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(2) ∀a ∈ L,∀s ∈ S, a → s ∈ S.

Motivation for the de�nition:

Proposition

S ⊆ L is a sublocale i� the embedding jS : S ⊆ L is a localic map.
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Sub�t frame ≡ ∀a , b (a , b ⇒ ∃c : a ∨ c = 1 , b ∨ c)

Sub�t frame ⇔ Every open sublocale is a join of closed sublocales

QUESTION: What about the dual property “every sublocale is a join

of closed sublocales”?

ANSWER: characterizes the SCATTERED FRAMES

(the L with Boolean S(L))
I R.N. Ball, J.P., A. Pultr,

On an aspect of scatteredness in the pointfree setting,

Portugaliæ Math. 73 (2016) 139–152.
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GOAL

To study the system

Sc(L)
of all the sublocales that are joins of closed ones,

for a general frame L.

Sc(L) S(L)

(sup-sublattice embedding)

I J. P., Aleš Pultr, A. Tozzi

Joins of closed sublocales, submitted.
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closed sublocales ⊆ S

= Sc(L)
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frame

WHEN do we have more?

WHEN is

• Sc(L) a coframe?

• j an embedding of a subcolocale?

(and JU the corresponding conucleus)
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Let L be sub�t. Then, for any T ∈ S(L) and S ∈ Sc(L), we have S r T ∈ Sc(L).

Proof:
S r T = (

∨
i
c(xi)) r T =

∨
i
(c(xi) r T︸    ︷︷    ︸
Lemma 1

) ∈ Sc(L). �
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Let L be sub�t. Then:

(1) Sc(L) is a subcolocale of S(L) (with JU the associated conucleus).
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The subfit case

L: sub�t. o(L) ⊆ Sc(L) S(L) coframe=coHa:

(−) r S a S ∨ (−)

Theorem p

Let L be sub�t. Then: TFAE for any frame L:

(1) Sc(L) is a subcolocale of S(L) (with JU the associated conucleus).

(2) Sc(L) is a Boolean algebra.

(3) JU : S(L)→ Sc(L), S 7→ L r (L r S), is the Booleanization of S(L).

(4) L is sub�t.

In fact, we have MORE!

June 2017: TACL (Prague) Sublocales and a Boolean extension of a frame – 10 –



CONCLUSION: in the subfit case we have a Boolean extension of L

coframe

S(L)

L o(L)
c(L)

Sc(L)
Boolean algebra

∨
o(ai) = o(

∨
ai)

o(a) ∧ o(b) = o(a ∧ b)

L
'
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The spatial case

L = Ω(X) some space X

Note: I L may have sublocales that are not spatial!

Note: I Even a spatial sublocale of L is not necessarily Ω(Y)

for a subspace Y ⊆ X.
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The spatial case

L = Ω(X) some space X

Note: I L may have sublocales that are not spatial!

Note: I Even a spatial sublocale of L is not necessarily Ω(Y)

for a subspace Y ⊆ X.

those that are: “spatially induced sublocales”

X is T1 “L is T1-spatial”

Sc(Ω(X)) = {induced sublocales of Ω(X)}

Booleanization of S(Ω(X)): precisely P(X).

(the classical subspaces of X)
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The spatial case

L = Ω(X) some space X

Note: I L may have sublocales that are not spatial!

Note: I Even a spatial sublocale of L is not necessarily Ω(Y)

for a subspace Y ⊆ X.

those that are: “spatially induced sublocales”

X is sub�t, not T1

We have still the theorem of course BUT

Sc(Ω(X)) is not any more the system P(X) of all subspaces.

[lack of TD : subspaces are not perfectly represented by spatial sublocales]
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APPLICATION: real-valued functions on L

frame homomorphisms f : L(R)→ S(L)op
ring F(L)

F(L) = C(S(L)op
)

I J. Gutiérrez García, T. Kubiak, J. P.,

Localic real functions: a general setting,

J. Pure Appl. Algebra 213 (2009) 1064-1074.
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APPLICATION: real-valued functions on L

frame homomorphisms f : L(R)→ S(L)op
ring F(L)

F(L) = C(S(L)op
)

I J. Gutiérrez García, T. Kubiak, J. P.,

Localic real functions: a general setting,

J. Pure Appl. Algebra 213 (2009) 1064-1074.

• very expedient mimicking of the classical theory:

generalizations of function insertion theorems

generalizations of function extension theorems, etc.
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APPLICATION: real-valued functions on L

Disadvantages:

• S(L)op
can be very big; in particular for spaces, S(Ω(X))

op
is

typically much bigger than P(X).

• The theory is not quite conservative. When applied to

semicontinuity in classical spaces it is satisfactory, but the general

not necessarily classical functions are represented only by analogy.

• The construction is not idempotent, that is, S(S(L)op
)
op

is typically

bigger than S(L)op
, as if the discontinuous functions were not

discontinuous enough, and needed a further extension to get a

representation of “more discontinuous ones” (and again and

again).
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L
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S(L)

L o(L)
c(L)

Sc(L)
Boolean algebra

∨
o(ai) = o(

∨
ai)

o(a) ∧ o(b) = o(a ∧ b)

L
'

L(R)

fC(L)

OO
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APPLICATION: real-valued functions on L

New approach: use the frame Sc(L) instead of S(L)op
.

S(L)

L o(L)
c(L)

Sc(L)
Boolean algebra

∨
o(ai) = o(

∨
ai)

o(a) ∧ o(b) = o(a ∧ b)

L
'

L(R)

fC(L)

OO

f

F(L)

99
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APPLICATION: real-valued functions on L

New approach: use the frame Sc(L) instead of S(L)op
.

S(L)

L o(L)
c(L)

Sc(L)
Boolean algebra

∨
o(ai) = o(

∨
ai)

o(a) ∧ o(b) = o(a ∧ b)

L
'

L(R)

fC(L)

OO

f

F(L)

99

〈(—, q), (p , —)〉
p , q ∈ Q
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Sc(L)
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∨
o(ai) = o(

∨
ai)

o(a) ∧ o(b) = o(a ∧ b)

L
'

L(R)

fC(L)

OO

f

99

〈(—, q), (p , —)〉
p , q ∈ Q

USC
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APPLICATION: real-valued functions on L

New approach: use the frame Sc(L) instead of S(L)op
.

S(L)

L o(L)
c(L)

Sc(L)
Boolean algebra

∨
o(ai) = o(

∨
ai)

o(a) ∧ o(b) = o(a ∧ b)

L
'

L(R)

fC(L)

OO

f

99

〈(—, q), (p , —)〉
p , q ∈ Q

LSC

C(L) = LSC(L) ∩ USC(L)
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APPLICATION: real-valued functions on L

New approach: use the frame Sc(L) instead of S(L)op
.

S(L)

L o(L)
c(L)

Sc(L)
Boolean algebra

∨
o(ai) = o(

∨
ai)

o(a) ∧ o(b) = o(a ∧ b)

L
'

L(R)

fC(L)

OO

f

99

〈(—, q), (p , —)〉
p , q ∈ Q

LSC

C(L) = LSC(L) ∩ USC(L)

Proposition

If L = Ω(X) is T1-spatial, then LSC(L) ' LSC(X) and USC(L) ' USC(X).
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APPLICATION: real-valued functions on L

Proposition

If L = Ω(X) is T1-spatial, then LSC(L) ' LSC(X) and USC(L) ' USC(X).

I J. P., Aleš Pultr,

A Boolean extension of a frame and a representation of

discontinuity, Quaestiones Math., to appear.
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APPLICATION: real-valued functions on L

Proposition

If L = Ω(X) is T1-spatial, then LSC(L) ' LSC(X) and USC(L) ' USC(X).

I J. P., Aleš Pultr,

A Boolean extension of a frame and a representation of

discontinuity, Quaestiones Math., to appear.

Advantages:

• If L = Ω(X) is T1-spatial then Sc(L) � P(X).

• If L is sub�t (and we are mostly concerned with the much stronger

regularity) then Sc(L) is Boolean and hence can be viewed as a

“discrete cover” of L.
• The theory is now conservative for T1 spaces, already starting with

the representation of general mappings.

• Sc(Sc(L)) � Sc(L) and hence the discretization is made once for ever.
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