Perfectness in Frames

Jorge Picado
Department of Mathematics
University of Coimbra
PORTUGAL

— joint work with J. Gutiérrez García (UPV-EHU, Bilbao, Spain)
TFAE for a space X: (1) X is perfectly normal (= perfect + normal).

(2) $f \leq g$ \quad \Rightarrow \quad \exists h \in C(X) : f \leq h \leq g \quad \text{and}$

$$f(x) < h(x) < g(x) \quad \text{whenever} \quad f(x) < g(x).$$
MOTIVATION: MICHAEL’S STRICT INSERTION

Ann. Math. 63 (1956)

TFAE for a space X: (1) X is perfectly normal (= perfect + normal).

(2) $\underbrace{f}_{\text{USC}} \leq \underbrace{g}_{\text{LSC}} \quad \Rightarrow \quad \exists h \in C(X) : f \leq h \leq g$ and

\[f(x) < h(x) < g(x) \quad \text{whenever} \quad f(x) < g(x). \]
TFAE for a locale \(L \): (1) \(L \) is perfectly normal.

(2) \(\underbrace{f}_{\text{USC}} \leq \underbrace{g}_{\text{LSC}} \Rightarrow \exists h \in C(L) : f \leq h \leq g \) and

\[\nu(f, h) = \nu(h, g) = \nu(f, g). \]

TFAE for a space \(X \): (1) \(X \) is perfectly normal (= perfect + normal).

(2) \(\underbrace{f}_{\text{USC}} \leq \underbrace{g}_{\text{LSC}} \Rightarrow \exists h \in C(X) : f \leq h \leq g \) and

\[f(x) < h(x) < g(x) \text{ whenever } f(x) < g(x). \]
TFAE for a locale L: (1) L is perfectly normal.

(2) $f \leq g$ \hspace{1cm} \Rightarrow \hspace{1cm} \exists \ h \in C(L) : f \leq h \leq g$ \hspace{1cm} and \hspace{1cm} \nu(f, h) = \nu(h, g) = \nu(f, g).

\[
\nu(f, g) := \bigvee_{p \in \mathbb{Q}} (f(-, p) \land g(p, -))
\]

TFAE for a space X: (1) X is perfectly normal (= perfect + normal).

(2) $f \leq g$ \hspace{1cm} \Rightarrow \hspace{1cm} \exists \ h \in C(X) : f \leq h \leq g$ \hspace{1cm} and \hspace{1cm} $f(x) < h(x) < g(x)$ whenever $f(x) < g(x)$.
TFAE for a locale L: (1) L is perfectly normal.

(2) \[f \leq g \quad \Rightarrow \quad \exists h \in C(L) : f \leq h \leq g \quad \text{and} \]
\[\nu(f, h) = \nu(h, g) = \nu(f, g). \]

\[\nu(f, g) := \bigvee_{p \in \mathbb{Q}} (f(-, p) \wedge g(p, -)) \quad f < g \equiv \nu(f, g) = 1 \]

TFAE for a space X: (1) X is perfectly normal (= perfect + normal).

(2) \[f \leq g \quad \Rightarrow \quad \exists h \in C(X) : f \leq h \leq g \quad \text{and} \]
\[f(x) < h(x) < g(x) \quad \text{whenever} \quad f(x) < g(x). \]
TFAE for a locale L: (1) L is perfectly normal.

(2) \[
\begin{array}{c}
\begin{aligned}
&f \text{ USC} \leq g \text{ LSC} \\
\Rightarrow \quad \exists h \in C(L) : f \leq h \leq g
\end{aligned}
\end{array}
\]
\begin{align*}
\nu(f, h) &= \nu(h, g) = \nu(f, g).
\end{align*}

\[
\nu(f, g) := \bigvee_{p \in \mathbb{Q}} (f(\neg, p) \land g(p, \neg)) \quad f < g \equiv \nu(f, g) = 1
\]

- PERFECTNESS?
TFAE for a locale \(L \): (1) \(L \) is perfectly normal.

\[
(2) \quad f \leq g \quad \Rightarrow \quad \exists h \in \text{C}(L) : f \leq h \leq g \quad \text{and} \quad \uptau(f, h) = \uptau(h, g) = \uptau(f, g).
\]

\[
\uptau(f, g) := \bigvee_{p \in \mathbb{Q}} (f(-, p) \land g(p, -)) \quad f < g \equiv \uptau(f, g) = 1
\]

- **PERFECTNESS?**

Charalambous 1974, Gilmour 1984 (\(\sigma \)-frames):
TFAE for a locale L: (1) L is perfectly normal.

(2) \[
\begin{aligned}
&\frac{f}{\text{USC}} \leq \frac{g}{\text{LSC}} \\
\Rightarrow & \exists h \in C(L) : f \leq h \leq g \quad \text{and} \\
&\nu(f,h) = \nu(h,g) = \nu(f,g).
\end{aligned}
\]

\[
\nu(f,g) := \bigvee_{p \in \mathbb{Q}} (f(-,p) \land g(p,-)) \\
f < g \equiv \nu(f,g) = 1
\]

- PERFECTNESS?

Charalambous 1974, Gilmour 1984 (σ-frames):

\[
\forall a \in L \ \exists (a_n)_\mathbb{N} \subseteq L : a = \bigvee a_n \quad \text{and} \quad a_n < a \ \forall n.
\]
• to study perfectness further.
AIMS (work in progress)

- to study perfectness further.

- to understand better the role of perfectness in insertion of functions.
AIMS (work in progress)

- to study perfectness further.
- to understand better the role of perfectness in insertion of functions.
- to unify several insertion results.
Every closed set is a G_δ-set
Every closed set is a G_δ-set

\[(= \bigcap_{n \in \mathbb{N}} U_n) \]
Every closed set is a G_δ-set \((= \bigcap_{n \in \mathbb{N}} U_n) \)
Every closed set is a G_δ-set \((= \bigcap_{n \in \mathbb{N}} U_n) \) (by complementation)
Every closed set is a G_δ-set \((= \bigcap_{n \in \mathbb{N}} U_n) \) (by complementation)

Every open set is an F_σ-set \((= \bigcup_{n \in \mathbb{N}} F_n) \)
PERFECT SPACES

Heath & Michael 1971

A. Every closed set is a G_δ-set \((= \bigcap_{n \in \mathbb{N}} U_n) \)

B. Every open set is an F_σ-set \((= \bigcup_{n \in \mathbb{N}} F_n) \)

PERFECTLY NORMAL SPACES = PERFECT + NORMAL
PERFECT SPACES

A. Every closed set is a G_δ-set \((= \bigcap_{n \in \mathbb{N}} U_n) \) (by complementation)

B. Every open set is an F_σ-set \((= \bigcup_{n \in \mathbb{N}} F_n) \)

PERFECTLY NORMAL SPACES = PERFECT + NORMAL

\[\forall U \in \mathcal{O}(X) \exists (U_n)_{n \in \mathbb{N}} \subseteq \mathcal{O}(X): U = \bigcup_{n \in \mathbb{N}} U_n \text{ and } \overline{U_n} \subseteq U \ \forall n. \]
the frame of sublocales

\[S(L) \]
the frame of sublocales

\[S(L) \]

\[cL \]

\[L \]
BACKGROUND AND NOTATION

The frame of sublocales

\[S(L) \]

\[\text{cL} \]

\[cL := \{ c(a) \mid a \in L \} \]

\[\bigvee_{i \in I} c(a_i) = c(\bigvee_{i \in I} a_i) \]

\[c(a) \land c(b) = c(a \land b) \]
BACKGROUND AND NOTATION

The frame of sublocales

- L
- cL
- $B(S(L))$
- $S(L)$
BACKGROUND AND NOTATION

The frame of sublocales

\[S(L) \]

\[\mathcal{c}L \]

\[\mathcal{o}L \]

\[B(S(L)) \]

\[\mathcal{o}L := \{ \mathcal{o}(a) \mid a \in L \} \]

\[\bigwedge_{i \in I} \mathcal{o}(a_i) = \mathcal{o}(\bigvee_{i \in I} a_i) \]

\[\mathcal{o}(a) \lor \mathcal{o}(b) = \mathcal{o}(a \land b) \]
Every closed sublocale is a G_δ-sublocale:
Every closed sublocale is a G_δ-sublocale:

$$\forall a \in L \ \exists (a_n)_N \subseteq L : c(a) = \bigvee_{n \in \mathbb{N}} o(a_n)$$
Every closed sublocale is a G_δ-sublocale:

$$\forall a \in L \exists (a_n)_N \subseteq L : c(a) = \bigvee_{n \in \mathbb{N}} a(a_n)$$

Every open sublocale is an F_σ-sublocale:
A. Every closed sublocale is a G_δ-sublocale:

$$\forall a \in L \exists (a_n)_N \subseteq L : c(a) = \bigvee_{n \in \mathbb{N}} o(a_n)$$

B. Every open sublocale is an F_σ-sublocale:

$$\forall a \in L \exists (a_n)_N \subseteq L : o(a) = \bigwedge_{n \in \mathbb{N}} c(a_n)$$
Every closed sublocale is a G_δ-sublocale:

$$\forall a \in L \exists (a_n)_N \subseteq L : c(a) = \bigvee_{n \in \mathbb{N}} o(a_n)$$

Every open sublocale is an F_σ-sublocale:

$$\forall a \in L \exists (a_n)_N \subseteq L : o(a) = \bigwedge_{n \in \mathbb{N}} c(a_n)$$
Every closed sublocale is a G_δ-sublocale:

\[\forall a \in L \ \exists (a_n)_\mathbb{N} \subseteq L : c(a) = \bigvee_{n \in \mathbb{N}} \sigma(a_n) \]

Every open sublocale is an F_σ-sublocale:

\[\forall a \in L \ \exists (a_n)_\mathbb{N} \subseteq L : \sigma(a) = \bigwedge_{n \in \mathbb{N}} c(a_n) \]

COUNTER-EXAMPLE (a spatial one): the cofinite topology on \mathbb{N}.

(T_1-space, subfit frame, not fit)
Perfectness in Frames

A. Every closed sublocale is a G_δ-sublocale:

$$\forall a \in L \exists (a_n)_\mathbb{N} \subseteq L : c(a) = \bigvee_{n \in \mathbb{N}} \sigma(a_n)$$

B. Every open sublocale is an F_σ-sublocale:

$$\forall a \in L \exists (a_n)_\mathbb{N} \subseteq L : \sigma(a) = \bigwedge_{n \in \mathbb{N}} c(a_n)$$

Counter-Example (a spatial one): the cofinite topology on \mathbb{N}.

(T_1-space, subfit frame, not fit)
PERFECTNESS IN LOC

A. Every closed sublocale is a G_δ-sublocale:

$$\forall a \in L \exists (a_n)_\mathbb{N} \subseteq L : c(a) = \bigvee_{n \in \mathbb{N}} \sigma(a_n)$$

B. Every open sublocale is an F_σ-sublocale:

$$\forall a \in L \exists (a_n)_\mathbb{N} \subseteq L : \sigma(a) = \bigwedge_{n \in \mathbb{N}} c(a_n)$$

COUNTER-EXAMPLE (a spatial one): the cofinite topology on \mathbb{N}.

(T_1-space, subfit frame, not fit)
SOME RESULTS

coop perfect \rightarrow fit
SOME RESULTS

co-perfect \rightarrow fit

\downarrow

perfect \rightarrow subfit
SOME RESULTS

- to which extent (co-)perfect locales model G_δ-spaces (inside T_0)?

\[
\begin{array}{ccc}
\text{co-perfect} & \longrightarrow & \text{fit} \\
\downarrow & & \downarrow \\
\text{perfect} & \longrightarrow & \text{subfit}
\end{array}
\]
• to which extent (co-)perfect locales model G_δ-spaces (inside T_0)?

\textbf{TFAE for a T_0-space X:}

1. X is perfect (=co-perfect).
SOME RESULTS

co-perfect \rightarrow fit

perfect \rightarrow subfit

• to which extent (co-)perfect locales model G_δ-spaces (inside T_0)?

TFAE for a T_0-space X:

1. X is perfect (=co-perfect).

2. X is T_D and the frame $\mathcal{O}X$ is co-perfect.
SOME RESULTS

- to which extent (co-)perfect locales model G_δ-spaces (inside T_0)?

TFAE for a T_0-space X:

1. X is perfect (=co-perfect).
2. X is T_D and the frame $O X$ is co-perfect.
3. X is T_1 and the frame $O X$ is co-perfect.
PERFECT NORMALITY IN LOC = PERFECT + NORMAL
PERFECT NORMALITY IN LOC = PERFECT + NORMAL

PROPOSITION. TFAE for a normal frame L:
PROPOSITION. TFAE for a normal frame L:

1. L is perfect
PERFECT NORMALITY IN LOC = PERFECT + NORMAL

PROPOSITION. TFAE for a normal frame L:

1. L is perfect

2. L is co-perfect
PROPOSITION. TFAE for a normal frame L:

1. L is perfect

2. L is co-perfect

3. $\forall a \in L \ \exists (a_n)_N \subseteq L : a = \bigvee a_n$ and $a_n < a \ \forall n.$

original GILMOUR’s condition
PROPOSITION. TFAE for a normal frame L:

1. L is **perfect** (≡ with regular elements a_n.)

2. L is **co-perfect** (≡ with regular elements a_n.)

3. $\forall a \in L \; \exists (a_n)_N \subseteq L : a = \sqrt{a_n}$ and $a_n < a \; \forall n.$

original GILMOUR’s condition
PROPOSITION. TFAE for a normal frame L:

1. L is perfect \((\equiv \text{with regular elements } a_n.) \)

2. L is co-perfect \((\equiv \text{with regular elements } a_n.) \)

3. $\forall a \in L \; \exists (a_n)_N \subseteq L : a = \bigvee a_n \text{ and } a_n < a \; \forall n.$

original GILMOUR’s condition \((\text{each } a \text{ is } G_\delta \text{-regular}) \)
THE ROLE OF NORMALITY IN INSERTION: (weak) insertion

THEOREM. TFAE for a frame \(L \):

1. \(L \) is normal.

2. \(\underbrace{f \leq g}_{\text{USC \ LSC}} \implies \exists h \in C(L): f \leq h \leq g. \)

THE ROLE OF NORMALITY IN INSERTION: (weak) insertion

PERFECTNESS

THEOREM. TFAE for a frame L:

1. L is normal.

2. $\underbrace{f \leq g}_{\text{USC \ LSC}} \Rightarrow \exists h \in C(L): f \leq h \leq g$.

THE ROLE OF NORMALITY IN INSERTION: (weak) insertion

PERFECTNESS double

THEOREM. TFAE for a frame L:

1. L is normal.

2. $f \leq g$
 \hspace{1cm} \Rightarrow \hspace{1cm} \exists \ h \in C(L) : \ f \leq h \leq g$.

THEOREM. TFAE for a frame L:

1. L is normal. perfect

2. \[
\begin{align*}
&f \leq g \\
&\text{USC} \quad \text{LSC}
\end{align*}
\implies \exists \begin{align*}
&\hat{f} \\
&\text{USC} \quad \text{LSC}
\end{align*}, \begin{align*}
&\hat{g} \\
&\text{USC} \quad \text{LSC}
\end{align*} : f \leq \hat{f} \leq \hat{g} \leq g
\quad \text{and}
\]

\[\iota(f, g) = \iota(f, \hat{f}) = \iota(f, \hat{g}) = \iota(\hat{g}, g).\]
THEOREM. TFAE for a frame L:

1. L is normal. perfect

2. $f \leq g$ USCLSC $\Rightarrow \exists \ \hat{f}, \ \hat{g}$ USCLSC : $f \leq \hat{f} \leq \hat{g} \leq g$ and

$$\nu(f, g) = \nu(f, \hat{f}) = \nu(\hat{f}, \hat{g}) = \nu(\hat{g}, g).$$

In particular: $f < g \Rightarrow f < \hat{f} < \hat{g} < g$
THEOREM. TFAE for a frame L:

1. L is normal + perfect

2. \[
\begin{aligned}
&f \leq g \\
&\text{USC} & \leq & \text{LSC}
\end{aligned}
\] \implies \exists \begin{aligned}
&\hat{f} \\
&\text{USC}
\end{aligned}, \begin{aligned}
&\hat{g} \\
&\text{LSC}
\end{aligned}: f \leq \hat{f} \leq \hat{g} \leq g

and

\[
\nu(f, g) = \nu(f, \hat{f}) = \nu(\hat{f}, \hat{g}) = \nu(\hat{g}, g).
\]

In particular: $f < g \implies f < \hat{f} < \hat{g} < g$
THEOREM. TFAE for a frame L:

1. L is normal + perfect

2. \[
\underbrace{f}_{\text{USC}} \leq \underbrace{g}_{\text{LSC}} \quad \implies \quad \exists \underbrace{\hat{f}}_{\text{USC}}, \underbrace{\hat{g}}_{\text{LSC}} : f \leq \hat{f} \leq \hat{g} \leq g
\]

In particular: $f < g \implies f < \hat{f} < \hat{g} < g$

and thus $\Rightarrow f < h < g$
A UNIFIED APPROACH: go to $S(L)$

the frame of sublocales
A UNIFIED APPROACH: \mathcal{A}-perfectness

the frame of sublocales

$S(L)$

$B(S(L))$

L

$\mathcal{A} \subseteq \mathcal{A}^c$
A UNIFIED APPROACH: \mathcal{A}-perfectness

the frame of sublocales

L is \mathcal{A}-perfect $\equiv \forall A \in \mathcal{A}^c$

$A = \bigwedge_{n \in \mathbb{N}} A_n$ (where each $A_n \in \mathcal{A}$)
A UNIFIED APPROACH: \mathcal{A}-normality

the frame of sublocales

L is \mathcal{A}-normal \equiv For any $A, B \in \mathcal{A}$,

\[A \lor B = 1 \Rightarrow \exists U, V \in \mathcal{A}: U \land V = 0, \ A \lor U = 1 = B \lor V. \]
$f : \mathbb{L}(\mathbb{R}) \rightarrow \mathcal{S}(L)$

\[f \in \text{USC}(L) \iff \forall p < q \; \exists F_{p,q} \in cL : \; f(-,p) \leq F_{p,q} \leq f(-,q). \]
\mathcal{A}-SEMICONtinuity and \mathcal{A}-CONTINUITY

\[f : \mathcal{L}(\mathbb{R}) \to \mathcal{S}(L) \]

\[f \in \text{USC}(L) \iff \forall p < q \exists F_{p,q} \in \mathcal{c}L : f(\mathcal{L}, p) \leq F_{p,q} \leq f(\mathcal{L}, q). \]

\[\mathcal{A}\text{-USC}(L) \equiv \forall p < q \exists F_{p,q} \in \mathcal{A} : f(\mathcal{L}, p) \leq F_{p,q} \leq f(\mathcal{L}, q). \]
\mathcal{A}-semicontinuity and \mathcal{A}-continuity

$f : \mathcal{L}(\mathbb{R}) \to \mathcal{S}(L)$

$f \in \text{USC}(L) \iff \forall p < q \ \exists F_{p,q} \in cL : f(\neg, p) \leq F_{p,q} \leq f(\neg, q)$.

\mathcal{A}-USC(L) $\equiv \forall p < q \ \exists F_{p,q} \in \mathcal{A} : f(\neg, p) \leq F_{p,q} \leq f(\neg, q)$.

\mathcal{A}-LSC(L) $\equiv \forall p < q \ \exists F_{p,q} \in \mathcal{A} : f(q, \neg) \leq F_{p,q} \leq f(p, \neg)$.
\[f \in \text{USC}(L) \iff \forall p < q \ \exists F_{p,q} \in cL : f(-,p) \leq F_{p,q} \leq f(-,q). \]

\[\mathcal{A}\text{-USC}(L) \equiv \forall p < q \ \exists F_{p,q} \in \mathcal{A} : f(-,p) \leq F_{p,q} \leq f(-,q). \]

\[\mathcal{A}\text{-LSC}(L) \equiv \forall p < q \ \exists F_{p,q} \in \mathcal{A} : f(q,-) \leq F_{p,q} \leq f(p,-). \]

\[\mathcal{A}\text{-C}(L) = \mathcal{A}\text{-LSC}(L) \cap \mathcal{A}\text{-USC}(L) \]
$f \in \text{USC}(L) \iff \forall p < q \exists F_{p,q} \in cL : f(_, p) \leq F_{p,q} \leq f(_, q)$.

\mathcal{A}-$\text{USC}(L) \equiv \forall p < q \exists F_{p,q} \in \mathcal{A} : f(_, p) \leq F_{p,q} \leq f(_, q)$.

\mathcal{A}-$\text{LSC}(L) \equiv \forall p < q \exists F_{p,q} \in \mathcal{A} : f(q, _) \leq F_{p,q} \leq f(p, _)$.

\mathcal{A}-$\text{C}(L) = \mathcal{A}$-$\text{LSC}(L) \cap \mathcal{A}$-$\text{USC}(L)$

Clearly:

f is upper \mathcal{A}-semicontinuous iff it is lower \mathcal{A}^c-semicon.

f is \mathcal{A}^c-continuous iff it is \mathcal{A}-continuous.
RESULTS: relative versions

\mathcal{A}-perfect normality = \mathcal{A}-perfectness + \mathcal{A}-normality

\[\iff \]

(Weak) insertion

for \[f \leq g \]
\[\mathcal{A} - \text{USC} \quad \mathcal{A} - \text{LSC} \]
RESULTS: relative versions

\[\mathcal{A}\text{-perfect normality} = \mathcal{A}\text{-perfectness} + \mathcal{A}\text{-normality} \]

\[\Leftrightarrow \quad \text{under mild conditions on } \mathcal{A} \]

\[\text{Strict insertion} = \text{Double insertion} + (\text{Weak) insertion} \]

\[\text{for } f \preceq g \]

\[\mathcal{A} - \text{USC} \quad \mathcal{A} - \text{LSC} \]
RESULTS: relative versions

\(\mathcal{A}^c \)-perfect normality = \(\mathcal{A}^c \)-perfectness + \(\mathcal{A}^c \)-normality

\(\mathcal{A}^c \)-perfectness

\(\mathcal{A}^c \)-normality

Strict insertion = Double insertion + (Weak) insertion

under mild conditions on \(\mathcal{A} \)

for

\(f \preceq g \)

\(\mathcal{A} \)-USC \(\mathcal{A} \)-LSC
RESULTS: relative versions

\[\mathcal{A}^c \text{-perfect normality} = \mathcal{A}^c \text{-perfectness} + \mathcal{A}^c \text{-normality} \]

\[\text{Strict insertion} = \text{Double insertion} + \text{(Weak) insertion} \]

\[\text{for } \begin{cases} f \leq g \end{cases} \]

\[\mathcal{A}^c \text{-USC} \quad \mathcal{A}^c \text{-LSC} \]

\[\mathcal{A}^c \text{-LSC} \quad \mathcal{A}^c \text{-USC} \]
RESULTS: relative versions

\[A^C \text{-perfect normality} = A^C \text{-perfectness} + A^C \text{-normality} \]

Strict insertion = Double insertion + (Weak) insertion

\[\text{for } f \leq g \]
\[A^C \text{-USC} \quad A^C \text{-LSC} \]

\[A^C \text{-USC} \quad A^C \text{-LSC} \]
$A_1 = \{ c(a) : a \in L \}$
EXAMPLES

- \mathcal{A}_1-normal frames: normal
- \mathcal{A}_1^c-normal frames: extremally disconnected

$\mathcal{A}_1 = \{ c(a) : a \in L \}$
• \mathcal{A}_1-normal frames: normal
• \mathcal{A}_1^c-normal frames: extremally disconnected
• \mathcal{A}_1-perfect frames: perfect
• \mathcal{A}_1^c-perfect frames: Boolean

$\mathcal{A}_1 = \{c(a) : a \in L\}$
EXAMPLES

- \mathcal{A}_1-normal frames: normal
- \mathcal{A}_1^c-normal frames: extremally disconnected
- \mathcal{A}_1-perfect frames: perfect
- \mathcal{A}_1^c-perfect frames: Boolean
- upper \mathcal{A}_1-semicontinuous functions: upper semicontinuous
- lower \mathcal{A}_1-semicontinuous functions: lower semicontinuous
- \mathcal{A}_1-continuous functions: continuous

$\mathcal{A}_1 = \{c(a) : a \in L\}$
Examples

\[A_2 = \{c(a^*): a \in L\} \]
EXAMPLES

- \mathcal{A}_2-normal frames: mildly normal
- \mathcal{A}_2^c-normal frames: extremally disconnected

- \mathcal{A}_2-perfectly normal frames: pm-normal = OZ
- \mathcal{A}_2^c-perfectly normal frames: extremally disconnected

- upper \mathcal{A}_2-semicontinuous functions: normal upper semicontinuous
- lower \mathcal{A}_2-semicontinuous functions: normal lower semicontinuous
- \mathcal{A}_2-continuous functions: normal continuous

$$ (f^\circ)^- = f \quad | \quad (f^-)^\circ = f $$

Dilworth 1950
EXAMPLES

\[A_3 = \{c(coz f) : f \in C(L)\} \]
EXAMPLES

- \mathcal{A}_3-normal frames: all frames
- \mathcal{A}_3^c-normal frames: F-frames
- \mathcal{A}_3-perfectly normal frames: all frames
- \mathcal{A}_3^c-perfectly normal frames: P-frames
- upper \mathcal{A}_3-semicontinuous functions: zero upper semicontinuous
- lower \mathcal{A}_3-semicontinuous functions: zero lower semicontinuous
- \mathcal{A}_3-continuous functions: zero continuous

$\mathcal{A}_3 = \{c(\text{coz} f) : f \in C(L)\}$

Stone 1949
EXAMPLES

\[A_4 = \{ c(a) : a \text{ regular } G_\delta \} \]
EXAMPLES

\[\mathcal{A}_4 = \{ c(a) : a \text{ regular } G_\delta \} \]

- \(\mathcal{A}_4 \)-normal frames: \(\delta \)-normal
- \(\mathcal{A}_4^c \)-normal frames: \(\delta \)-extremally disconnected

- \(\mathcal{A}_4 \)-perfectly normal frames: ???
- \(\mathcal{A}_4^c \)-perfectly normal frames: ???

- upper \(\mathcal{A}_4 \)-semicontinuous functions: regular upper semicontinuous
- lower \(\mathcal{A}_4 \)-semicontinuous functions: regular lower semicontinuous
- \(\mathcal{A}_4 \)-continuous functions: regular continuous

Lane 1983