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OUTLINE

 AIM: cover the basics of point-free topology Slides give motivation, definitions and results, few proofs
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OUTLINE

 AIM: cover the basics of point-free topology Slides give motivation, definitions and results, few proofs

 Part I. Frames: the algebraic facet of spaces Part II. Categorical aspects of Frm Part III. Locales: the geometric facet of frames Part IV. Doing topology in Loc
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WHAT IS POINT-FREE TOPOLOGY?

 It is an approach to topology taking the lattices of open sets as the
primitive notion.
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WHAT IS POINT-FREE TOPOLOGY?

 It is an approach to topology taking the lattices of open sets as the
primitive notion.

 The techniques may hide some geometrical intuition, but often offers
powerful algebraic tools and opens new perspectives.
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WHAT IS POINT-FREE TOPOLOGY? is developed in the categories

Frm

�� frames

frame homomorphisms

� ��
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WHAT IS POINT-FREE TOPOLOGY? is developed in the categories

Frm

�� frames

frame homomorphisms

‘lattice theory applied to topology’ ‘topology itself’

Loc � Frmop

�� locales

localic maps

!The topological structure of a locale cannot live in its points: the points,
if any, live on the open sets rather than the other way about."

P. T. JOHNSTONE

[The art of pointless thinking, Category Theory at Work (1991)]
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WHAT IS POINT-FREE TOPOLOGY? is developed in the categories

Frm

�� frames

frame homomorphisms

‘lattice theory applied to topology’ ‘topology itself’

Loc � Frmop

�� locales

localic maps

!(...) what the pointfree formulation adds to the classical theory is a
remarkable combination of elegance of statement, simplicity of proof, and
increase of extent." R. BALL & J. WALTERS-WAYLAND

[C- and C�-quotients in pointfree topology, Dissert. Math. (2002)]

January 2015 Tutorial on localic topology BLAST 2015 – 2
– p. 2



WHAT IS POINT-FREE TOPOLOGY? is developed in the categories

Frm

�� frames

frame homomorphisms

‘lattice theory applied to topology’ ‘topology itself’

Loc � Frmop

�� locales

localic maps

!(...) what the pointfree formulation adds to the classical theory is a
remarkable combination of elegance of statement, simplicity of proof, and
increase of extent." R. BALL & J. WALTERS-WAYLAND

[C- and C�-quotients in pointfree topology, Dissert. Math. (2002)]

MORE: different categorical properties with advantage to the

point-free side.
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SOME HISTORY

The idea of approaching topology via algebra (lattice theory)
goes back to the ’30s-40’s:

Stone, McKinsey and Tarski, Wallman, ...
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SOME HISTORY

The idea of approaching topology via algebra (lattice theory)
goes back to the ’30s-40’s:

Stone, McKinsey and Tarski, Wallman, ... ORIGINS:

Seminar C. Ehresmann (1958) “local lattices”

1st talk (H. Dowker, Prague Top. Symp. 1966)

groundbreaking paper (J. Isbell, Atomless parts of spaces, 1972)

1st book (P. T. Johnstone, Stone Spaces, CUP 1982)
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SOME HISTORY

The idea of approaching topology via algebra (lattice theory)
goes back to the ’30s-40’s:

Stone, McKinsey and Tarski, Wallman, ... ORIGINS:

Seminar C. Ehresmann (1958) “local lattices”

1st talk (H. Dowker, Prague Top. Symp. 1966)

groundbreaking paper (J. Isbell, Atomless parts of spaces, 1972)

1st book (P. T. Johnstone, Stone Spaces, CUP 1982)

Later: autonomous subject with RAMIFICATIONS: category theory, topos theory, logic and
computer science.
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MAIN BASIC REFERENCES

P. T. Johnstone, Stone Spaces, CUP 1982.

S. Vickers, Topology via Logic, CUP 1989.

S. MacLane and I. Moerdijk, Sheaves in Geometry and Logic - A
first introduction to topos theory, Springer 1992.

B. Banaschewski, The real numbers in pointfree topology, Textos
de Matemática, vol. 12, Univ. Coimbra 1997.

R. N. Ball and J. Walters-Wayland, C- and C*-quotients in pointfree
topology, Dissert. Math, vol. 412, 2002.

JP, A. Pultr and A. Tozzi, Locales, Chapter II in “Categorical
Foundations”, CUP 2004.

JP and A. Pultr, Locales treated mostly in a covariant way, Textos de
Matemática, vol. 41, Univ. Coimbra 2008.

January 2015 Tutorial on localic topology BLAST 2015 – 4
– p. 4



MAIN BASIC REFERENCES

January 2015 Tutorial on localic topology BLAST 2015 – 4
– p. 4



PART I. Frames:

the algebraic facet of spaces

January 2015 Tutorial on localic topology BLAST 2015 – 5
– p. 5



FROM SPACES TO FRAMES

Top

pX,OXq

p �q

� � � � H^ � X �� � p� q

^� �� p ^ qp q p �q
� rrr���sss

 � r�s � ^
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FROM SPACES TO FRAMES

Top

pX,OXq pOX,�q

 complete lattice:�
Ui � �Ui, 0 � H

U ^ V � U X V , 1 � X�
Ui � intp�Uiq

^� �� p ^ qp q p �q
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FROM SPACES TO FRAMES

Top

pX,OXq pOX,�q

 complete lattice:�
Ui � �Ui, 0 � H

U ^ V � U X V , 1 � X�
Ui � intp�Uiq

more:

U ^�I Vi ��IpU ^ Viq

p q p �q
� rrr���sss

 � r�s � ^
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Top

pX,OXq pOX,�q
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more:
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FROM SPACES TO FRAMES

Top

pX,OXq pOX,�q

 complete lattice:�
Ui � �Ui, 0 � H

U ^ V � U X V , 1 � X�
Ui � intp�Uiq

more:

U ^�I Vi ��IpU ^ Viq

f

pY,OY q pOY,�q

f�1rrr���sss
 f�1r�s preserves

�

and ^
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FROM SPACES TO FRAMES

Top

pX,OXq pOX,�q

 complete lattice L�
Ui � �Ui, 0 � H

U ^ V � U X V , 1 � X�
Ui � intp�Uiq

frame:

a^�I bi ��Ipa^ biq

f

pY,OY q pOY,�q

f�1rrr���sss

 frame homomorphisms: h : M Ñ L preserves

�

and ^
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Top

pX,OXq pOX,�q

 complete lattice L�
Ui � �Ui, 0 � H

U ^ V � U X V , 1 � X�
Ui � intp�Uiq

frame:
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FROM SPACES TO FRAMES

Top

pX,OXq pOX,�q

 complete lattice L�
Ui � �Ui, 0 � H

U ^ V � U X V , 1 � X�
Ui � intp�Uiq

frame:

a^�I bi ��Ipa^ biq

f

pY,OY q pOY,�q

f�1rrr���sss

 frame homomorphisms: h : M Ñ L preserves

�

and ^
O

Frm

The algebraic nature of the objects of Frm is obvious.
More about that later on...
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MORE EXAMPLES of frames

 Finite distributive lattices, complete Boolean algebras, complete
chains.

1 � 2

 �P P P ¤r s � t P | ¤ ¤ u Ó � r s Ò � r s
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MORE EXAMPLES of frames

 Finite distributive lattices, complete Boolean algebras, complete
chains.

1:
0 � 1 2:

 subframe of a frame L: S � L closed under arbitrary joins
(in part. 0 P S) and finite meets (in part. 1 P S).

 P ¤r s � t P | ¤ ¤ u Ó � r s Ò � r s
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MORE EXAMPLES of frames

 Finite distributive lattices, complete Boolean algebras, complete
chains.

1:
0 � 1 2:

 subframe of a frame L: S � L closed under arbitrary joins
(in part. 0 P S) and finite meets (in part. 1 P S). intervals of a frame L: a, b P L, a ¤ bra, bs � tx P L | a ¤ x ¤ bu, Ób � r0, bs, Òa � ra, 1s.
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MORE EXAMPLES of frames

 For any ^-semilattice pA,^, 1q, DpAq � tdown-sets of Au is a
frame: � � �,

� � �.

KKK
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MORE EXAMPLES of frames

 For any ^-semilattice pA,^, 1q, DpAq � tdown-sets of Au is a
frame: � � �,

� � �.

SLat

D

Frm
G (forgetful functor)

KKK
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MORE EXAMPLES of frames

 For any ^-semilattice pA,^, 1q, DpAq � tdown-sets of Au is a
frame: � � �,

� � �.

SLat

D

Frm
G (forgetful functor)

KKK

p p q q � p p qqÞÞ ÞÑÑÑ pr ÞÑ pÓ qqp ÞÑ� r sq ÞÞÞÑÑÑ
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MORE EXAMPLES of frames

 For any ^-semilattice pA,^, 1q, DpAq � tdown-sets of Au is a
frame: � � �,

� � �.

SLat

D

Frm
G (forgetful functor)

KKK
HomFrmpDpAq, Lq � HomSLatpA,GpLqq

h Þ Þ ÞÑÑÑ prh : a ÞÑ hpÓaqqpg : S ÞÑ�
grSsq ÞÞÞÑÑÑ g
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MORE EXAMPLES of frames

 For any distributive lattice A, IpAq � tideals of Au is a frame:� � �, J _K � ta_ b | a P J, b P Ku.

KKK
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MORE EXAMPLES of frames

 For any distributive lattice A, IpAq � tideals of Au is a frame:� � �, J _K � ta_ b | a P J, b P Ku.
DLat

I

Frm
E (inclusion as a non-full

subcategory)

KKK
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MORE EXAMPLES of frames
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EXAMPLES of frame homomorphisms All homomorphisms of finite distributive lattices.

 PÑ ÓÞÑ ^ Ñ ÒÞÑ _

 2Ñ Ñ 1

 � p q ÑÞÑ � � p q ÑÞÑ �
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EXAMPLES of frame homomorphisms All homomorphisms of finite distributive lattices. Complete homomorphisms of complete Boolean algebras.
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EXAMPLES of frame homomorphisms All homomorphisms of finite distributive lattices. Complete homomorphisms of complete Boolean algebras. For any frame L, a P L:

∆a : L Ñ Óa
x ÞÑ x^ a

∇a : L Ñ Òa
x ÞÑ x_ a
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EXAMPLES of frame homomorphisms All homomorphisms of finite distributive lattices. Complete homomorphisms of complete Boolean algebras. For any frame L, a P L:

∆a : L Ñ Óa
x ÞÑ x^ a

∇a : L Ñ Òa
x ÞÑ x_ a For any frame L, there exist unique 2Ñ L, LÑ 1.
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EXAMPLES of frame homomorphisms All homomorphisms of finite distributive lattices. Complete homomorphisms of complete Boolean algebras. For any frame L, a P L:

∆a : L Ñ Óa
x ÞÑ x^ a

∇a : L Ñ Òa
x ÞÑ x_ a For any frame L, there exist unique 2Ñ L, LÑ 1.

initial object terminal object

 � p q ÑÞÑ � � p q ÑÞÑ �
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EXAMPLES of frame homomorphisms All homomorphisms of finite distributive lattices. Complete homomorphisms of complete Boolean algebras. For any frame L, a P L:

∆a : L Ñ Óa
x ÞÑ x^ a

∇a : L Ñ Òa
x ÞÑ x_ a For any frame L, there exist unique 2Ñ L, LÑ 1.

initial object terminal object �

: IpLq Ñ L

J ÞÑ �
J

�
: DpLq Ñ L

S ÞÑ �

S
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BACKGROUND: POSETS AS CATEGORIES poset pA,¤q

pA,¤q as a thin category

���

P DÝÑ ¤
�

�
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BACKGROUND: POSETS AS CATEGORIES poset pA,¤q

pA,¤q as a thin category

��� OBJECTS: a P A

MORPHISMS: a

D!ÝÑ b whenever a ¤ b

(there is at most one arrow between any pair of objects)

�
�
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BACKGROUND: POSETS AS CATEGORIES poset pA,¤q

pA,¤q as a thin category

��� OBJECTS: a P A

MORPHISMS: a

D!ÝÑ b whenever a ¤ b

(there is at most one arrow between any pair of objects)

a b

c

f

1a

g � f g

1c

1b

In fact, a preorder suffices:

(1) reflexivity: provides the identity morphisms 1a.

(2) transitivity: provides the composition of morphisms g � f .

January 2015 Tutorial on localic topology BLAST 2015 – 11
– p. 11



BACKGROUND: PREORDERS AS CATEGORIES

pA,¤q as a thin category

��� OBJECTS: a P A

MORPHISMS: a

D!ÝÑ b whenever a ¤ b

FUNCTORS: f : A B

¤ p q¤1 p 1q

January 2015 Tutorial on localic topology BLAST 2015 – 11
– p. 11



BACKGROUND: PREORDERS AS CATEGORIES

pA,¤q as a thin category

��� OBJECTS: a P A

MORPHISMS: a

D!ÝÑ b whenever a ¤ b

FUNCTORS: f : A B

a¤ fpaq¤
a1 fpa1q order-preserving maps

January 2015 Tutorial on localic topology BLAST 2015 – 11
– p. 11
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MORPHISMS: a

D!ÝÑ b whenever a ¤ b

FUNCTORS: f : A B

a¤ fpaq¤
a1 fpa1q order-preserving maps
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BACKGROUND: PREORDERS AS CATEGORIES

pA,¤q as a thin category

��� OBJECTS: a P A

MORPHISMS: a

D!ÝÑ b whenever a ¤ b

FUNCTORS: f : A B

a¤ fpaq¤
a1 fpa1q order-preserving maps

(binary) PRODUCTS: a a^ b b

c

meets
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BACKGROUND: PREORDERS AS CATEGORIES

pA,¤q as a thin category

��� OBJECTS: a P A

MORPHISMS: a

D!ÝÑ b whenever a ¤ b

FUNCTORS: f : A B

a¤ fpaq¤
a1 fpa1q order-preserving maps

(binary) COPRODUCTS: a a_ b b

c

joins
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BACKGROUND: PREORDERS AS THIN CATEGORIES

“Existence of limits” means “existence of products”

(because equalizers exist trivially in thin categories)
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BACKGROUND: PREORDERS AS THIN CATEGORIES

“Existence of limits” means “existence of products”

(because equalizers exist trivially in thin categories)

so “existence of limits” (i.e. “complete category”)

means “complete lattice”.

From this point of view: category theory is an extension of lattice th.
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GALOIS ADJUNCTIONS

pA,¤q f pB,¤q

g

fpaq ¤ b iff a ¤ gpbq

ppp ppp qqq qqq ��� ppp ppp qqqqqq%
� ¤ ¤

� �

p ¤q p ¤q

r s� r s�� r s � t P | p q � ur s � t P | p q � u
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GALOIS ADJUNCTIONS

pA,¤q f pB,¤q

g

fpaq ¤ b iff a ¤ gpbqHomBpppfpppaqqq, bqqq ��� HomApppa, gpppbqqqqqq
f % g

� ¤ ¤

� �

p ¤q p ¤q
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g

fpaq ¤ b iff a ¤ gpbqHomBpppfpppaqqq, bqqq ��� HomApppa, gpppbqqqqqq
f % g

� fg ¤ id and id ¤ gf

(“quasi-inverses”)

� �

p ¤q p ¤q
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GALOIS ADJUNCTIONS

pA,¤q f pB,¤q

g

fpaq ¤ b iff a ¤ gpbqHomBpppfpppaqqq, bqqq ��� HomApppa, gpppbqqqqqq
f % g

� fg ¤ id and id ¤ gf

(“quasi-inverses”)
Properties

1 fgf � f and gfg � g.

p ¤q p ¤q

r s� r s�� r s � t P | p q � ur s � t P | p q � u
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GALOIS ADJUNCTIONS

pA,¤q f pB,¤q

g

fpaq ¤ b iff a ¤ gpbqHomBpppfpppaqqq, bqqq ��� HomApppa, gpppbqqqqqq
f % g

� fg ¤ id and id ¤ gf

(“quasi-inverses”)
Properties

1 fgf � f and gfg � g.

2 pA,¤q f pB,¤q
g

grBs� f rAs��

r s � t P | p q � ur s � t P | p q � u
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GALOIS ADJUNCTIONS

pA,¤q f pB,¤q

g

fpaq ¤ b iff a ¤ gpbqHomBpppfpppaqqq, bqqq ��� HomApppa, gpppbqqqqqq
f % g

� fg ¤ id and id ¤ gf

(“quasi-inverses”)
Properties

1 fgf � f and gfg � g.

2 pA,¤q f pB,¤q
g

grBs� f rAs�� grBs � ta P A | gfpaq � au

f rAs � tb P B | fgpbq � bu
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GALOIS ADJUNCTIONS

ADJOINT FUNCTOR THEOREM.

Let f : AÑ B be an order-preserving map between posets. Then:

p q ��t P | p q ¤ u% � � p� q ����t p q | P u p q ¤ � ¤ p q �

p� q ¤ � ¤ p q
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GALOIS ADJUNCTIONS

ADJOINT FUNCTOR THEOREM.

Let f : AÑ B be an order-preserving map between posets. Then:

(1) If f has a right adjoint, then f preserves all joins that exist in A.
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GALOIS ADJUNCTIONS

ADJOINT FUNCTOR THEOREM.

Let f : AÑ B be an order-preserving map between posets. Then:

(1) If f has a right adjoint, then f preserves all joins that exist in A.

p q ��t P | p q ¤ u

PROOF: Let f % g, S � A,

�
S exists. fp�Sq ?����tfpsq | s P Su

 p q ¤ � ¤ p q �

p� q ¤ � ¤ p q
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GALOIS ADJUNCTIONS

ADJOINT FUNCTOR THEOREM.

Let f : AÑ B be an order-preserving map between posets. Then:

(1) If f has a right adjoint, then f preserves all joins that exist in A.

p q ��t P | p q ¤ u

PROOF: Let f % g, S � A,

�
S exists. fp�Sq ?����tfpsq | s P Su upper bound X

 p q ¤ � ¤ p q �

p� q ¤ � ¤ p q
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(1) If f has a right adjoint, then f preserves all joins that exist in A.

(2) If A has all joins and f preserves them, then f has a right adjoint g,
uniquely determined by f :
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FRAMES as HEYTING ALGEBRAS

Heyting algebra: lattice L with an extra Ñ satisfying

a^ b ¤ c iff b ¤ aÑ c

^ p�q %%% Ñ p�q

ñ ^ p�q ñð ^ p�q ñ
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Proof: This is the ADJOINT FUNCTOR THEOREM!ñ: a^ p�q is a left adjoint ñ preserves joins.ð: a^ p�q preserves joins (=colimits) ñ it has a right adjoint. �

666 frames = cHa. BUT different categories (morphisms).
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FRAMES as HEYTING ALGEBRAS

Properties
H1 aÑ p� biq ��paÑ biq.

¤ Ñ ¤ Ñp� q Ñ ��p Ñ q
� � Ñ ��t | ^ � u � � p q

¤ ñ � ¤ �

¤ �� ��� � �

p� q� ��p q� �
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Properties
H1 aÑ p� biq ��paÑ biq.
H2 a ¤ bÑ c iff b ¤ aÑ c.

H3 p� aiq Ñ b ��pai Ñ bq.
...

Pseudocomplement: a� � aÑ 0 ��tb | b^ a � 0u.
Example: U� � int pX r Uq.

P1 a ¤ b ñ b� ¤ a�.

P2 a ¤ a��, a��� � a�.

P3 p� aiq� ��paiq�. De Morgan law (Caution: not for

�

)
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PART II.

Categorical aspects of Frm
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ALGEBRAIC ASPECTS OF Frm

1 Frm is equationally presentable i.e.

 Ñ Ñ p q ÞÑ ^ Ñ p q ÞÑ�

 p ^ q ^ � � ^ � � � ^� � ^� �� p ^ q
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Objects are described by a (proper class of) operations and equations:
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Objects are described by a (proper class of) operations and equations:

OPERATIONS 0-ary: 0, 1: L0 Ñ L binary: L2 Ñ L, pa, bq ÞÑ a^ b κ-ary (any cardinal κ): Lκ Ñ L, paiqκ ÞÑ�

κ ai

EQUATIONS pL,^, 1q is an idempotent commutative monoid with a zero 0 sat. the absorption law a^ 0 � 0 � 0^ a �a. �0 ai � 0, aj ^�κ ai � aj , a^�κ ai ��κpa^ aiq.
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ALGEBRAIC ASPECTS OF Frm

Then, by general results of category theory

[E. Manes, Algebraic Theories, Springer, 1976]:

Ñ
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ALGEBRAIC ASPECTS OF Frm

Then, by general results of category theory

[E. Manes, Algebraic Theories, Springer, 1976]:

COROLLARY.

Frm has all (small) limits (i.e., it is a COMPLETE category)
and they are constructed exactly as in Set (i.e., the forgetful func-
tor FrmÑ Set preserves them).
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ALGEBRAIC ASPECTS OF Frm

2 Frm has free objects: there is a free functor SetÑ Frm (i.e., a
left adjoint of the forgetful functor FrmÑ Set):

^ �

p qp q
p q

� �t � | u ��
r s
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ALGEBRAIC ASPECTS OF Frm

Then, by general results of category theory

[E. Manes, Algebraic Theories, Springer, 1976]:

p q
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ALGEBRAIC ASPECTS OF Frm

Then, by general results of category theory

[E. Manes, Algebraic Theories, Springer, 1976]:

COROLLARY.

Frm is an ALGEBRAIC category. In particular:

(1) It has all (small) colimits (i.e., it is a COCOMPLETE category).

(2) Monomorphisms = injective.

(3) Epimorphisms need not be surjective;
Regular epis = surjective.

(4) pRegEpi,Monoq is a factorization system.

(5) Quotients are described by congruences; there exist presen-
tations by generators and relations.
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EXAMPLE: PRESENTATIONS

PRESENTATIONS BY GENERATORS AND RELATIONS:

just take the quotient of the free frame on the given set

of generators modulo the congruence generated by the pairspu, vq for the given relations u � v.
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EXAMPLE: PRESENTATIONS Frame of reals LpRq
generated by all ordered pairs pp, qq, p, q P Q, subject to the relations

(R1) pp, qq ^ pr, sq � pp_ r, q ^ sq,
(R2) pp, qq _ pr, sq � pp, sq whenever p ¤ r   q ¤ s,

(R3) pp, qq ��tpr, sq | p   r   s   qu,
(R4)

�

p,qPQpp, qq � 1.

p qp_ r q ^ s

p q
p q

p qr s
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(R1) pp, qq ^ pr, sq � pp_ r, q ^ sq,
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EXAMPLE: PRESENTATIONS Frame of reals LpRq
Nice features: Continuous real functions,

semicontinuous real functions, ...

MORE, in next lectures.
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