Extended real functions in pointfree topology

Jorge Picado

Department of Mathematics University of Coimbra PORTUGAL

- joint work with B. Banaschewski and J. Gutiérrez García

categorical topology, topos theory, logic, ...

July 29, 2011

Extended real functions in pointfree topology

26th Summer Topology Conf. - 1

LOCALES Loc=Frm^{op}

• Frame = Complete lattice *L* satisfying

$$a \land \bigvee_{i \in I} b_i = \bigvee_{i \in I} (a \land b_i)$$

LOCALES Loc=Frm^{op}

• Frame = Complete lattice *L* satisfying

$$a \land \bigvee_{i \in I} b_i = \bigvee_{i \in I} (a \land b_i)$$

(= complete Heyting algebras)

LOCALES Loc=Frm^{op}

• Frame = Complete lattice L satisfying

$$a \land \bigvee_{i \in I} b_i = \bigvee_{i \in I} (a \land b_i)$$

(= complete Heyting algebras)

LOCALES Loc=Frm^{op}

• Frame = Complete lattice L satisfying

$$a \land \bigvee_{i \in I} b_i = \bigvee_{i \in I} (a \land b_i)$$

(= complete Heyting algebras)

LOCALES Loc=Frm^{op}

• Frame = Complete lattice L satisfying

$$a \land \bigvee_{i \in I} b_i = \bigvee_{i \in I} (a \land b_i)$$

(= complete Heyting algebras)

LOCALES Loc=Frm^{op}

• Frame = Complete lattice L satisfying

$$a \land \bigvee_{i \in I} b_i = \bigvee_{i \in I} (a \land b_i)$$

(= complete Heyting algebras)

Extended real functions in pointfree topology

- Topological spaces
 - (spatial locales)

• Topological spaces

 $(X, \mathcal{O}X)$

Topological spaces

 $\mathcal{O}X$

Topological spaces

Topological spaces

 Topological spaces $(X, \mathcal{O}X)$ $\mathcal{O}X$ (spatial locales) f f^{-1} $\mathcal{O}Y$

 $(Y, \mathcal{O}Y)$

complete Boolean algebras (spatial=atomic)

 Topological spaces $(X, \mathcal{O}X)$ $\mathcal{O}X$ (spatial locales) f f^{-1} $\mathcal{O}Y$

 $(Y, \mathcal{O}Y)$

- complete Boolean algebras (spatial=atomic)
- complete chains

• Topological spaces (X, OX) OX(spatial locales)

 $(Y, \mathcal{O}Y)$

- complete Boolean algebras (spatial=atomic)
- complete chains
- finite distributive lattices

 $\mathcal{O}Y$

 \ll (...) what the pointfree formulation adds to the classical theory is a remarkable combination of elegance of statement, simplicity of proof, and increase of extent.»

R. BALL & J. WALTERS-WAYLAND

«(...) what the pointfree formulation adds to the classical theory is a remarkable combination of elegance of statement, simplicity of proof, and increase of extent.»

R. BALL & J. WALTERS-WAYLAND

C- and C*-quotients in pointfree topology, *Dissert. Math.* 412 (2002)

THE REALS: $\mathfrak{L}(\mathbb{R})$

 $\mathcal{O}\mathbb{R}$ (usual topology) OR

 $\mathfrak{L}(\mathbb{R}) = \mathrm{Frm}\langle \ (-,q), (p,-)(p,q \in \mathbb{Q}) \ | \quad (\mathbf{1}) \ (-,q) \land (p,-) = 0 \text{ for } q \leq p,$

(2)
$$(-,q) \lor (p,-) = 1$$
 for $q > p$,

(3)
$$(-,q) = \bigvee_{s < q} (-,s)$$
,

(4)
$$\bigvee_{q \in \mathbb{Q}} (-, q) = 1$$
,

(5)
$$(p, -) = \bigvee_{r > p} (r, -),$$

(6)
$$\bigvee_{p \in \mathbb{Q}} (p, -) = 1 \rangle$$
.

THE REALS: $\mathfrak{L}(\mathbb{R})$

 $\mathcal{O}\mathbb{R}$ (usual topology) OR

 $\mathfrak{L}(\mathbb{R}) = \mathrm{Frm}\langle \ (-,q), (p,-)(p,q \in \mathbb{Q}) \mid \ (\mathbf{1}) \ (-,q) \land (p,-) = 0 \text{ for } q \leq p,$

(2) $(-,q) \lor (p,-) = 1$ for q > p,

(3)
$$(-,q) = \bigvee_{s < q} (-,s)$$
,

(4)
$$\bigvee_{q \in \mathbb{Q}} (-, q) = 1$$
,

(5)
$$(p,-) = \bigvee_{r>p} (r,-),$$

(6)
$$\bigvee_{p \in \mathbb{Q}} (p, -) = 1 \rangle$$
.

 ℓ -ring C(L) of continuous real functions

$$f: \mathfrak{L}(\mathbb{R}) \to L$$

THE REALS: $\mathfrak{L}(\mathbb{R})$

 $\mathcal{O}\mathbb{R}$ (usual topology) OR

 $\mathfrak{L}(\mathbb{R}) = \mathrm{Frm}\langle \ (-,q), (p,-)(p,q \in \mathbb{Q}) \mid \ (\mathbf{1}) \ (-,q) \land (p,-) = 0 \text{ for } q \leq p,$

(2) $(-,q) \lor (p,-) = 1$ for q > p,

(3)
$$(-,q) = \bigvee_{s < q} (-,s)$$
,

$$\bigotimes \bigvee_{q \in \mathbb{Q}} (-,q) = 1,$$

(5)
$$(p,-) = \bigvee_{r>p} (r,-),$$

$$\bigotimes \bigvee_{p \in \mathbb{Q}} (p, -) = 1 \rangle.$$

 ℓ -ring C(L) of continuous real functions

$$f: \mathfrak{L}(\mathbb{R}) \to L$$

$$\mathfrak{L}(\overline{\mathbb{R}}) = \operatorname{Frm}\langle \ (-,q), (p,-)(p,q \in \mathbb{Q}) \mid \ (\mathbf{1}) \ (-,q) \land (p,-) = 0 \text{ for } q \le p,$$

(2) $(-,q) \lor (p,-) = 1$ for q > p,

(3)
$$(-,q) = \bigvee_{s < q} (-,s)$$
,

(5)
$$(p,-) = \bigvee_{r>p} (r,-)$$
.

 $f: \mathfrak{L}(\overline{\mathbb{R}}) \to L$

 $\mathcal{O}\overline{\mathbb{R}}$ (usual topology on $\overline{\mathbb{R}}=\mathbb{R}\cup\{\pm\infty\}$) OR

$$\mathfrak{L}(\overline{\mathbb{R}}) = \operatorname{Frm}\langle \ (-,q), (p,-)(p,q \in \mathbb{Q}) \ | \quad (1) \ (-,q) \land (p,-) = 0 \text{ for } q \le p,$$

(2) $(-,q) \lor (p,-) = 1$ for q > p,

(3)
$$(-,q) = \bigvee_{s < q} (-,s),$$

(5)
$$(p,-) = \bigvee_{r>p} (r,-)$$
.

 $L = \mathcal{O}X$:

$$\overline{C}(L) = extended continuous real functions$$

$$\mathfrak{L}(\overline{\mathbb{R}}) = \operatorname{Frm}\langle (-,q), (p,-)(p,q \in \mathbb{Q}) \mid (1) (-,q) \land (p,-) = 0 \text{ for } q \le p,$$

(2) $(-,q) \lor (p,-) = 1$ for q > p,

(3)
$$(-,q) = \bigvee_{s < q} (-,s),$$

(5)
$$(p,-) = \bigvee_{r>p} (r,-)$$
.

 $L = \mathcal{O}X: \quad \overline{\mathsf{C}}(\mathcal{O}X) = \mathsf{Frm}(\mathfrak{L}(\overline{\mathbb{R}}), \mathcal{O}X)$

$$f:\mathfrak{L}(\overline{\mathbb{R}})\to L$$

 $\overline{C}(L) =$ extended continuous real functions

$$\begin{aligned} \mathfrak{L}(\mathbb{R}) &= \mathrm{Frm}\langle \ (-,q), (p,-)(p,q \in \mathbb{Q}) \ | & (1) \ (-,q) \land (p,-) = 0 \text{ for } q \leq p, \end{aligned}$$

$$(2) \ (-,q) \lor (p,-) = 1 \text{ for } q > p, \end{aligned}$$

$$(3) \ (-,q) = \bigvee_{s < q} (-,s), \end{aligned}$$

(5)
$$(p,-) = \bigvee_{r>p} (r,-)$$
.

 $L = \mathcal{O}X \colon \quad \overline{\mathsf{C}}(\mathcal{O}X) = \mathsf{Frm}(\mathfrak{L}(\overline{\mathbb{R}}), \mathcal{O}X) \cong \mathsf{Top}(X, \Sigma\mathfrak{L}(\overline{\mathbb{R}}))$

$$f:\mathfrak{L}(\overline{\mathbb{R}})\to L$$

 $\overline{C}(L) = extended continuous real functions$

$$\begin{aligned} \mathfrak{L}(\mathbb{R}) &= \mathrm{Frm}\langle \ (-,q), (p,-)(p,q \in \mathbb{Q}) \ | & (1) \ (-,q) \land (p,-) = 0 \text{ for } q \leq p, \\ (2) \ (-,q) \lor (p,-) = 1 \text{ for } q > p, \\ (3) \ (-,q) &= \bigvee_{s < q} (-,s), \\ (5) \ (p,-) &= \bigvee_{r > p} (r,-) \rangle. \end{aligned}$$

 $L=\mathcal{O}X \colon \quad \overline{\mathsf{C}}(\mathcal{O}X)=\mathsf{Frm}(\mathfrak{L}(\overline{\mathbb{R}}),\mathcal{O}X)\cong\mathsf{Top}(X,\Sigma\mathfrak{L}(\overline{\mathbb{R}}))=\mathsf{Top}(X,\overline{\mathbb{R}}).$

$$f:\mathfrak{L}(\overline{\mathbb{R}})\to L$$

 $\overline{C}(L) = extended continuous real functions$

Any $f: X \longrightarrow \overline{\mathbb{R}}$

Any
$$f: (X, \mathcal{P}(X)) \longrightarrow (\overline{\mathbb{R}}, \mathfrak{T})$$
 is continuous

i.e.
$$\overline{F}(X) \simeq \operatorname{Top}((X, \mathcal{P}(X)), (\overline{\mathbb{R}}, \mathfrak{T}))$$

i.e.
$$\overline{F}(X) \simeq \operatorname{Top}((X, \mathcal{P}(X)), (\overline{\mathbb{R}}, \mathfrak{T}))$$

 $\simeq \mathsf{Frm}(\mathfrak{L}(\overline{\mathbb{R}}), \mathcal{P}(X))$

i.e. $\overline{F}(X) \simeq \operatorname{Top}((X, \mathcal{P}(X)), (\overline{\mathbb{R}}, \mathfrak{T}))$

i.e. $\overline{F}(X) \simeq \operatorname{Top}((X, \mathcal{P}(X)), (\overline{\mathbb{R}}, \mathfrak{T}))$

 $\operatorname{Frm}(\mathfrak{L}(\overline{\mathbb{R}}), \mathcal{S}(L)) \xrightarrow[]{\text{lattice of sublocales of } L}$

i.e. $\overline{F}(X) \simeq \operatorname{Top}((X, \mathcal{P}(X)), (\overline{\mathbb{R}}, \mathfrak{T}))$

 $\operatorname{Frm}(\mathfrak{L}(\overline{\mathbb{R}}), \mathcal{S}(L)) \xrightarrow[]{\text{lattice of sublocales of } L}$

MOTIVATES:

$$\overline{\mathsf{F}}(L) := \operatorname{Frm}(\mathfrak{L}(\overline{\mathbb{R}}), \mathcal{S}(L))$$

SEMICONTINUITY AND CONTINUITY

 $f: \mathfrak{L}(\overline{\mathbb{R}}) \to \mathcal{S}(L)$

SEMICONTINUITY AND CONTINUITY

 $f: \mathfrak{L}(\overline{\mathbb{R}}) \to \mathcal{S}(L)$

SEMICONTINUITY AND CONTINUITY

 $f: \mathfrak{L}(\overline{\mathbb{R}}) \to \mathcal{S}(L)$

$f: \mathfrak{L}(\overline{\mathbb{R}}) \to \mathcal{S}(L)$

 $f: \mathfrak{L}(\overline{\mathbb{R}}) \to \mathcal{S}(L)$

 $f: \mathfrak{L}(\overline{\mathbb{R}}) \to \mathcal{S}(L)$

 $f: \mathfrak{L}(\overline{\mathbb{R}}) \to \mathcal{S}(L)$

 $f \leq g \equiv f(p, -) \leq g(p, -), \forall p \in \mathbb{Q}$

$\mathcal{C} = \{c_p \mid p \in \mathbb{Q}\} \subseteq L$

 $\mathcal{C} = \{c_p \mid p \in \mathbb{Q}\} \subseteq L$

Extended scale: $p < q \Rightarrow c_q \prec c_p$ (i.e. $c_p \lor c_q^* = 1$).

 $\mathcal{C} = \{c_p \mid p \in \mathbb{Q}\} \subseteq L$

Extended scale:
$$p < q \Rightarrow c_q \prec c_p$$
 (i.e. $c_p \lor c_q^* = 1$).

$$\boldsymbol{f}(\boldsymbol{p},-) = \bigvee_{r > p} c_r$$

$$f(-,q) = \bigvee_{s < q} c_s^*$$

 $\mathcal{C} = \{c_p \mid p \in \mathbb{Q}\} \subseteq L$

Extended scale:
$$p < q \Rightarrow c_q \prec c_p$$
 (i.e. $c_p \lor c_q^* = 1$).

$$\mathbf{f}(p,-) = \bigvee_{r > p} c_r$$

$$f(-,q) = \bigvee_{s < q} c_s^*$$

 $\mathcal{C} = \{c_p \mid p \in \mathbb{Q}\} \subseteq L$

Extended scale:
$$p < q \Rightarrow c_q \prec c_p$$
 (i.e. $c_p \lor c_q^* = 1$).

$$f(p,-) = \bigvee_{r>p} c_r$$

$$f(-,q) = \bigvee_{s< q} c_s^*$$

$$\mathcal{C}$$
 extended scale $\Rightarrow f \in \overline{\mathsf{C}}(L)$.

 $\mathcal{C} = \{c_p \mid p \in \mathbb{Q}\} \subseteq L$

Extended scale: $p < q \Rightarrow c_q \prec c_p$ (i.e. $c_p \lor c_q^* = 1$).

Scale: extended scale and $\bigvee \{c_p \mid p \in \mathbb{Q}\} = 1 = \bigvee \{c_p^* \mid p \in \mathbb{Q}\}.$

$$\mathcal{C}$$
 extended scale $\Rightarrow f \in \overline{\mathsf{C}}(L)$.

 $\mathcal{C} = \{c_p \mid p \in \mathbb{Q}\} \subseteq L$

Extended scale: $p < q \Rightarrow c_q \prec c_p$ (i.e. $c_p \lor c_q^* = 1$).

Scale: extended scale and $\bigvee \{c_p \mid p \in \mathbb{Q}\} = 1 = \bigvee \{c_p^* \mid p \in \mathbb{Q}\}.$

$$\begin{array}{ll} \mathcal{C} \text{ extended scale } \Rightarrow & f \in \overline{\mathsf{C}}(L). \\ \\ \mathcal{C} \text{ scale } \Rightarrow & f \in \mathsf{C}(L). \end{array}$$

r
$$C_r = \{c_p^r \mid p \in \mathbb{Q}\} = \{\dots, 1, 1, \dots, 1, \dots, 0, 0, \dots, 0, \dots\}$$

r
$$C_r = \{c_p^r \mid p \in \mathbb{Q}\} = \{\dots, 1, 1, \dots, 1, \dots, 0, 0, \dots, 0, \dots\}$$

 \uparrow
 $p = r$

r
$$C_r = \{c_p^r \mid p \in \mathbb{Q}\} = \{\dots, 1, 1, \dots, 1, \dots, 0, 0, \dots, 0, \dots\}$$

 \uparrow
scale \longrightarrow **r** $\in C(L)$
 $p = r$

$$\begin{array}{ll} \mathbf{r} & \mathcal{C}_r = \{c_p^r \mid p \in \mathbb{Q}\} = \{\dots, 1, 1, \dots, 1, \dots, 0, 0, \dots, 0, \dots\} \\ & \uparrow \\ & \mathbf{scale} & & \mathbf{r} \in \mathsf{C}(L) \\ & \mathbf{r}(p, -) = \bigvee_{s > p} c_s^r = c_p^r, \quad \mathbf{r}(-, q) = \left\{ \begin{array}{ll} 1 & \text{if } q > r \\ 0 & \text{if } q \leq r \end{array} \right. \end{array}$$

r
$$C_r = \{c_p^r \mid p \in \mathbb{Q}\} = \{\dots, 1, 1, \dots, 1, \dots, 0, 0, \dots, 0, \dots\}$$

scale \longrightarrow **r** \in C(L)

$$\mathbf{r}(p,-) = \bigvee_{s>p} c_s^r = c_p^r, \quad \mathbf{r}(-,q) = \begin{cases} 1 & \text{if } q > r \\ 0 & \text{if } q \le r \end{cases}$$

$$+\infty \quad \mathcal{C}_{+\infty} = \{\dots, 1, 1, \dots, 1, \dots\}$$

EXAMPLES: constant maps $r \in \mathbb{Q}, \mathbf{r} : \mathfrak{L}(\mathbb{R}) \to L$

r
$$C_r = \{c_p^r \mid p \in \mathbb{Q}\} = \{\dots, 1, 1, \dots, 1, \dots, 0, 0, \dots, 0, \dots\}$$

 \uparrow
scale \longrightarrow $\mathbf{r} \in \mathsf{C}(L)$
 $p = r$

$$\mathbf{r}(p,-) = \bigvee_{s>p} c_s^r = c_p^r, \quad \mathbf{r}(-,q) = \left\{ \begin{array}{ll} 1 & \text{if } q > r \\ 0 & \text{if } q \leq r \end{array} \right.$$

$$+\infty$$
 $\mathcal{C}_{+\infty} = \{\ldots, 1, 1, \ldots, 1, \ldots\}$

extended scale $\longrightarrow +\infty \in \overline{C}(L)$

r
$$C_r = \{c_p^r \mid p \in \mathbb{Q}\} = \{\dots, 1, 1, \dots, 1, \dots, 0, 0, \dots, 0, \dots\}$$

 \uparrow
scale \longrightarrow $\mathbf{r} \in C(L)$
 $p = r$

$$\mathbf{r}(p,-) = \bigvee_{s>p} c_s^r = c_p^r, \quad \mathbf{r}(-,q) = \left\{ \begin{array}{ll} 1 & \text{if } q > r \\ 0 & \text{if } q \leq r \end{array} \right.$$

$$\begin{array}{ll} +\infty & \mathcal{C}_{+\infty} = \{\ldots, 1, 1, \ldots, 1, \ldots\} \\ \text{extended scale} & & \longrightarrow +\infty \in \overline{\mathsf{C}}(L) \\ & & +\infty(p, -) = 1, \quad +\infty(-, q) = 0. \end{array}$$

 $r \in \mathbb{Q}, \quad \mathbf{r} : \mathfrak{L}(\mathbb{R}) \to L$

r
$$C_r = \{c_p^r \mid p \in \mathbb{Q}\} = \{\dots, 1, 1, \dots, 1, \dots, 0, 0, \dots, 0, \dots\}$$

 \uparrow
scale \longrightarrow $\mathbf{r} \in \mathsf{C}(L)$
 $p = r$

$$\mathbf{r}(p,-) = \bigvee_{s>p} c_s^r = c_p^r, \quad \mathbf{r}(-,q) = \left\{ \begin{array}{ll} 1 & \text{if } q > r \\ 0 & \text{if } q \leq r \end{array} \right.$$

+
$$\infty$$
 $C_{+\infty} = \{\dots, 1, 1, \dots, 1, \dots\}$
extended scale $\longrightarrow +\infty \in \overline{\mathsf{C}}(L)$
 $+\infty(p, -) = 1, +\infty(-, q) = 0.$

$$-\infty$$

 $\mathcal{C}_{-\infty} = \{\ldots, 0, 0, \ldots, 0, \ldots\}$

r
$$C_r = \{c_p^r \mid p \in \mathbb{Q}\} = \{\dots, 1, 1, \dots, 1, \dots, 0, 0, \dots, 0, \dots\}$$

 \uparrow
scale \longrightarrow $\mathbf{r} \in \mathsf{C}(L)$
 $p = r$

$$\mathbf{r}(p,-) = \bigvee_{s>p} c_s^r = c_p^r, \quad \mathbf{r}(-,q) = \left\{ \begin{array}{ll} 1 & \text{if } q > r \\ 0 & \text{if } q \leq r \end{array} \right.$$

+
$$\infty$$
 $C_{+\infty} = \{\dots, 1, 1, \dots, 1, \dots\}$
extended scale $\longrightarrow +\infty \in \overline{\mathsf{C}}(L)$
 $+\infty(p, -) = 1, +\infty(-, q) = 0.$

$$-\infty$$

$$\mathcal{C}_{-\infty} = \{\dots, 0, 0, \dots, 0, \dots\}$$

extended scale $\longrightarrow -\infty \in \overline{\mathsf{C}}(L)$

 $r \in \mathbb{Q}, \quad \mathbf{r} : \mathfrak{L}(\mathbb{R}) \to L$

r
$$C_r = \{c_p^r \mid p \in \mathbb{Q}\} = \{\dots, 1, 1, \dots, 1, \dots, 0, 0, \dots, 0, \dots\}$$

 \uparrow
scale \longrightarrow $\mathbf{r} \in \mathsf{C}(L)$
 $p = r$

$$\mathbf{r}(p,-) = \bigvee_{s>p} c_s^r = c_p^r, \quad \mathbf{r}(-,q) = \left\{ \begin{array}{ll} 1 & \text{if } q > r \\ 0 & \text{if } q \leq r \end{array} \right.$$

$$\begin{array}{ll} +\infty & \mathcal{C}_{+\infty} = \{\dots, 1, 1, \dots, 1, \dots\} \\ \text{extended scale} & \longrightarrow & +\infty \in \overline{\mathsf{C}}(L) \\ & +\infty(p, -) = 1, \quad +\infty(-, q) = 0. \end{array}$$

$$\begin{array}{ll} -\infty & \mathcal{C}_{-\infty} = \{\dots, 0, 0, \dots, 0, \dots\} \end{array}$$

$$\mathcal{C}_{-\infty} = \{\dots, 0, 0, \dots, 0, \dots\}$$
extended scale $\longrightarrow -\infty \in \overline{\mathsf{C}}(L)$
 $-\infty(p, -) = 0, \quad -\infty(-, q) = 1.$

Extended real functions in pointfree topology

$f \lor g, \ f \land g, \ -f, \ \lambda \cdot f : \ \underset{(\lambda > 0)}{\mathsf{EASY!}}$

$$f \lor g, \ f \land g, \ -f, \ \lambda \cdot f$$
 : EASY! $_{(\lambda > 0)}$

$$c_p^{f\vee g}=f(p,-)\vee g(p,-)$$

$$f \lor g, \ f \land g, \ -f, \ \lambda \cdot f$$
 : EASY! $_{(\lambda > 0)}$

 $c_p^{f\vee g}=f(p,-)\vee g(p,-)$

$$(f \lor g)(p, -) = f(p, -) \lor g(p, -)$$

$$(\boldsymbol{f} \vee \boldsymbol{g})(-,q) = f(-,q) \wedge g(-,q).$$

$$f \lor g, \ f \land g, \ -f, \ \lambda \cdot f$$
 : EASY! $_{(\lambda > 0)}$

 $c_p^{f\vee g}=f(p,-)\vee g(p,-)$

Then:
$$(f \lor g)(p, -) = f(p, -) \lor g(p, -)$$

 $(f \lor g)(-, q) = f(-, q) \land g(-, q).$

• $f \wedge g$: dually ...

$$f \lor g, \ f \land g, \ -f, \ \lambda \cdot f$$
 : EASY! $_{(\lambda > 0)}$

 $c_p^{f\vee g}=f(p,-)\vee g(p,-)$

Then:
$$(f \lor g)(p, -) = f(p, -) \lor g(p, -)$$

 $(f \lor g)(-, q) = f(-, q) \land g(-, q).$

• $f \wedge g$: dually ...

$$(f \wedge g)(p, -) = f(p, -) \wedge g(p, -)$$
$$(f \wedge g)(-, q) = f(-, q) \vee g(-, q).$$

$$f \lor g, \ f \land g, \ -f, \ \lambda \cdot f$$
 : EASY! $_{(\lambda > 0)}$

 $c_p^{f\vee g}=f(p,-)\vee g(p,-)$

Then:
$$(f \lor g)(p, -) = f(p, -) \lor g(p, -)$$

 $(f \lor g)(-, q) = f(-, q) \land g(-, q).$

• $f \wedge g$: dually ...

$$(f \wedge g)(p, -) = f(p, -) \wedge g(p, -)$$
$$(f \wedge g)(-, q) = f(-, q) \vee g(-, q).$$

 $\bullet \ (-f)(p,-) = f(-,-p)$

$$f \lor g, \ f \land g, \ -f, \ \lambda \cdot f$$
 : EASY! $_{(\lambda > 0)}$

 $c_p^{f\vee g}=f(p,-)\vee g(p,-)$

Then:
$$(f \lor g)(p, -) = f(p, -) \lor g(p, -)$$

 $(f \lor g)(-, q) = f(-, q) \land g(-, q).$

• $f \wedge g$: dually ...

$$(f \wedge g)(p, -) = f(p, -) \wedge g(p, -)$$

 $(f \wedge g)(-, q) = f(-, q) \vee g(-, q).$

• (-f)(p,-) = f(-,-p)

 $\overline{C}(L)$ is a distributive lattice with inversion

$f + g, f \cdot g$: HARD!

$f + g, f \cdot g$: HARD!

Of course! think on the typical indeterminations

 $-\infty + \infty, \quad \mathbf{0} \cdot \infty, \quad \dots$

$$f+g, f \cdot g$$
: HARD!

Of course! think on the typical indeterminations

 $-\infty + \infty, \quad \mathbf{0} \cdot \infty, \quad \dots$

• Sum: for $f \in \overline{\mathsf{C}}(L)$, let

 $a_f^+ = \bigvee_{q \in \mathbb{Q}} f(-,q), \quad a_f^- = \bigvee_{p \in \mathbb{Q}} f(p,-) \quad \text{and} \qquad a_f = a_f^+ \wedge a_f^-.$

$$f+g, f \cdot g$$
: HARD!

Of course! think on the typical indeterminations

 $-\infty + \infty, \quad \mathbf{0} \cdot \infty, \quad \dots$

• Sum: for $f \in \overline{\mathsf{C}}(L)$, let

(classically, the domain of reality of f: $f^{-1}(\mathbb{R})$)

$$f+g, f \cdot g$$
: HARD!

Of course! think on the typical indeterminations

 $-\infty + \infty, \quad \mathbf{0} \cdot \infty, \quad \dots$

• Sum: for $f \in \overline{\mathsf{C}}(L)$, let

(classically, the domain of reality of $f: f^{-1}(\mathbb{R})$)

 $f,g \in \overline{\mathsf{C}}(L)$ are sum compatible if $a_f^+ \lor a_g^-$

$$a_f^+ \lor a_g^- = a_g^+ \lor a_f^- = 1$$

SUM f + g

$$c_p^{f+g} = \bigvee_{r \in \mathbb{Q}} f(r, -) \wedge g(p - r, -)$$

SUM f + g

$$c_p^{f+g} = \bigvee_{r \in \mathbb{Q}} f(r, -) \wedge g(p - r, -)$$

is an extended scale in L IFF f and g are sum compatible.

SUM f + g

$$c_p^{f+g} = \bigvee_{r \in \mathbb{Q}} f(r, -) \wedge g(p - r, -)$$

is an extended scale in L IFF f and g are sum compatible.

It generates $f + g \in \overline{C}(L)$, given by:

SUM
$$f + g$$

$$c_p^{f+g} = \bigvee_{r \in \mathbb{Q}} f(r, -) \wedge g(p - r, -)$$

is an extended scale in L IFF f and g are sum compatible.

It generates $f + g \in \overline{C}(L)$, given by:

$$(f+g)(p,-) = \bigvee_{r \in \mathbb{Q}} f(r,-) \wedge g(p-r,-),$$

SUM
$$f + g$$

$$c_p^{f+g} = \bigvee_{r \in \mathbb{Q}} f(r, -) \wedge g(p - r, -)$$

is an extended scale in L IFF f and g are sum compatible.

It generates $f + g \in \overline{C}(L)$, given by:

$$(f+g)(p,-) = \bigvee_{r \in \mathbb{Q}} f(r,-) \wedge g(p-r,-),$$

$$(f+g)(-,q) = \bigvee_{r \in \mathbb{Q}} f(-,r) \wedge g(-,q-r).$$

• Product: for $f \in \overline{\mathsf{C}}(L)$, let $\operatorname{coz}(f) = f((-,0) \lor (0,-))$.

• Product: for $f \in \overline{C}(L)$, let $\cos(f) = f((-, 0) \lor (0, -))$.

 $f, g \in \overline{\mathsf{C}}(L)$ are product compatible if $a_f \lor \cos(g) = a_g \lor \cos(f) = 1$

• Product: for $f \in \overline{C}(L)$, let $\cos(f) = f((-, 0) \lor (0, -))$.

 $f, g \in \overline{\mathsf{C}}(L)$ are product compatible if $a_f \lor \cos(g) = a_g \lor \cos(f) = 1$

$$\begin{split} c_p^{f \cdot g} &= \bigvee_{r > 0} f(r, -) \wedge g(\frac{p}{r}, -) \ (p \geq 0) \\ c_p^{f \cdot g} &= 1 \ (p < 0) \end{split}$$

• Product: for $f \in \overline{C}(L)$, let $\cos(f) = f((-, 0) \lor (0, -))$.

 $f, g \in \overline{\mathsf{C}}(L)$ are product compatible if $a_f \lor \cos(g) = a_g \lor \cos(f) = 1$

$$\begin{split} c_p^{f \cdot g} &= \bigvee_{r > 0} f(r, -) \wedge g(\frac{p}{r}, -) \ (p \geq 0) \\ c_p^{f \cdot g} &= 1 \ (p < 0) \end{split}$$

is an extended scale in L IFF f and g are product compatible.

• Product: for $f \in \overline{C}(L)$, let $\cos(f) = f((-, 0) \lor (0, -))$.

 $f, g \in \overline{\mathsf{C}}(L)$ are product compatible if $a_f \lor \cos(g) = a_g \lor \cos(f) = 1$

$$\begin{split} c_p^{f \cdot g} &= \bigvee_{r > 0} f(r, -) \wedge g(\frac{p}{r}, -) \ (p \geq 0) \\ c_p^{f \cdot g} &= 1 \ (p < 0) \end{split}$$

is an extended scale in L IFF f and g are product compatible.

It generates $f \cdot g \in \overline{C}(L)$, given by:

• Product: for $f \in \overline{C}(L)$, let $\cos(f) = f((-, 0) \lor (0, -))$.

 $f, g \in \overline{\mathsf{C}}(L)$ are product compatible if $a_f \lor \cos(g) = a_g \lor \cos(f) = 1$

$$\begin{split} c_p^{f \cdot g} &= \bigvee_{r > 0} f(r, -) \wedge g(\frac{p}{r}, -) \ (p \geq 0) \\ c_p^{f \cdot g} &= 1 \ (p < 0) \end{split}$$

is an extended scale in L IFF f and g are product compatible.

It generates $f \cdot g \in \overline{C}(L)$, given by:

$$p \ge 0$$
: $(f \cdot g)(p, -) = \bigvee_{r>0} f(r, -) \land g(\frac{p}{r}, -), \qquad p < 0$: $(f \cdot g)(p, -) = 1$

• Product: for $f \in \overline{C}(L)$, let $\cos(f) = f((-, 0) \lor (0, -))$.

 $f, g \in \overline{\mathsf{C}}(L)$ are product compatible if $a_f \lor \cos(g) = a_g \lor \cos(f) = 1$

$$\begin{split} c_p^{f \cdot g} &= \bigvee_{r > 0} f(r, -) \wedge g(\frac{p}{r}, -) \ (p \geq 0) \\ c_p^{f \cdot g} &= 1 \ (p < 0) \end{split}$$

is an extended scale in L IFF f and g are product compatible.

It generates $f \cdot g \in \overline{C}(L)$, given by:

$$p \ge 0: \quad (f \cdot g)(p, -) = \bigvee_{r>0} f(r, -) \land g(\frac{p}{r}, -), \qquad p < 0: \quad (f \cdot g)(p, -) = 1$$
$$p > 0: \quad (f \cdot g)(-, q) = \bigvee_{r>0} f(-, r) \land g(-, \frac{q}{r}), \qquad p \le 0: \quad (f \cdot g)(-, q) = 0$$

 $f: \mathfrak{L}(\overline{\mathbb{R}}) \to \mathcal{S}(L)$

$\overline{F}(L)$	\lor, \land		
$\overline{LSC}(L)$			
$\overline{USC}(L)$			
$\overline{C}(L)$			

 $f: \mathfrak{L}(\overline{\mathbb{R}}) \to \mathcal{S}(L)$

$\overline{F}(L)$	\lor, \land	-f		
$\overline{LSC}(L)$				
$\overline{USC}(L)$				
$\overline{C}(L)$				

 $f: \mathfrak{L}(\overline{\mathbb{R}}) \to \mathcal{S}(L)$

$\overline{F}(L)$	\lor, \land	-f	$\lambda \cdot f$ ($\lambda > 0$)	
$\overline{LSC}(L)$				
$\overline{USC}(L)$				
$\overline{C}(L)$				

 $f: \mathfrak{L}(\overline{\mathbb{R}}) \to \mathcal{S}(L)$

comp.

$\overline{F}(L)$	\lor, \land	-f	$\lambda \cdot f$ ($\lambda > 0$)	f+g	
$\overline{LSC}(L)$					
$\overline{USC}(L)$					
$\overline{C}(L)$					

ALGEBRA in $\overline{\overline{F}}(L)$

 $f: \mathfrak{L}(\overline{\mathbb{R}}) \to \mathcal{S}(L)$

				comp.	comp.
$\overline{F}(L)$	\lor, \land	-f	$\lambda \cdot f$ ($\lambda > 0$)	f+g	$f\cdot g$
$\overline{LSC}(L)$					
$\overline{USC}(L)$					
$\overline{C}(L)$					

ALGEBRA in $\overline{\mathsf{F}}(L)$

 $f: \mathfrak{L}(\overline{\mathbb{R}}) \to \mathcal{S}(L)$

				comp.	comp.
$\overline{F}(L)$	\lor, \land	-f	$\lambda \cdot f$ ($\lambda > 0$)	f+g	$f\cdot g$
$\overline{LSC}(L)$					
$\overline{USC}(L)$					
$\overline{C}(L)$					

 $f: \mathfrak{L}(\overline{\mathbb{R}}) \to \mathcal{S}(L)$

				comp.	comp.
$\overline{F}(L)$	\lor, \land	-f	$\lambda \cdot f$ ($\lambda > 0$)	f+g	$f\cdot g$
$\overline{LSC}(L)$	sublat.				
$\overline{USC}(L)$	sublat.				
$\overline{C}(L)$	sublat.				

ALGEBRA in $\overline{\mathsf{F}}(L)$

 $f: \mathfrak{L}(\overline{\mathbb{R}}) \to \mathcal{S}(L)$

comp

comp

				comp.	comp.
$\overline{F}(L)$	\lor, \land	-f	$\lambda \cdot f$ ($\lambda > 0$)	f+g	$f\cdot g$
$\overline{LSC}(L)$	sublat.	$\in \overline{USC}(L)$			
$\overline{USC}(L)$	sublat.	$\in \overline{LSC}(L)$			
$\overline{C}(L)$	sublat.	closed			

 $f: \mathfrak{L}(\overline{\mathbb{R}}) \to \mathcal{S}(L)$

_ _ _ _ _ _

- ----

				comp.	comp.
$\overline{F}(L)$	\lor, \land	-f	$\lambda \cdot f$ ($\lambda > 0$)	f+g	$f\cdot g$
$\overline{LSC}(L)$	sublat.	$\in \overline{USC}(L)$	closed	closed	
$\overline{USC}(L)$	sublat.	$\in \overline{LSC}(L)$	closed	closed	
$\overline{C}(L)$	sublat.	closed	closed	closed	

 $f: \mathfrak{L}(\overline{\mathbb{R}}) \to \mathcal{S}(L)$

				comp.	comp.
$\overline{F}(L)$	\lor, \land	-f	$\lambda \cdot f$	f+g	$f \cdot g$ ($f,g \geq 0$)
			$(\lambda > 0)$		closed
$\overline{LSC}(L)$	sublat.	$\in \overline{USC}(L)$	closed	closed	CIUSCU
					closed
$\overline{USC}(L)$	sublat.	$\in \overline{LSC}(L)$	closed	closed	
C(L)	sublat.	closed	closed	closed	closed

ALGEBRA in $\overline{\mathsf{F}}(L)$

 $f: \mathfrak{L}(\overline{\mathbb{R}}) \to \mathcal{S}(L)$

comp. comp.

$\overline{F}(L)$	\lor, \land	-f	$\lambda \cdot f$ ($\lambda > 0$)	f+g	$egin{aligned} &f\cdot g\ (f,g\geq 0)\ (f,g\leq 0) \end{aligned}$
					closed
LSC(L)	sublat.	$\in USC(L)$	closed	closed	$\in USC(L)$
					closed
$\overline{USC}(L)$	sublat.	$\in \overline{LSC}(L)$	closed	closed	$\in \overline{LSC}(L)$
$\overline{C}(L)$	sublat.	closed	closed	closed	closed

ALGEBRA in $\overline{\mathsf{F}}(L)$

 $f: \mathfrak{L}(\overline{\mathbb{R}}) \to \mathcal{S}(L)$

comp. comp.

$\overline{F}(L)$	\lor, \land	-f	$\lambda \cdot f$ ($\lambda > 0$)	f+g	$egin{aligned} &f\cdot g\ (f,g\geq 0)\ (f,g\leq 0) \end{aligned}$
					closed
$\overline{LSC}(L)$	sublat.	$\in \overline{USC}(L)$	closed	closed	$\in \overline{USC}(L)$
					closed
$\overline{USC}(L)$	sublat.	$\in \overline{LSC}(L)$	closed	closed	$\in \overline{LSC}(L)$
$\overline{C}(L)$	sublat.	closed	closed	closed	closed

B. BANASCHEWSKI, J. GUTIÉRREZ GARCÍA & J. P. **Extended real functions in pointfree topology, submitted**

$$\mathsf{D}(L) = \{ f \in \overline{\mathsf{C}}(L) \mid a_f \text{ is dense} \}$$

$\mathsf{D}(L) = \{ f \in \overline{\mathsf{C}}(L) \mid a_f \text{ is dense} \}$

 $(a_f^* = 0)$

$$\mathsf{D}(L) = \{ f \in \overline{\mathsf{C}}(L) \mid a_f \text{ is dense} \}$$

$$(a_{f}^{*}=0)$$

Recall:

$$a_f = a_f^+ \wedge a_f^- = \bigvee_{q \in \mathbb{Q}} f(-,q) \wedge \bigvee_{p \in \mathbb{Q}} f(p,-) = \bigvee_{p < q} f(p,q).$$
(the reality of f)

$$\mathsf{D}(L) = \{ f \in \overline{\mathsf{C}}(L) \mid a_f \text{ is dense} \}$$

$$(a_f^* = 0)$$

Recall:
$$a_f = a_f^+ \wedge a_f^- = \bigvee_{q \in \mathbb{Q}} f(-,q) \wedge \bigvee_{p \in \mathbb{Q}} f(p,-) = \bigvee_{p < q} f(p,q).$$

(the reality of f)

$$L = \mathcal{O}X$$
: $D(X) = \{f : X \to \overline{\mathbb{R}} \mid f^{-1}(\mathbb{R}) \text{ is dense in } X\}.$

 $\mathsf{D}(L) = \{ f \in \overline{\mathsf{C}}(L) \mid a_f \text{ is dense} \}$

$$(a_{f}^{*}=0)$$

 $\mathsf{D}(L) = \{ f \in \overline{\mathsf{C}}(L) \mid a_f \text{ is dense} \}$

D(L) is a sublattice with inversion of $\overline{C}(L)$

• $f \in D(L)$ iff $-f \in D(L)$ (because $a_{-f} = a_f$).

 $\mathsf{D}(L) = \{ f \in \overline{\mathsf{C}}(L) \mid a_f \text{ is dense} \}$

- $f \in D(L)$ iff $-f \in D(L)$ (because $a_{-f} = a_f$).
- Let $f, g \in \mathsf{D}(L)$.

 $\mathsf{D}(L) = \{ f \in \overline{\mathsf{C}}(L) \mid a_f \text{ is dense} \}$

- $f \in D(L)$ iff $-f \in D(L)$ (because $a_{-f} = a_f$).
- Let $f, g \in D(L)$. Then: $a_{f \vee g} = (a_f \wedge a_g^+) \vee (a_g \wedge a_f^+)$,

 $\mathsf{D}(L) = \{ f \in \overline{\mathsf{C}}(L) \mid a_f \text{ is dense} \}$

- $f \in D(L)$ iff $-f \in D(L)$ (because $a_{-f} = a_f$).
- Let $f, g \in D(L)$. Then: $a_{f \vee g} = (a_f \wedge a_g^+) \vee (a_g \wedge a_f^+)$,

So
$$(a_{f\vee g})^* = (a_f \wedge a_g^+)^* \wedge (a_g \wedge a_f^+)^*$$

$$\mathsf{D}(L) = \{ f \in \overline{\mathsf{C}}(L) \mid a_f \text{ is dense} \}$$

$$(a_{f}^{*}=0)$$

•
$$f \in D(L)$$
 iff $-f \in D(L)$ (because $a_{-f} = a_f$).

• Let
$$f, g \in D(L)$$
. Then: $a_{f \vee g} = (a_f \wedge a_g^+) \vee (a_g \wedge a_f^+)$,

SO
$$(a_{f\vee g})^* = (a_f \wedge a_g^+)^* \wedge (a_g \wedge a_f^+)^*$$

$$= (a_g^+)^* \wedge (a_f^+)^* \le a_g^* \wedge a_f^* = 0.$$

$$\mathsf{D}(L) = \{ f \in \overline{\mathsf{C}}(L) \mid a_f \text{ is dense} \}$$

$$(a_{f}^{*}=0)$$

•
$$f \in D(L)$$
 iff $-f \in D(L)$ (because $a_{-f} = a_f$).

• Let
$$f, g \in D(L)$$
. Then: $a_{f \vee g} = (a_f \wedge a_g^+) \vee (a_g \wedge a_f^+)$,

SO
$$(a_{f\vee g})^* = (a_f \wedge a_g^+)^* \wedge (a_g \wedge a_f^+)^*$$

$$= (a_g^+)^* \wedge (a_f^+)^* \le a_g^* \wedge a_f^* = 0.$$

$$\mathsf{D}(L) = \{ f \in \overline{\mathsf{C}}(L) \mid a_f \text{ is dense} \}$$

$$(a_{f}^{*}=0)$$

D(L) is a sublattice with inversion of $\overline{C}(L)$

•
$$f \in D(L)$$
 iff $-f \in D(L)$ (because $a_{-f} = a_f$).

• Let
$$f, g \in D(L)$$
. Then: $a_{f \vee g} = (a_f \wedge a_g^+) \vee (a_g \wedge a_f^+)$,

SO
$$(a_{f\vee g})^* = (a_f \wedge a_g^+)^* \wedge (a_g \wedge a_f^+)^*$$

$$= (a_g^+)^* \wedge (a_f^+)^* \le a_g^* \wedge a_f^* = 0.$$

 $\therefore \quad f \lor g \in \mathsf{D}(L).$

By inversion
$$f \wedge g = -((-f) \vee (-g)) \in D(L).$$

ALMOST REAL FUNCTIONS

Sum, product: f + g, $f \cdot g \in D(L)$?
RESULTS.

(1) There are partial operations of + and \cdot

RESULTS.

(1) There are partial operations of + and \cdot

(2) The operations are total iff L is quasi-F.

RESULTS.

- (1) There are partial operations of + and \cdot
- (2) The operations are total iff L is quasi-F.
- (3) There is an inversion lattice embedding $\delta_L : D(L) \to C(\mathfrak{B}L)$ that preserves the partial operations.

RESULTS.

- (1) There are partial operations of + and \cdot
- (2) The operations are total iff L is quasi-F.
- (3) There is an inversion lattice embedding $\delta_L : D(L) \to C(\mathfrak{B}L)$ that preserves the partial operations.

(4) δ_L is an isomorphism iff L is extremal disconnectedness; then the partial operations are total and D(L) becomes an

order-complete archimedean f-ring with unit