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Amapf: X — Y is continuous
iff f~1[U] is open for every open U  (O)
iff f~1[A] is closed for every closed A (C)

» Does (C) & (O) characterize localic
maps among plain maps of locales?

iff (f7,f<) is a Galois adjoint pair.

f~1[B] « B

» AIM: to examine this in the pointfree setting.
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LOCALIC MAPS

Frame homomorphisms h: M — L preserve arbitrary joins HENCE have
uniquely defined right adjoints f = h,.: L — M.

We use them for a concrete representation of the morphisms of

Loc = Frm°P.

e OBJECTS: locales = frames = cHa anV,;bi=\V;(anb)
o MORPHISMS: an(=)4a—=(-)

L
f*(V 8) =V [S] f* e f(AS) = Af[S]

ninl;

f*(anb) =f*(a) Af*(b) o f(f*(a) - b) = a — f(b)

M (Frobenius)
(1) =1 ef(a)=1=a=1

(codense)
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BACKGROUND: Sublocales

Alocale S C L is a SUBLOCALE of L if

the embedding js: S — L is a localic map.
This is equivalent to:
(S1) S'is closed under A

(S2)Vael,Vse€S,a—seS (—-ideal)

Localic structure of S:

Ns =N\, —s=—1, however | |;si=A{s€S|V,;s <s}.
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BACKGROUND: the fundamental picture

frame L localic S(L)
hom. map
fl 4 f fI=1{ - |f=l-]
M S(M)
colocalic map coframe homomorphism

preserves (—)¢
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INTERNEZZO: the Hoytingoperator
2~ (Nb) = ().
a<b—ciffb<a—ec.

(Va)—b=A(a —b).

a—b=a—(anb).

aN(a—b)=anb.

aNb=anciffa—-b=a—c.

(@anb) »c=a—(b—c)=b— (a—c).
a=(aVvb)A(b— a).

a<(a—b)—b.

00000000006

((@a—=b)—b)—b=a—b.
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(©) file(a)] = F[al= c(f*(a)).
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» QUESTION: Does conditions (C) & (O) characterize localic maps
among plain maps of locales?
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f_1[S] versus f~'[S]

The fact that for closed sublocales the set and localic preimages coincide
is an exception!

For other sublocales they differ:

PROPOSITION

Let S be a sublocale of M that is not closed. Then there is a localic map
f: L — M such that f_4[S] # f~'[S].

More specifically: one has f_1[S] # f~1[S] for any f adjoint to a frame
embedding h: M — L such that h[M] is contained in the Boolean part of L.

COROLLARY
Let S be a sublocale of M. Then

f_1[S] = f~'[S] for all localic maps f: L — M

if and only if S is closed.
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MAIN QUESTION: first observations

(2) MEET-PRESERVING MAPS
locales L, M, order-preserving f: L — M

meet-preserving maps = f: L — M such that

(f7,f<) is a Galois adjoint pair.

c(a) — f[c(a)

—

(L) 1L M) For any subset S C L,

NS S ={c(a) € <L) | S C e(a)}

F=1[e()] = (b)

)
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ltis in f~1[0] = 0.



MAIN QUESTION: the characterisations

THEOREM 1

A map f: L — M between locales is a localic map iff f~'[0] = 0,

f~1[A] is closed for every closed A, and f~'[U] D f~'[U°]€ for every open U.

Proof (sketch): A=cb) b2 a

<: We already know that f is a right adjoint to ¢. L

Hence we have to prove that: ¢ <_| ) f
M

ef(a)=1 = a=1.
ltis in f~1[0] = 0.
e Frobenius condition: f(¢(a) — x) = a — f(x).
This is the technical hard part!... |
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MAIN QUESTION: the characterisations

THEOREM 1

A map f: L — M between locales is a localic map iff f~1[0] = 0,

f~1[A] is closed for every closed A, and f~'[U] D f~'[U°]° for every open U.

4
f preserves A\ >

f_1[—] makes sense

Hence we can formulate the theorem as follows:
A map f: L — M between locales is a localic map iff
f~1[A] is closed for every closed A, and f_{[U] = f~1[U°]° for every open U.

(and hence it is open)
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A MORE SYMMETRIC VERSION (for order-preserving maps)

Letf: L — M be a map between locales, with property

Vclosed A C M 3 largest closed sublocaIeJL Cf AL (%)
c(a) ¢(b) (unique b)

ai>b

¢(a)is the smallesty € Lwith 1y C f~'[ta], i.e. ¢p(a) <y = a < f(y).

| Lemma. ¢ is order-preserving, 1 < f¢, and ¢f < 1 iff f is order-preserving |




A MORE SYMMETRIC VERSION (for order-preserving maps)

Letf: L — M be a map between locales, with property

Vclosed A C M 3 largest closed sublocaled Cf AL (%)
c(a) ¢(b) (unique b)

Then, one gets a version in which also the condition on preimages of
closed sets is relaxed:

THEOREM 2

An order-preserving map f: L — M between locales is a localic map iff

— for every closed A, there exists a largest closed sublocale A’ C f1 [A], and

— for every open U, ((U°)')¢ C f~1[U]. (now: cannot speak of f_{[—])
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MORE RESULTS: OPEN localic maps

A localicmap f: L — M is open if f[o(a)] is an open sublocale for every a.

THEOREM 3

An order-preserving map f: L — M between locales is an OPEN localic

map iff for every sublocale T C M, f_{[T°] = f_4[T]°.

= VT, f4[T]=f4[T] (%
£ BM)=b0)={a—0=a"|aeM}—>M

is rarely open but satisfies (x) [in a BoolAlg every T is closed]

Johnstone (2006):

(*) defines hereditary skeletal maps

(x) = OPEN, if f[L] is a complemented sublocale.
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e new proof of Joyal-Tierney Theorem that OPEN=CHeyt.

A localic map f: L — M is open if and only if
f* is a complete Heyting homomorphism.
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MORE RESULTS: OPEN localic maps

e new proof of Joyal-Tierney Theorem that OPEN=CHeyt.

A localic map f: L — M is open if and only if
f* is a complete Heyting homomorphism.
dfh A Af f*(b —c) =f*(b) — f*(c)
(biadjoint morphism) < fi(f*(b) Na) =bAfi(a)
< f(a—f*(c)) =fi(a) = c

(Frobenius identities)
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MORE results: BIADJOINT morphisms

e Completeness without Heyting (i.e. just biadjoint)

THEOREM 4

The left adjoint of a localic map f: L — M is complete (= biadjoint) iff for
every open U C L there is a unique minimal open V C M such that
flU] C V.

(quasi-open localic maps)

= flo(u)] Co(v) & o(u) Cf q[o(v)] & o(u) C o(f*(v)) & u < f*(v)
& fi(u) < v & o(f(u))C o(v).

Hence o(fi(u)) is the minimal such open.
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The general setting

Implicative semilattices [ A-semilattices with top 1
(Heyting) Aa = a A (=) have right adjoints a; = a — (—)
morphisms: residuated maps (=left adjoints) + preserve finite A
e |eft adjoints A e right adjoints
(= preserve existing \/) (= preserve existing /\)
e preserve (—) A (—) h<‘_|\>f e f(h(b) — a) = b — f(a)
e preserve 1 B ef~'0] =0 0={1}

r-morphisms I-morphisms (localizations)

» One may not only regard the I-morphisms as abstract continuous maps
in a (not necessarily complete) pointfree setting, but may also characterize
them by concrete closure-theoretical continuity properties.

» These concepts provide generalizations of continuous and open maps
between spaces to an algebraic (not necessarily complete) pointfree setting.



The general setting

CATEGORIES CATEGORIES

implicative semilattices implicative semilattices

& <~ &
dual .
implicative biadjoint maps open I-morphisms
implicative semilattices implicative semilattices
& S S &
dual

biadjoint maps quasi-open I-morphisms
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