A new diagonal separation property in the category of locales

Jorge Picado, Univ. Coimbra, PORTUGAL

- joint work with Igor Arrieta (Bilbao) and Aleš Pultr (Prague)

 $\int_{a}^{b} f(z) dz = 0$

Centro de Matemática Universidade de Coimbra

General categorical phenomena [Clementino, Giuli and Tholen, 2004]

- \mathcal{C} : a category with finite products
- \mathcal{P} : a property of subobjects

 $X \in \text{Obj}(\mathcal{C})$ is \mathcal{P} -separated if the diagonal $\Delta_X : X \rightarrow X \times X$ has property \mathcal{P} .

General categorical phenomena [Clementino, Giuli and Tholen, 2004]

- $\ensuremath{\mathcal{C}}$: a category with finite products
- \mathcal{P} : a property of subobjects

 $X \in \operatorname{Obj}(\mathcal{C})$ is \mathcal{P} -separated if the diagonal $\Delta_X : X \rightarrow X \times X$ has property \mathcal{P} .

Proposition [CGT, 2004]

Let \mathcal{P} be stable under pullbacks. Then: (1) $X \rightarrow Y$ is a monomorphism Y is \mathcal{P} -separated (2) $f,g: X \rightarrow Y \in Mor(\mathcal{C})$ Y is \mathcal{P} -separated $Eq(f,g) \rightarrow X$ has property \mathcal{P} . Pullback stable properties in *Loc*:

closed sublocales, open sublocales, complemented sublocales, locally closed sublocales (= closed \cap open) fitted sublocales (= intersections of open sublocales), ...

Pullback stable properties in *Loc*:

closed sublocales, open sublocales, complemented sublocales, locally closed sublocales (= closed \cap open) fitted sublocales (= intersections of open sublocales), ...

$CLASS\mathcal{P}$	PROPERTY	PROPERTY	REFERENCES
	in <i>Top</i>	in <i>Loc</i>	in <i>Loc</i>
Closed	Hausdorff	Strongly Hausdorff	Isbell 1972
Open	Discrete	Complete and atomic Boolean algebras	Joyal & Tierney 1984
Locally	Locally	Locally strongly	Niefield 1983
closed	Hausdorff	Hausdorff	

Pullback stable properties in *Loc*:

closed sublocales, open sublocales, complemented sublocales, locally closed sublocales (= closed \cap open) fitted sublocales (= intersections of open sublocales), ...

$CLASS\mathcal{P}$	Property in <i>Top</i>	PROPERTY in <i>Loc</i>	REFERENCES in <i>Loc</i>
Closed	Hausdorff	Strongly Hausdorff	Isbell 1972
Open	Discrete	Complete and atomic Boolean algebras	Joyal & Tierney 1984
Locally closed	Locally Hausdorff	Locally strongly Hausdorff	Niefield 1983
Fitted	T ₁ -spaces	$\mathcal{F} extsf{-separated}$	Arrieta, P. & Pultr 2022

I. Arrieta, JP, A. Pultr

A new diagonal separation and its relations with the Hausdorff property Applied Categorical Structures, 2022.

AIM: to study \mathcal{F} -separatedness in parallel with the strong Hausdorff axiom

I. Arrieta, JP, A. Pultr

A new diagonal separation and its relations with the Hausdorff property Applied Categorical Structures, 2022.

AIM: to study \mathcal{F} -separatedness in parallel with the strong Hausdorff axiom

By the general categorical results, we have:

(1) If $L \rightarrow M$ is a mono in *Loc* and *M* is strongly Hausdorff \mathcal{F} -separated, then so is *L*. • Monomorphisms in *Loc* are fairly wild, so this tells us more than simply heredity!

(2) A locale *M* is
$$\begin{vmatrix} \text{strongly Hausdorff} \\ \mathcal{F}\text{-separated} \end{vmatrix}$$
 iff all $Eq(f,g) \rightarrow M$ are $\begin{vmatrix} \text{closed} \\ \text{fitted} \end{vmatrix}$

(h, k) respects disjoint pairs

 $a \wedge b = 0 \Rightarrow h(a) \wedge k(b) = 0$

(h, k) respects disjoint pairs

 $a \wedge b = 0 \Rightarrow h(a) \wedge k(b) = 0$

(h, k) bounded above $\Rightarrow h = k$

L is

(h,k) bounded above $\Rightarrow h = k$

(h, k) respects covers $\Rightarrow h = k$

 \mathcal{F} -sep

SAMS 2022: Stellenbosch

A new diagonal separation property in Loc

[Arrieta-P-Pultr 2022]

(h, k) bounded above $\Rightarrow h = k$

 \mathcal{F} -sep

[Arrieta-P-Pultr 2022]

[Banaschewski & Pultr, On weak lattice and frame homomorphisms, 2004]:

A mapping $h: L \rightarrow M$ between frames is a weak homomorphism if

(1) it is a morphism in *Sup* (i.e., a join preserving map),

[Banaschewski & Pultr, On weak lattice and frame homomorphisms, 2004]:

A mapping $h: L \rightarrow M$ between frames is a weak homomorphism if

- (1) it is a morphism in *Sup* (i.e., a join preserving map),
- (2) h(1) = 1, and

[Banaschewski & Pultr, On weak lattice and frame homomorphisms, 2004]:

A mapping $h: L \rightarrow M$ between frames is a weak homomorphism if

- (1) it is a morphism in *Sup* (i.e., a join preserving map),
- (2) h(1) = 1, and
- (3) preserves disjoint pairs i.e., if $a \wedge b = 0$ in L then $h(a) \wedge h(b) = 0$.

[Banaschewski & Pultr, On weak lattice and frame homomorphisms, 2004]:

A mapping $h: L \rightarrow M$ between frames is a weak homomorphism if

- (1) it is a morphism in *Sup* (i.e., a join preserving map),
- (2) h(1) = 1, and
- (3) preserves disjoint pairs i.e., if $a \wedge b = 0$ in L then $h(a) \wedge h(b) = 0$.

Furthermore, they say a frame L has property (W) when

(W) Every weak homomorphism $h: L \rightarrow M$ is a frame homomorphism.

Theorem [Banaschewski-Pultr, 2004)]

A locale *L* is strongly Hausdorff iff it satisfies T_U + (W).

Theorem [Banaschewski-Pultr, 2004)]

A locale *L* is strongly Hausdorff iff it satisfies T_U + (W).

The main part of the proof uses the following fundamental result:

Theorem [Joyal-Tierney, 1984]

The category Sup is symmetric monoidal closed (tensor product: \otimes).

If *L* and *M* are frames, its coproduct $L \oplus M$ is isomorphic to $L \otimes M$.

A preframe is a poset with directed joins and finite meets and such that directed joins distribute over finite meets.

A preframe is a poset with directed joins and finite meets and such that directed joins distribute over finite meets.

A preframe homomorphism is a function which preserves directed joins and finite meets.

Theorem [Johnstone-Vickers, 1991]

The category **PreFrm** is symmetric monoidal closed (tensor product: ?).

If L and M are frames, its coproduct $L \oplus M$ is isomorphic to L $\mathcal{B}M$.

A preframe is a poset with directed joins and finite meets and such that directed joins distribute over finite meets.

A preframe homomorphism is a function which preserves directed joins and finite meets.

Theorem [Johnstone-Vickers, 1991]

The category **PreFrm** is symmetric monoidal closed (tensor product: \Im). If *L* and *M* are frames, its coproduct $L \oplus M$ is isomorphic to $L\Im M$.

Can we use this in order to obtain a "dual" characterization for $\mathcal{F}\text{-separatedness}?$

(1) it is a morphism in *PreFrm*,

- (1) it is a morphism in *PreFrm*,
- (2) h(0) = 0, and

- (1) it is a morphism in *PreFrm*,
- (2) h(0) = 0, and
- (3) preserves covers i.e., if $C \subseteq L$ is such that $\bigvee C = 1$, then $\bigvee h[C] = 1$.

- (1) it is a morphism in *PreFrm*,
- (2) h(0) = 0, and
- (3) preserves covers i.e., if $C \subseteq L$ is such that $\bigvee C = 1$, then $\bigvee h[C] = 1$.

We then say that a frame L satisfies property (A) whenever

(A) Every almost homomorphism $h: L \rightarrow M$ is a frame homomorphism.

Theorem.

A locale *L* is \mathcal{F} -separated iff it satisfies T_U + (A).

Sketch of proof:

- \mathcal{F} -separated $\Rightarrow T_U: \checkmark$
- \mathcal{F} -separated \Rightarrow (A) : hard part; uses the preframe tensor.
- T_U + (A) $\Rightarrow \mathcal{F}$ -separated : easy.

References

I. Arrieta, JP, A. Pultr

A new diagonal separation and its relations with the Hausdorff property Applied Categorical Structures, 2022.

- B. Banaschewski, A. Pultr
 On weak lattice and frame homomorphisms Algebra Universalis, 2004.
- M.M. Clementino, E. Giuli, W. Tholen A functional approach to general topology In: *Categorical Foundations*, Chapter 3 Cambridge Univ. Press, 2004.

Jorge Picado Aleš Pultr

Separation in Point-Free Topology

🕅 Birkhäuser

2021