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1. THE SETTING: The category of LOCALES

«(...) a locale has enough complemented sublocales to compensate for this
shortcoming: one simply has tomake the sublocales which are complemented
do more of the work.»

John Isbell

[Atomless parts of spaces, Math. Scand. (1972)]
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p ∈ Σ(L) (prime elements) b(p) � {p , 1}
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minimal sublocales a ∈ L, b(a) � {x → a | x ∈ L}

∧(xi → a) � (∨ xi) → a

p ∈ Σ(L) (prime elements) b(p) � {p , 1}

L � Ω(X): all X r {x} are prime, {X r {x},X}

(there may be more primes in Ω(X); sober: these are the only ones)
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induced by
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in Frm
Ω

��

κ : Ω(Y) → Ω(X)
V 7→ int[(X r Y) ∪ V] in Loc

The sublocale induced by Y SY � κ[Ω(Y)]

QUESTION When is every sublocale induced ?
(⇒ S(Ω(X)) ∈ Bool)
:
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H. Simmons (1980) When is S(Ω(X)) Boolean? When is S(L) spatial?

Theorem. For a T0-space X, S(Ω(X)) ∈ Bool iff S(Ω(X)) is spatial
iff X is weakly scattered.

scattered: every closed A , ∅ contains an isolated point a

∃ open U 3 a : U ∩ A � {a}

weakly scattered: ⊆ {a}

Niefield & Rosenthal (1987) Characterized the frames L where

every sublocale is spatial

BOTH CASES 1−1 //oo
is circumvented; the more complete results

of N&R are choice dependable.
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4. THE AXIOM TD [W.J. Thron (1962)]
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∀x ∈ X ∃ open U 3 x : {x} � U ∩ {x}.

June 2019: TACL (Nice) Axiom TD : Sublocales versus subspaces in a space – 5 –



4. THE AXIOM TD [W.J. Thron (1962)]

Singletons are locally closed i.e.

each {x} is closed in some open U:

∀x ∈ X ∃ open U 3 x : {x} � U ∩ {x}. T2 T1

Sob

TD T0

June 2019: TACL (Nice) Axiom TD : Sublocales versus subspaces in a space – 5 –



4. THE AXIOM TD [W.J. Thron (1962)]

Singletons are locally closed i.e.

each {x} is closed in some open U:

∀x ∈ X ∃ open U 3 x : {x} � U ∩ {x}. T2 T1

Sob

TD T0

For non-TD spaces the representation of subspaces of X by

sublocales of Ω(X) is imperfect:

June 2019: TACL (Nice) Axiom TD : Sublocales versus subspaces in a space – 5 –



4. THE AXIOM TD [W.J. Thron (1962)]

Singletons are locally closed i.e.

each {x} is closed in some open U:

∀x ∈ X ∃ open U 3 x : {x} � U ∩ {x}. T2 T1

Sob

TD T0

For non-TD spaces the representation of subspaces of X by
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For non-TD spaces the representation of subspaces of X by

sublocales of Ω(X) is imperfect:

Let x ∈ X s.t. no U r {x}
with x ∈ U is open. Then

X r {x}
((

SXr{x} � SX

X
44

For TD-spaces

•weakly scattered ≡ scattered.

• The primes p � X r {x} are covered: p �
∧

Ui ⇒ p � UK for some k.
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Let pX,x � X r {x} ∈ ΣΩ(X)

Properties For Y ⊆ X:

1 κ(pY,y) � pX,y .

⇐

2 SY �
∨{b(pX,y) | y ∈ Y}.

⇐

3 A sublocale S ⊆ Ω(X) is induced iff S �
∨{b(pX,x) | pX,x ∈ S}.
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p ∈ Σ(L) is a-regular if (p → a) → a � p
(extension of the usual concept: (x → 0) → 0 � x∗∗)
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Theorem
TFAE for a TD-space X:

(1) S(Ω(X)) is Boolean.
(2) Each Boolean sublocale is complemented.

(3) For every open U , X, there is a U-regular element of the form pX,x .

(4) All sublocales are induced and precisely represent subspaces of X.

(5) µ : S(Ω(X))→P(X)
S 7→{x ∈ X : pX,x ∈ S}

is a poset isomorphism.
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(extension of the usual concept: (x → 0) → 0 � x∗∗)

Theorem
TFAE for a TD-space X:

(1) S(Ω(X)) is Boolean.
(2) Each Boolean sublocale is complemented.

(3) For every open U , X, there is a U-regular element of the form pX,x .

(4) All sublocales are induced and precisely represent subspaces of X.

(5) µ : S(Ω(X))→P(X)
S 7→{x ∈ X : pX,x ∈ S}

is a poset isomorphism.

µ−1

∨{b(pX,y) : y ∈ Y} Y ⊆ X
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Lemma
TFAE for a space X:

(1) X is weakly scattered.

(2) For any open U , X, there is a U-regular element pX,x � X r {x}.
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[ main point: (pX,x → U) → U � int
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(X rU) r {x} ∪U
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(2) Each Boolean sublocale is complemented.

(3) All sublocales are induced and precisely represent subspaces of X.
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All sublocales of Ω(X) are induced and precisely represent subspaces of X
iff X is TD and scattered.
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Theorem [refinement for TD-spaces of Simmons’ Theorem]
TFAE for a TD-space X:

(1) S(Ω(X)) is Boolean.
(2) Each Boolean sublocale is complemented.

(3) All sublocales are induced and precisely represent subspaces of X.

(4) X is scattered.

Corollary
All sublocales of Ω(X) are induced and precisely represent subspaces of X
iff X is TD and scattered.

— this is a further example of the importance of axiom TD
in fitting together spatial and pointfree facts.
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↔

Every subspace of X
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22

, (even within TD)

[G. Bezhanishvili, Mines, Morandi, Topology Appl., 2003]
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8. CONCLUSIONS for TD-spaces

H-spaces either scattered or non-HI

HI

scattered

TD

June 2019: TACL (Nice) Axiom TD : Sublocales versus subspaces in a space – 10 –



8. CONCLUSIONS for TD-spaces

H-spaces either scattered or non-HI

HI

scattered

TD

include: metrizable, locally compact Hausdorff,

Alexandroff, 1st countable, spectral, etc.

[G. Bezhanishvili, Mines, Morandi, 2003]

June 2019: TACL (Nice) Axiom TD : Sublocales versus subspaces in a space – 10 –



8. CONCLUSIONS for TD-spaces

H-spaces either scattered or non-HI

HI

scattered

TD

include: metrizable, locally compact Hausdorff,

Alexandroff, 1st countable, spectral, etc.

[G. Bezhanishvili, Mines, Morandi, 2003]

I every sublocale is complemented (that is, S(Ω(X)) is Boolean) iff
every subspace is complemented (and, indeed, if every subspace

is complemented then each sublocale is a subspace).

I in other words, an H-space X has a sublocale that is not a

subspace iff it has a subspace that is not complemented.
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H-spaces either scattered or non-HI

HI

scattered

TD

include: metrizable, locally compact Hausdorff,

Alexandroff, 1st countable, spectral, etc.

[G. Bezhanishvili, Mines, Morandi, 2003]

I every sublocale is complemented (that is, S(Ω(X)) is Boolean) iff
every subspace is complemented (and, indeed, if every subspace

is complemented then each sublocale is a subspace).

I in other words, an H-space X has a sublocale that is not a

subspace iff it has a subspace that is not complemented.

non H-spaces exist!

I each of their subspaces is complemented in S(Ω(X))while this

coframe contains also non-complemented elements.
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