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f and g are sum compatible.

It generates f + g ∈ C(L), given by:

(f + g)(p,—) =
∨

r∈Q

f(r,—) ∧ g(p− r,—),
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is an extended scale in L IFF

f and g are product compatible.

It generates f · g ∈ C(L), given by:

p ≥ 0: (f · g)(p,—) =
∨

r>0

f(r,—) ∧ g(p
r
,—), p < 0: (f · g)(p,—) = 1

p > 0: (f · g)(—, q) =
∨

r>0

f(—, r) ∧ g(—, q
r
), p ≤ 0: (f · g)(—, q) = 0

July 29, 2011 Extended real functions in pointfree topology 26th Summer Topology Conf. – 9
– p. 9
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B. BANASCHEWSKI, J. GUTIÉRREZ GARCÍA & J. P.
Extended real functions in pointfree topology, submitted
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ALMOST REAL FUNCTIONS locale L

D(L)= {f ∈ C(L) | af is dense}
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q∈Q

f(—, q) ∧
∨

p∈Q

f(p,—) =
∨

p<q

f(p, q).

(the reality of f )

L = OX: D(X)= {f : X → R | f−1(R) is dense in X}.
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ALMOST REAL FUNCTIONS locale L

D(L)= {f ∈ C(L) | af is dense} (a∗f = 0)

D(L) is a sublattice with inversion of C(L)

• f ∈ D(L) iff −f ∈ D(L) (because a−f = af ).

• Let f, g ∈ D(L). Then: af∨g = (af ∧ a+g ) ∨ (ag ∧ a+f ),

so (af∨g)
∗ = (af ∧ a+g )

∗ ∧ (ag ∧ a+f )
∗

= (a+g )
∗ ∧ (a+f )

∗ ≤ a∗g ∧ a∗f = 0.

∴ f ∨ g ∈ D(L). By inversion f ∧ g = −((−f) ∨ (−g)) ∈ D(L).
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ALMOST REAL FUNCTIONS

Sum, product: f + g, f · g ∈ D(L) ?
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Sum, product: f + g, f · g ∈ D(L) ? Not necessarily, BUT:

RESULTS.

(1) There are partial operations of + and ·

(2) The operations are total iff L is quasi-F.

(3) There is an inversion lattice embedding δL : D(L) → C(BL) that
preserves the partial operations.

(4) δL is an isomorphism iff L is extremal disconnectedness; then
the partial operations are total and D(L) becomes an

order-complete archimedean f-ring with unit
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