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BACKGROUND: The category of LOCALES

e OBJECTS: locales = frames (=cHa) complete lattices

aAVibi=\anb)

e MORPHISMS: L
e f(NS)= A fIS]
LA s
e fla)=1=>a=1
M
e f(f*(a) = b)=a — f(b)
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BACKGROUND: Sublocales

S € Lisa SUBLOCALE of L if:

(1)YACS, NA€S.

(2)VaeL,Vse€S,a—>s€S.

Motivation for the definition:

Proposition

S C L is a sublocale iff the embedding js: S C L is a localic map.
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BACKGROUND: The lattice of sublocales

It is a coframe!

Vo(a;) = o(V a;)
o(a) A o(b) =o(a A D)

A c(ai) = c(\ a;i)
c(a) vV e(b) =c(a A D)

June 2017: TACL (Prague) Sublocales and a Boolean extension of a frame -4 -
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MOTIVATION: T, pointfreely (the ‘fitness club’)

Subfit frame = Va,b(a#b=3dc:aVvVc=1#bVc)

& | Every open sublocale is a join of closed sublocales

ANSWER: characterizes the SCATTERED FRAMES

(the L with Boolean S(L))
» R.N. Ball, J.P, A. Pultr,
On an aspect of scatteredness in the pointfree setting,
Portugaliee Math. 73 (2016) 139-152.

QUESTION: What about the dual property “every sublocale is a join
of closed sublocales”?



To study the system

Se(L)
of all the sublocales that are joins of closed ones,

for a general frame L.

S(L) &— 8(L)

(sup-sublattice embedding)

» J. P, Ale$ Pultr, A. Tozzi
Joins of closed sublocales, submitted.
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Basic fact about S, (L)

For every frame L, S;(L) is a frame.

frame J coframe
/\)
U(L) 1 S(L) S
f\_/
u u
Lemma J
|U] is anucleus| uj U \/{e(a) | c(a) € S)
the largest join of
I closed sublocales C S
/—\
Uj(L)] =~ JUIS(L)] = Sc(L)
f\_/

frame u
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MAIN GOAL now

WHEN do we have more?
coframe
S(L)
WHEN is
e S(L) a coframe? ol

e j an embedding of a subcolocale?

(and JU the corresponding conucleus)
JULS(L)] = Sc(L)

frame
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L: subfit. o(L) € S(L) S(L) coframe=coHa:
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Lemma1
Let L be subfit. Then, for any T € S(L) and x € L, we have ¢(x) \ T € S(L).

Proof:
() N T = c(x) \ ((o(a;) V c(by)) (by 0-codim.)
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The subfit case

L: subfit. o(L) € S(L) S(L) coframe=coHa:
(-)NS4SV(-)

Lemma 1

Let L be subfit. Then, for any T € S(L) and x € L, we have ¢(x) \ T € S(L).

Proof:
c(x) N T = c(x) \ (o(a;) V ¢(bi)) (by o-codim.)
= \[c(x) N\ (o(a;) Ve(bi))] (=)NS:L°P > LA4(=)\S:L— L
i —
complemented
= VIe(x) Ne(ai) No(bi)]
=VB@VaJﬂVd#H &mmnw0=Vd#)
i ] ]

=vqxvmv4)e&@y n
ij
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The subfit case

L: subfit. o(L) € S(L) S(L) coframe=coHa:
(=)NS4SV(-)
Let L be subfit. Then, for any T € S(L) and S € S(L), we have S \ T € S.(L).
Proof:
SNT=(Nc(x)NT =\(c(x;)\NT) € S(L). [ |
i i T

Lemma 1
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The subfit case

L: subfit. o(L) € S(L) S(L) coframe=coHa:
(=)NS4SV(-)

Theorem

Fett-be-subst—then= TFAE for any frame L:

(1) 8¢(L) is a subcolocale of S(L) (with JU the associated conucleus).
(2) S¢(L) is a Boolean algebra.

(3) JU: S(L) = S(L), S — L \ (L \'S), is the Booleanization of S(L).
(4) L is subfit.

In fact, we have MORE! @



CONCLUSION: in the subfit case we have a Boolean extension of L

coframe

June 2017: TACL (Prague] Sublocales and a Boolean extension of a frame -1n-
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The spatial case
L=0(X)| somespaceX

Note:  » L may have sublocales that are not spatial!
» Even a spatial sublocale of L is not necessarily Q(Y)
for a subspace Y C X.

those that are: “spatially induced sublocales”

| X is subfit, not T,

We have still the theorem of course BUT

8:(Q(X)) is not any more the system %(X) of all subspaces.

[lack of Tp: subspaces are not perfectly represented by spatial sublocales]
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frame homomorphisms f: £(R) — S(L)° ring F(L)

|F(L) = C(S(L)*)|

» J. Gutiérrez Garcia, T. Kubiak, J. P,
Localic real functions: a general setting,
J. Pure Appl. Algebra 213 (2009) 1064-1074.

e very expedient mimicking of the classical theory:

generalizations of function insertion theorems
function extension theorems, etc.
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DISADVANTAGES:

e §(L)°? can be very big; in particular for spaces, S(€2(X))°F is
typically much bigger than %(X).

e The theory is not quite conservative. When applied to
semicontinuity in classical spaces it is satisfactory, but the general
not necessarily classical functions are represented only by analogy.

e The construction is not idempotent, that is, S(S(L)°F)°? is typically
bigger than S(L)°%, as if the discontinuous functions were not
discontinuous enough, and needed a further extension to get a
representation of “more discontinuous ones” (and again and
again).
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APPLICATION: real-valued functions on L

New approach: use the frame S (L) instead of S(L)°7.

CORES

*® C(L) = LSC(L) N USC(L
0, () [Cw)=Lsct) nuscw)]

p,q€Q




APPLICATION: real-valued functions on L

Proposition

If L = Q(X) is T,-spatial, then LSC(L) ~ LSC(X) and USC(L) =~ USC(X).

L(R) C(L) = LSC(L) N USC(L
), ) |CL) = LSCw) 0 USC(L) |

p,q€Q
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If L = Q(X) is T,-spatial, then LSC(L) ~ LSC(X) and USC(L) =~ USC(X).

» |J. P, Ale$ Pultr,
A Boolean extension of a frame and a representation of
discontinuity, Quaestiones Math., to appear.

ADVANTAGES:

o If L = Q(X) is T;-spatial then S.(L) = P(X).
e If L is subfit (and we are mostly concerned with the much stronger

regularity) then 8;(L) is Boolean and hence can be viewed as a
“discrete cover” of L.

e The theory is now conservative for T, spaces, already starting with
the representation of general mappings.

o S:(S:(L)) = 8(L) and hence the discretization is made once for ever.



