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C: a category with finite products
P: aproperty of subobjects

X € Obj(C) is P-separated if the diagonal Ay : X — X x X has property P.
Proposition [CGT, 2004]

Let P be stable under pullbacks. Then:
(1)

X — Y is a monomorphism

_ — X is P-separated.
Y is P-separated

(2)
f,g: X =Y € Mor(C)

Y is P-separated } = Eq(f.g) as property P
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AIM: to study F-separatedness in parallel with the strong Hausdorff axiom

By the general categorical results, we have:
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e Monomorphisms in Loc are fairly wild,
so this tells us more than simply heredity!
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Relation with fitness and subfitness

Alocale L is subfit = every open sublocale is a join of closed sublocales.

fit = every (closed) sublocale is a meet of opens.
|

fitted
Fit locales are closed under limits; in particular,

Lemma. Every fit locale is F-separated

The converse is NOT true: There is a spatial locale
which is F-separated, strongly Hausdorff, but not fit.

Hence, 7-separatedness is an hereditary property

weaker than fitness!

Subfit is not hereditary; no relation with F-sep.

Ti-type axiom
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The parallel ‘strong Hausdorffness / F-separatedness’

The parallel is in fact deeper.
[Banaschewski & Pultr, On weak lattice and frame homomorphisms, 2004]:

A mapping h: L — M between frames is a weak homomorphism if

(1) itis a morphism in Sup (i.e., a join preserving map),

(2) h(1) =1,and

(3) preserves disjoint pairs —i.e.,ifa Ab = Oin L then h(a) A h(b) = O.
Furthermore, they say a frame L has property (W) when

(W) Every weak homomorphism h: L — M is a frame homomorphism.
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More on strong Hausdorffness

Theorem [Banaschewski-Pultr, 2004)]
A locale L is strongly Hausdorff iff it satisfies Ty + (W).

The main part of the proof uses the following fundamental result:

Theorem [Joyal-Tierney, 1984]

The category Sup is symmetric monoidal closed (tensor product: ®).

If L and M are frames, its coproduct L & M is isomorphic to L @ M.
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More on F-separatedness: a dual counterpart

A preframe is a poset with directed joins and finite meets and such that
directed joins distribute over finite meets.

A preframe homomorphism is a function which preserves directed joins
and finite meets.

Theorem [Johnstone-Vickers, 1991]

The category PreFrm is symmetric monoidal closed (tensor product: ).

If L and M are frames, its coproduct L & M is isomorphic to LM.

Can we use this in order to obtain a “dual” characterization for
F-separatedness?
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The idea: almost homomorphisms

A mapping h: L — M between frames is an almost homomorphism if

(1) itis a morphism in PreFrm,

(2) h(O0) =0,and

(3) preserves covers —i.e., if C C Lissuch that\/C = 1,then \/ h[C] = 1.
We then say that a frame L satisfies property (A) whenever

(A) Every almost homomorphism h: L — M is a frame homomorphism.



JF-separatedness: a dual counterpart

Theorem.
A locale L is F-separated iff it satisfies Ty + (A).

Sketch of proof:

e F-separated = Ty : \/
e F-separated = (A): hard part; uses the preframe tensor.

e Ty+(A) = F-separated: easy.
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