Axiom T_D and the relation between sublocales and subspaces of a space

Jorge Picado (Univ. Coimbra, Portugal)

- joint work with Aleš Pultr (Prague)

Centre for Mathematics University of Coimbra J. Picado and A. Pultr, Axiom T_D and the Simmons sublocale theorem, *Comment. Math. Univ. Carolinae*

(to appear in the special issue in memory of Věra Trnková)

• OBJECTS: locales = frames

complete lattices

$$a \wedge \bigvee_I b_i = \bigvee_I (a \wedge b_i)$$

• OBJECTS: locales = frames =cHa complete lattices

$$a \wedge \bigvee_I b_i = \bigvee_I (a \wedge b_i)$$

$$a \land (-) \dashv a \rightarrow (-)$$

• OBJECTS: locales = frames =cHa complete lattices

$$a \wedge \bigvee_I b_i = \bigvee_I (a \wedge b_i)$$

$$a \land (-) \dashv a \rightarrow (-)$$

• OBJECTS: locales = frames =cHa complete lattices

$$a \wedge \bigvee_I b_i = \bigvee_I (a \wedge b_i)$$

$$a \land (-) \dashv a \rightarrow (-)$$

• OBJECTS: locales = frames =cHa complete lattices $a \land \bigvee_I b_i = \bigvee_I (a \land b_i)$ $a \wedge (-) \dashv a \rightarrow (-)$ • MORPHISMS: • $f(\bigwedge S) = \bigwedge f[S]$ • $f(a) = 1 \Rightarrow a = 1$ $\dashv \int f$ М

• OBJECTS: locales = frames =cHa complete lattices $a \land \bigvee_I b_i = \bigvee_I (a \land b_i)$ $a \wedge (-) \dashv a \rightarrow (-)$ • $f(\bigwedge S) = \bigwedge f[S]$ • MORPHISMS: $\dashv \int f$ • $f(a) = 1 \Rightarrow a = 1$ М • $f(f^*(a) \rightarrow b) = a \rightarrow f(b)$

subspaces: $\mathcal{P}(X)$, a CABool

sublocales: S(L), a COFRAME!

«(...) a locale has enough complemented sublocales to compensate for this shortcoming: one simply has to make the sublocales which are complemented do more of the work.»

John Isbell

[Atomless parts of spaces, Math. Scand. (1972)]

subspaces: $\mathcal{P}(X)$, a CABool

sublocales: S(L), a COFRAME!

 $S \subseteq L$ is a SUBLOCALE of *L* whenever

 $j_S : S \hookrightarrow L$ is a localic map, that is:

 $S \subseteq L$ is a **SUBLOCALE** of *L* whenever

 $j_S : S \hookrightarrow L$ is a localic map, that is:

(1) $\forall A \subseteq S, \land A \in S.$

 $S \subseteq L$ is a **SUBLOCALE** of *L* whenever

 $j_S : S \hookrightarrow L$ is a localic map, that is:

(1) $\forall A \subseteq S, \land A \in S$. (2) $\forall x \in L, \forall s \in S, x \rightarrow s \in S$.

 $S \subseteq L$ is a **SUBLOCALE** of *L* whenever

 $j_S : S \hookrightarrow L$ is a localic map, that is:

(1) $\forall A \subseteq S, \land A \in S.$ (2) $\forall x \in L, \forall s \in S, x \rightarrow s \in S.$

minimal sublocales
$$a \in L$$
, $\mathfrak{b}(a) = \{x \to a \mid x \in L\}$

 $S \subseteq L$ is a **SUBLOCALE** of *L* whenever

 $j_S : S \hookrightarrow L$ is a localic map, that is:

(1) $\forall A \subseteq S, \ \land A \in S.$ (2) $\forall x \in L, \forall s \in S, x \to s \in S.$

$$\wedge (x_i \to a) = (\bigvee x_i) \to a$$

L

S

 $\wedge S$

minimal sublocales $a \in L$, $\mathfrak{b}(a) = \{x \to a \mid x \in L\}$

 $S \subseteq L$ is a **SUBLOCALE** of *L* whenever

 $j_S : S \hookrightarrow L$ is a localic map, that is:

(1) $\forall A \subseteq S, \ \land A \in S.$ (2) $\forall x \in L, \forall s \in S, x \to s \in S.$

$$\wedge (x_i \to a) = (\bigvee x_i) \to a$$

L

S

 $\wedge S$

minimal sublocales
$$a \in L$$
, $\mathfrak{b}(a) = \{x \to a \mid x \in L\}$

 $p \in \Sigma(L) \text{ (prime elements)} \qquad \qquad \mathfrak{b}(p) = \{p, 1\}$ $L = \Omega(X): \quad \text{all } X \setminus \overline{\{x\}} \text{ are prime,} \qquad \{X \setminus \overline{\{x\}}, X\}$

 $S \subseteq L$ is a **SUBLOCALE** of *L* whenever

 $j_S : S \hookrightarrow L$ is a localic map, that is:

(1) $\forall A \subseteq S, \ \land A \in S.$ (2) $\forall x \in L, \forall s \in S, x \to s \in S.$

$$\wedge (x_i \to a) = (\bigvee x_i) \to a$$

minimal sublocales
$$a \in L$$
, $\mathfrak{b}(a) = \{x \to a \mid x \in L\}$

 $p \in \Sigma(L) \text{ (prime elements)} \qquad \qquad \mathfrak{b}(p) = \{p, 1\}$ $L = \Omega(X): \quad \text{all } X \setminus \overline{\{x\}} \text{ are prime,} \qquad \{X \setminus \overline{\{x\}}, X\}$

(there may be more primes in $\Omega(X)$; **<u>sober</u>**: these are the only ones)

S

 $\wedge S$

 $L = \Omega(X)$ Tipically: <u>more</u> sublocales than subspaces!

$L = \Omega(X)$ Tipically: <u>more</u> sublocales than subspaces!

QUESTION When is every sublocale of $\Omega(X)$ a subspace?

$L = \Omega(X)$ Tipically: <u>more</u> sublocales than subspaces!

QUESTION When is every sublocale of $\Omega(X)$ a subspace? induced by

 $L = \Omega(X)$ Tipically: <u>more</u> sublocales than subspaces!

QUESTIONWhen is every sublocale of $\Omega(X)$ a subspace?Specifically:induced by

 $L = \Omega(X)$ Tipically: <u>more</u> sublocales than subspaces!

 $L = \Omega(X)$ Tipically: <u>more</u> sublocales than subspaces!

 $L = \Omega(X)$ Tipically: <u>more</u> sublocales than subspaces!

QUESTION When is every sublocale induced? and $\stackrel{1-1}{\longleftrightarrow}$?

 $L = \Omega(X)$ Tipically: <u>more</u> sublocales than subspaces!

Theorem. For a T_0 -space X, $S(\Omega(X)) \in \text{Bool iff } S(\Omega(X))$ is spatial iff X is weakly scattered.

Theorem. For a T_0 -space X, $S(\Omega(X)) \in \text{Bool iff } S(\Omega(X))$ is spatial iff X is weakly scattered.

scattered: every closed $A \neq \emptyset$ contains an isolated point *a*

 \exists open $U \ni a \colon U \cap A = \{a\}$

Theorem. For a T_0 -space X, $S(\Omega(X)) \in \text{Bool iff } S(\Omega(X))$ is spatial iff X is weakly scattered.

scattered: every closed $A \neq \emptyset$ contains an isolated point *a*

 \exists open $U \ni a \colon U \cap A = \{a\}$

 $\subseteq \overline{\{a\}}$

weakly scattered:

Theorem. For a T_0 -space X, $S(\Omega(X)) \in \text{Bool iff } S(\Omega(X))$ is spatial iff X is weakly scattered.

scattered: every closed $A \neq \emptyset$ contains an isolated point *a*

 \exists open $U \ni a : U \cap A = \{a\}$

weakly scattered:

Characterized the frames *L* where every sublocale is spatial

Niefield & Rosenthal (1987)

 $\subseteq \{a\}$

Theorem. For a T_0 -space X, $S(\Omega(X)) \in \text{Bool iff } S(\Omega(X))$ is spatial iff X is weakly scattered.

scattered: every closed $A \neq \emptyset$ contains an isolated point *a*

 \exists open $U \ni a \colon U \cap A = \{a\}$

weakly scattered:

Niefield & Rosenthal (1987)

Characterized the frames *L* where every sublocale is spatial

 $\xrightarrow{1-1}$ is circumvented; the more complete results of N&R are choice dependable.

 $\subseteq \overline{\{a\}}$

Singletons are locally closed i.e.

each $\{x\}$ is closed in some open *U*:

$$\forall x \in X \exists \text{ open } U \ni x \colon \{x\} = U \cap \overline{\{x\}}.$$

Singletons are locally closed i.e.

each $\{x\}$ is closed in some open *U*:

$$\forall x \in X \exists \text{ open } U \ni x \colon \{x\} = U \cap \overline{\{x\}}.$$

[W.J. Thron (1962)]

Singletons are locally closed i.e.

each $\{x\}$ is closed in some open *U*:

$$\forall x \in X \exists \text{ open } U \ni x \colon \{x\} = U \cap \overline{\{x\}}.$$

For non- T_D spaces

the representation of subspaces of X by sublocales of $\Omega(X)$ is imperfect:

[W.J. Thron (1962)]

Singletons are locally closed i.e.

each $\{x\}$ is closed in some open *U*:

$$\forall x \in X \exists \text{ open } U \ni x \colon \{x\} = U \cap \overline{\{x\}}.$$

For non- T_D spaces the representation of subspaces of X by sublocales of $\Omega(X)$ is imperfect:

Let $x \in X$ s.t. no $U \setminus \{x\}$ with $x \in U$ is open. Then $X \smallsetminus \{x\}$ $S_{X \setminus \{x\}} = S_X$ X

[W.J. Thron (1962)]

Singletons are locally closed i.e.

each $\{x\}$ is closed in some open *U*:

$$\forall x \in X \exists \text{ open } U \ni x \colon \{x\} = U \cap \overline{\{x\}}.$$

For non- T_D spaces the representation of subspaces of X by sublocales of $\Omega(X)$ is imperfect:

Let $x \in X$ s.t. no $U \setminus \{x\}$ with $x \in U$ is open. Then $X \smallsetminus \{x\}$ $S_{X \setminus \{x\}} = S_X$ X

For T_D -spaces

```
• weakly scattered \equiv scattered.
```

[W.J. Thron (1962)]

Singletons are locally closed i.e.

each $\{x\}$ is closed in some open *U*:

$$\forall x \in X \exists \text{ open } U \ni x \colon \{x\} = U \cap \overline{\{x\}}.$$

For non- T_D spaces the representation of subspaces of X by sublocales of $\Omega(X)$ is imperfect:

Let $x \in X$ s.t. no $U \setminus \{x\}$ with $x \in U$ is open. Then $X \smallsetminus \{x\}$ $S_{X \setminus \{x\}} = S_X$ X

For T_D -spaces

- weakly scattered \equiv scattered.
- The primes $p = X \setminus \overline{\{x\}}$ are covered: $p = \bigwedge U_i \implies p = U_K$ for some k.

Let $p_{X,x} = X \setminus \overline{\{x\}} \in \Sigma \Omega(X)$

Let
$$p_{X,x} = X \setminus \overline{\{x\}} \in \Sigma \Omega(X)$$

Properties For $Y \subseteq X$:

$$1 \quad \kappa(p_{Y,y}) = p_{X,y}.$$

Let
$$p_{X,x} = X \setminus \overline{\{x\}} \in \Sigma \Omega(X)$$

Properties For $Y \subseteq X$:

$$1 \quad \kappa(p_{Y,y}) = p_{X,y}.$$

$$\downarrow$$

$$2 \quad S_Y = \bigvee \{ \mathfrak{b}(p_{X,y}) \mid y \in Y \}.$$

Let
$$p_{X,x} = X \setminus \overline{\{x\}} \in \Sigma \Omega(X)$$

Properties For $Y \subseteq X$:

1
$$\kappa(p_{Y,y}) = p_{X,y}.$$

2 $S_Y = \bigvee \{ \mathfrak{b}(p_{X,y}) \mid y \in Y \}.$

3 A sublocale $S \subseteq \Omega(X)$ is induced iff $S = \bigvee \{ \mathfrak{b}(p_{X,x}) \mid p_{X,x} \in S \}$.

Ī

 $p \in \Sigma(L)$ is *a*-regular if $(p \to a) \to a = p$ (extension of the usual concept: $(x \to 0) \to 0 = x^{**}$)

 $p \in \Sigma(L)$ is *a*-regular if $(p \to a) \to a = p$

(extension of the usual concept: $(x \rightarrow 0) \rightarrow 0 = x^{**}$)

Theorem

- (1) $S(\Omega(X))$ is Boolean.
- (2) Each Boolean sublocale is complemented.

 $p \in \Sigma(L)$ is *a*-regular if $(p \to a) \to a = p$ (extension of the usual concept: $(x \to 0) \to 0 = x^{**}$)

Theorem

- (1) $S(\Omega(X))$ is Boolean.
- (2) Each Boolean sublocale is complemented.
- (3) For every open $U \neq X$, there is a *U*-regular element of the form $p_{X,x}$.

 $p \in \Sigma(L)$ is *a*-regular if $(p \to a) \to a = p$ (extension of the usual concept: $(x \to 0) \to 0 = x^{**}$)

Theorem

- (1) $S(\Omega(X))$ is Boolean.
- (2) Each Boolean sublocale is complemented.
- (3) For every open $U \neq X$, there is a *U*-regular element of the form $p_{X,x}$.
- (4) All sublocales are induced and precisely represent subspaces of *X*.

 $p \in \Sigma(L)$ is *a*-regular if $(p \to a) \to a = p$ (extension of the usual concept: $(x \to 0) \to 0 = x^{**}$)

Theorem

- (1) $S(\Omega(X))$ is Boolean.
- (2) Each Boolean sublocale is complemented.
- (3) For every open $U \neq X$, there is a *U*-regular element of the form $p_{X,x}$.
- (4) All sublocales are induced and precisely represent subspaces of *X*.
- (5) $\mu: S(\Omega(X)) \to \mathcal{P}(X)$ is a poset isomorphism. $S \mapsto \{x \in X : p_{X,x} \in S\}$

 $p \in \Sigma(L)$ is *a*-regular if $(p \to a) \to a = p$ (extension of the usual concept: $(x \to 0) \to 0 = x^{**}$)

Theorem

TFAE for a T_D -space X:

- (1) $S(\Omega(X))$ is Boolean.
- (2) Each Boolean sublocale is complemented.
- (3) For every open $U \neq X$, there is a *U*-regular element of the form $p_{X,x}$.
- (4) All sublocales are induced and precisely represent subspaces of X.
- (5) $\mu: S(\Omega(X)) \to \mathcal{P}(X)$ is a poset isomorphism. $S \longrightarrow \{x \in X: p_{X,x} \in S\}$

 $\bigvee \{ \mathfrak{b}(p_{X,y}) \colon y \in Y \} \quad \swarrow \mu^{-1} \quad Y \subseteq X$

Lemma

TFAE for a space *X*:

(1) *X* is weakly scattered.

Lemma

TFAE for a space *X*:

- (1) *X* is weakly scattered.
- (2) For any open $U \neq X$, there is a *U*-regular element $p_{X,x} = X \setminus \{x\}$.

[main point: $(p_{X,x} \to U) \to U = \operatorname{int}((X \setminus U) \setminus \overline{\{x\}} \cup U)$]

Lemma

TFAE for a space X:

- (1) *X* is weakly scattered.
- (2) For any open $U \neq X$, there is a *U*-regular element $p_{X,x} = X \setminus \{x\}$.

[main point: $(p_{X,x} \to U) \to U = \operatorname{int}((X \setminus U) \setminus \overline{\{x\}} \cup U)$]

Theorem [refinement for T_D -spaces of Simmons' Theorem]

TFAE for a T_D -space X:

- (1) $S(\Omega(X))$ is Boolean.
- (2) Each Boolean sublocale is complemented.

(3) All sublocales are induced and precisely represent subspaces of X.

Lemma

TFAE for a space X:

- (1) *X* is weakly scattered.
- (2) For any open $U \neq X$, there is a *U*-regular element $p_{X,x} = X \setminus \{x\}$.

[main point: $(p_{X,x} \to U) \to U = \operatorname{int}((X \setminus U) \setminus \overline{\{x\}} \cup U)$]

Theorem [refinement for T_D -spaces of Simmons' Theorem]

TFAE for a T_D -space X:

- (1) $S(\Omega(X))$ is Boolean.
- (2) Each Boolean sublocale is complemented.

(3) All sublocales are induced and precisely represent subspaces of X.

(4) *X* is scattered.

Theorem [refinement for T_D -spaces of Simmons' Theorem]

- TFAE for a T_D -space X:
 - (1) $S(\Omega(X))$ is Boolean.
 - (2) Each Boolean sublocale is complemented.
 - (3) All sublocales are induced and precisely represent subspaces of *X*.
 - (4) *X* is scattered.

Corollary

All sublocales of $\Omega(X)$ are induced and precisely represent subspaces of *X* iff *X* is T_D and scattered.

Theorem [refinement for T_D -spaces of Simmons' Theorem]

- TFAE for a T_D -space X:
 - (1) $S(\Omega(X))$ is Boolean.
 - (2) Each Boolean sublocale is complemented.
 - (3) All sublocales are induced and precisely represent subspaces of *X*.
 - (4) *X* is scattered.

Corollary

All sublocales of $\Omega(X)$ are induced and precisely represent subspaces of *X* iff *X* is T_D and scattered.

— this is a further example of the importance of axiom T_D in fitting together spatial and pointfree facts.

QUESTION When is every induced sublocale complemented?

QUESTION When is every induced sublocale complemented?

Proposition

An induced sublocale S_Y is complemented in $S(\Omega(X))$ iff there are no non-empty A, B such that $\overline{A} = \overline{B}, A \subseteq Y$ and $B \subseteq X \setminus Y$.

QUESTION When is every induced sublocale complemented?

Proposition

An induced sublocale S_Y is complemented in $S(\Omega(X))$ iff there are no non-empty A, B such that $\overline{A} = \overline{B}, A \subseteq Y$ and $B \subseteq X \setminus Y$.

Hereditarily Irresolvable spaces: $\forall A, B \subseteq X, \ \emptyset \neq \overline{A} = \overline{B} \implies A \cap B \neq \emptyset$

[Hewitt 1943]

QUESTION When is every induced sublocale complemented?

Proposition

An induced sublocale S_Y is complemented in $S(\Omega(X))$ iff there are no non-empty A, B such that $\overline{A} = \overline{B}, A \subseteq Y$ and $B \subseteq X \setminus Y$.

Hereditarily Irresolvable spaces: $\forall A, B \subseteq X, \ \emptyset \neq \overline{A} = \overline{B} \implies A \cap B \neq \emptyset$

[Hewitt 1943]

Corollary

Every induced sublocale is complemented in $S(\Omega(X))$ iff X is an HI-space.

QUESTION When is every induced sublocale complemented?

Proposition

An induced sublocale S_Y is complemented in $S(\Omega(X))$ iff there are no non-empty A, B such that $\overline{A} = \overline{B}, A \subseteq Y$ and $B \subseteq X \setminus Y$.

Hereditarily Irresolvable spaces: $\forall A, B \subseteq X, \ \emptyset \neq \overline{A} = \overline{B} \implies A \cap B \neq \emptyset$

[Hewitt 1943]

Corollary

Every induced sublocale is complemented in $S(\Omega(X))$ iff X is an HI-space.

for T_D -spaces Every subspace of X

QUESTION When is every induced sublocale complemented?

Proposition

An induced sublocale S_Y is complemented in $S(\Omega(X))$ iff there are no non-empty A, B such that $\overline{A} = \overline{B}, A \subseteq Y$ and $B \subseteq X \setminus Y$.

Hereditarily Irresolvable spaces: $\forall A, B \subseteq X, \ \emptyset \neq \overline{A} = \overline{B} \implies A \cap B \neq \emptyset$

[Hewitt 1943]

Corollary

Every induced sublocale is complemented in $S(\Omega(X))$ iff X is an HI-space.

for T_D -spaces Every subspace of X UI scattered

QUESTION When is every induced sublocale complemented?

Proposition

An induced sublocale S_Y is complemented in $S(\Omega(X))$ iff there are no non-empty A, B such that $\overline{A} = \overline{B}, A \subseteq Y$ and $B \subseteq X \setminus Y$.

Hereditarily Irresolvable spaces: $\forall A, B \subseteq X, \ \emptyset \neq \overline{A} = \overline{B} \implies A \cap B \neq \emptyset$

[Hewitt 1943]

Corollary

Every induced sublocale is complemented in $S(\Omega(X))$ iff X is an HI-space.

for T_D -spaces Every subspace of X - Ul scattered

[G. Bezhanishvili, Mines, Morandi, Topology Appl., 2003]

8. CONCLUSIONS for T_D -spaces

either scattered or non-HI

 \mathcal{H} -spaces

either scattered or non-HI

include: metrizable, locally compact Hausdorff, Alexandroff, 1st countable, spectral, etc. [G. Bezhanishvili, Mines, Morandi, 2003]

include: metrizable, locally compact Hausdorff, Alexandroff, 1st countable, spectral, etc. [G. Bezhanishvili, Mines, Morandi, 2003]

• every sublocale is complemented (that is, $S(\Omega(X))$ is Boolean) iff every *subspace* is complemented (and, indeed, if every subspace is complemented then each sublocale is a subspace).

\mathcal{H} -spaces either scattered or non-HI

include: metrizable, locally compact Hausdorff, Alexandroff, 1st countable, spectral, etc. [G. Bezhanishvili, Mines, Morandi, 2003]

- every sublocale is complemented (that is, $S(\Omega(X))$ is Boolean) iff every *subspace* is complemented (and, indeed, if every subspace is complemented then each sublocale is a subspace).
- ▶ in other words, an *H*-space *X* has a sublocale that is not a subspace iff it has a subspace that is not complemented.

\mathcal{H} -spaces either scattered or non-HI

include: metrizable, locally compact Hausdorff, Alexandroff, 1st countable, spectral, etc. [G. Bezhanishvili, Mines, Morandi, 2003]

- every sublocale is complemented (that is, $S(\Omega(X))$ is Boolean) iff every *subspace* is complemented (and, indeed, if every subspace is complemented then each sublocale is a subspace).
- ▶ in other words, an *H*-space *X* has a sublocale that is not a subspace iff it has a subspace that is not complemented.

non \mathcal{H} -spaces exist!

• each of their subspaces is complemented in $S(\Omega(X))$ while this coframe contains also non-complemented elements.