathscr{A}} T'$. (K3) $S \Subset_{\mathscr{A}} T$ and $S' \Subset_{\mathscr{A}} T \Rightarrow (S \lor S') \Subset_{\mathscr{A}} T$. (K4) $S \Subset_{\mathscr{A}} T$ and $S \Subset_{\mathscr{A}} T' \Rightarrow S \Subset_{\mathscr{A}} (T \land T')$.

 $S \subseteq \mathcal{A} T \equiv \exists U \in \mathcal{A}, \exists V \in \mathcal{A}^{c}: S \leq V \leq U \leq T$ Katětov relation?

(K1) $S \Subset_{\mathscr{A}} T \Rightarrow S \leqslant T$. (K2) $S' \leqslant S \Subset_{\mathscr{A}} T \leqslant T' \Rightarrow S' \Subset_{\mathscr{A}} T'$. (K3) $S \Subset_{\mathscr{A}} T$ and $S' \Subset_{\mathscr{A}} T \Rightarrow (S \lor S') \Subset_{\mathscr{A}} T$. (K4) $S \Subset_{\mathscr{A}} T$ and $S \Subset_{\mathscr{A}} T' \Rightarrow S \Subset_{\mathscr{A}} (T \land T')$. Katětov class $S \subseteq \mathcal{A} T \equiv \exists U \in \mathcal{A}, \exists V \in \mathcal{A}^{\mathsf{c}} \colon S \leqslant V \leqslant U \leqslant T$

 $S, T \in \mathcal{S}(L)$

(K1)
$$S \Subset_{\mathscr{A}} T \Rightarrow S \leqslant T$$
.
(K2) $S' \leqslant S \Subset_{\mathscr{A}} T \leqslant T' \Rightarrow S' \Subset_{\mathscr{A}} T'$.
(K3) $S \Subset_{\mathscr{A}} T$ and $S' \Subset_{\mathscr{A}} T \Rightarrow (S \lor S') \Subset_{\mathscr{A}} T$.
(K4) $S \Subset_{\mathscr{A}} T$ and $S \Subset_{\mathscr{A}} T' \Rightarrow S \Subset_{\mathscr{A}} (T \land T')$.
Katětov class

LEMMA 1. A is a Katětov class if it is

• a sublattice

 $[\mathcal{A}_1, \mathcal{A}_3, \mathcal{A}_4]$

$$S \subseteq \mathcal{A} T \equiv \exists U \in \mathcal{A}, \exists V \in \mathcal{A}^{\mathsf{c}}: S \leq V \leq U \leq T$$
 Katětov relation?

(K1)
$$S \Subset_{\mathscr{A}} T \Rightarrow S \leqslant T$$
.
(K2) $S' \leqslant S \Subset_{\mathscr{A}} T \leqslant T' \Rightarrow S' \Subset_{\mathscr{A}} T'$.
(K3) $S \Subset_{\mathscr{A}} T$ and $S' \Subset_{\mathscr{A}} T \Rightarrow (S \lor S') \Subset_{\mathscr{A}} T$.
(K4) $S \Subset_{\mathscr{A}} T$ and $S \Subset_{\mathscr{A}} T' \Rightarrow S \Subset_{\mathscr{A}} (T \land T')$.
Katětov class

LEMMA 1. A is a Katětov class if it is

• a sublattice

- $[\mathscr{A}_1, \mathscr{A}_3, \mathscr{A}_4]$
- or closed under binary meets and $U_1, U_2 \in \mathscr{A}, U_1 \lor U_2 \leq V \in \mathscr{A}^{\mathsf{c}} \Rightarrow \exists U' \in \mathscr{A} : U_1 \lor U_2 \leq U' \leq V [\mathscr{A}_2]$

 $S \subseteq \mathcal{A} T \equiv \exists U \in \mathcal{A}, \exists V \in \mathcal{A}^{\mathsf{c}} \colon S \leq V \leq U \leq T$

 $S, T \in \mathcal{S}(L)$

(K1)
$$S \Subset_{\mathscr{A}} T \Rightarrow S \leqslant T$$
.
(K2) $S' \leqslant S \Subset_{\mathscr{A}} T \leqslant T' \Rightarrow S' \Subset_{\mathscr{A}} T'$.
(K3) $S \Subset_{\mathscr{A}} T$ and $S' \Subset_{\mathscr{A}} T \Rightarrow (S \lor S') \Subset_{\mathscr{A}} T$.
(K4) $S \Subset_{\mathscr{A}} T$ and $S \Subset_{\mathscr{A}} T' \Rightarrow S \Subset_{\mathscr{A}} (T \land T')$.
(K5) $S \Subset_{\mathscr{A}} T \Rightarrow \exists U \in S(L) : S \Subset_{\mathscr{A}} U \Subset_{\mathscr{A}} T$.

LEMMA 1. A is a Katětov class if it is

- a sublattice
- or closed under binary meets and $U_1, U_2 \in \mathscr{A}, U_1 \lor U_2 \leq V \in \mathscr{A}^{\mathsf{c}} \Rightarrow \exists U' \in \mathscr{A} : U_1 \lor U_2 \leq U' \leq V [\mathscr{A}_2]$

 $[\mathscr{A}_1, \mathscr{A}_3, \mathscr{A}_4]$

 $S \subseteq_{\mathscr{A}} T \equiv \exists U \in \mathscr{A}, \exists V \in \mathscr{A}^{\mathsf{c}} \colon S \leqslant V \leqslant U \leqslant T$

 $S, T \in \mathcal{S}(L)$

(K1)
$$S \Subset_{\mathscr{A}} T \Rightarrow S \leqslant T$$
.
(K2) $S' \leqslant S \Subset_{\mathscr{A}} T \leqslant T' \Rightarrow S' \Subset_{\mathscr{A}} T'$.
(K3) $S \Subset_{\mathscr{A}} T$ and $S' \Subset_{\mathscr{A}} T \Rightarrow (S \lor S') \Subset_{\mathscr{A}} T$.
(K4) $S \Subset_{\mathscr{A}} T$ and $S \Subset_{\mathscr{A}} T' \Rightarrow S \Subset_{\mathscr{A}} (T \land T')$.
(K5) $S \Subset_{\mathscr{A}} T \Rightarrow \exists U \in S(L) : S \Subset_{\mathscr{A}} U \Subset_{\mathscr{A}} T$. $\Leftrightarrow L$ is \mathscr{A} -normal
LEMMA 2

LEMMA 1. A is a Katětov class if it is

- a sublattice
- or closed under binary meets and $U_1, U_2 \in \mathscr{A}, U_1 \lor U_2 \leq V \in \mathscr{A}^{\mathsf{c}} \Rightarrow \exists U' \in \mathscr{A} : U_1 \lor U_2 \leq U' \leq V [\mathscr{A}_2]$

 $[\mathscr{A}_1, \mathscr{A}_3, \mathscr{A}_4]$

THEOREM. TFAE for any Katětov class $\mathscr{A} \subseteq B(\mathcal{S}(L))$:

1 *L* is \mathscr{A} -normal.

Then the dual result for extremal *A*-disconnectedness follows just by

COMPLEMENTATION:

Then the dual result for extremal *A*-disconnectedness follows just by

COMPLEMENTATION:

CONTINUOUS EXTENSION:

CONTINUOUS EXTENSION:

CONTINUOUS EXTENSION:

CONTINUOUS EXTENSION:

(RELATIVE) CONTINUOUS EXTENSION:

 $\mathscr{A} \subseteq B(\mathcal{S}(L))$ $\mathscr{A}_S = \{ S \lor A \mid A \in \mathscr{A} \}$

CONTINUOUS EXTENSION:

(RELATIVE) CONTINUOUS EXTENSION:

 $\mathscr{A} \subseteq B(\mathcal{S}(L))$ $\mathscr{A}_S = \{ S \lor A \mid A \in \mathscr{A} \}$

CONTINUOUS EXTENSION:

(RELATIVE) CONTINUOUS EXTENSION:

TACL 2013 – 14

CONTINUOUS EXTENSION:

(RELATIVE) CONTINUOUS EXTENSION:

 $\mathscr{A} \subseteq B(\mathcal{S}(L))$ $\mathscr{A}_S = \{ S \lor A \mid A \in \mathscr{A} \}$

CONTINUOUS EXTENSION:

(RELATIVE) CONTINUOUS EXTENSION:

 $\mathscr{A} \subseteq B(\mathcal{S}(L))$ $\mathscr{A}_S = \{ S \lor A \mid A \in \mathscr{A} \}$

" $C_{\mathscr{A}}$ -embedded"

TACL 2013 – 14

CONTINUOUS EXTENSION:

(RELATIVE) CONTINUOUS EXTENSION:

" $C_{\mathscr{A}}$ -embedded" " $C_{\mathscr{A}}^*$ -embedded"

 \mathscr{A}_S -continuous

Conditions on \mathscr{A} :

(1') *A* is closed under finite meets

(1') A is closed under finite meets
(2') A is closed under countable joins

(1') A is closed under finite meets
(2') A is closed under countable joins

(1') A is closed under finite meets
(2') A is closed under countable joins

(1') \mathscr{A} is closed under finite meets

(2') \mathscr{A} is closed under countable joins

 \mathscr{A} is a TIETZE class

(1') \mathscr{A} is closed under finite meets

(2') \mathscr{A} is closed under countable joins

 \mathscr{A} is a TIETZE class

Homomorphic IMAGES (Hausdorff): see the preprint ...