

P. Antunes, C. Laurent-Gengoux and J.M. Nunes da Costa

Universidade de Coimbra, Portugal

Abstract

We introduce a notion of compatible tensors on Courant algebroids and construct several hierarchies of pairs of compatible tensors. Among other examples the Poisson-Nijenhuis hierarchy is included.

1. Tensors on Courant algebroids

A *Courant algebroid* structure on a vector bundle *E* equipped with a fiberwise symmetric bilinear form $\langle ., . \rangle$ is a pair $(\rho, [., .])$, where the *anchor* ρ is a bundle map from E to TM and the Dorfman bracket [.,.] is a Leibniz bracket (i.e., a \mathbb{R} -bilinear non necessarily skew-symmetric bracket) on $\Gamma(E)$ satisfying the relations

$$\begin{split} \rho(X) \cdot \langle Y, Z \rangle &= \langle [X, Y], Z \rangle + \langle Y, [X, Z] \rangle \\ \langle Z, [X, Y] + [Y, X] \rangle &= \rho(Z) \cdot \langle X, Y \rangle \\ [X, [Y, Z]] &= [[X, Y], Z] + [Y, [X, Z]], \\ &\in \Gamma(E) \text{ and } f \in C^{\infty}(M). \end{split}$$

for all $X, Y, Z \in \Gamma(E)$ and $f \in C^{\infty}(M)$.

Given a Courant algebroid structure on $(E, \langle ., . \rangle)$, there is a unique and natural manner to construct a (sheaf of) graded commutative algebra \mathcal{F}_E and to endow it with a graded Poisson bracket, i.e. a bilinear map: $\{\cdot,\cdot\}: \mathcal{F}_E^k \times \mathcal{F}_E^k \mapsto \mathcal{F}_E^{k+l-2},$

which is a (graded) derivation in each variable and satisfies the graded Jacobi identity. Recall that, locally, this algebra is generated by the coordinates on the base manifold (x_1, \ldots, x_n) (of degree 2), a trivialization $u_1, \ldots, u_{rk(E)}$ of E (thought as variables of degree 1), and variables p_1, \ldots, p_n (of degree 2), and the relations:

$$\{x_i, p_j\} = \delta_i^j, \quad \{u_i, u_j\} = \langle u_i, u_j \rangle,$$

while all the other brackets are 0.

THEOREM 1.1. There is a 1-1 correspondence between Courant algebroid structures on $(E, \langle ., . \rangle)$ and functions $\Theta \in \mathcal{F}_E^3$ such that $\{\Theta, \Theta\} = 0.$

More precisely, the anchor and the Dorfman bracket associated to a given Θ are defined, for all $X, Y \in \Gamma(E)$ and $f \in C^{\infty}(M)$, by $\rho(X) \cdot f = \{\{X, \Theta\}, f\}$ and $[X, Y] = \{\{X, \Theta\}, Y\}.$

A (1,1)-tensor $J : E \to E$ such that $\langle JX, Y \rangle + \langle X, JY \rangle = 0$, for all $X, Y \in \Gamma(E)$, is said skew-symmetric.

When $E = A \oplus A^*$ and $\langle ., . \rangle$ is the usual symmetric bilinear form, a skew-symmetric (1, 1)-tensor $J : E \to E$ is of the type

$$J = \begin{pmatrix} N & \pi^{\sharp} \\ \omega^{\flat} & -N^* \end{pmatrix}, \text{ with } N : A \to A, \pi \in \Gamma(\bigwedge^2 A) \text{ and } \omega \in \Gamma(\bigwedge^2 A^*).$$

The deformation of the Dorfman bracket [., .] by a (1, 1)-tensor $J : E \to E$ is defined, for all $X, Y \in \Gamma(E)$, by

$$[X, Y]_J = [JX, Y] + [X, JY] - J[X, Y].$$

When the (1,1)-tensor $J: E \to E$ is skew-symmetric, the deformed bracket $[.,.]_{I}$ is given, in supergeometric terms, by $\{J,\Theta\} \in \mathcal{F}_{E}^{3}$.

Notation:
$$\Theta_J = \{J, \Theta\}; \quad \Theta_{J,I} = \{I, \{J, \Theta\}\}; \quad \Theta_n = \Theta_{\underbrace{I, \dots, I}}_{n}.$$

The torsion of J is defined, for all $X, Y \in \Gamma(E)$, by $\mathcal{T}_{\Theta}J(X,Y) = [JX,JY] - J([X,Y]_J).$

A (1,1)-tensor $J : E \to E$ is a Nijenhuis tensor on the Courant algebroid (E, Θ) if its torsion vanishes. As it is well known if J is a Nijenhuis tensor then the deformed function Θ_{I} is a Courant structure.

Compatibility on Courant algebroids

DEFINITION 1.2. Two skew-symmetric (1,1)-tensors I and J are compatible with respect to Θ if

• *they anticommute, i.e.,* $I \circ J = -J \circ I$

• their concomitant, $C_{\Theta}(I, J) = \Theta_{IJ} + \Theta_{IJ}$, vanishes.

When I and J are compatible with respect to Θ , we have the following commutative diagram

2. Deforming-Nijenhuis pairs

Poisson-Nijenhuis structures admit the following generalization:

DEFINITION 2.1. Let I and J be two skew-symmetric (1, 1)-tensors on the Courant algebroid (E,Θ) . The pair (J,I) is said to be a deforming-Nijenhuis pair for Θ if

• I and J are compatible w.r.t. Θ ;

• I is Nijenhuis for Θ ;

• J is deforming for Θ , i.e, $\Theta_{J,J} = \lambda \Theta$, $\lambda \in \mathbb{R}$.

EXAMPLE 2.2. When $\Theta = \mu$ is a Lie algebroid on A and $\lambda = 0$, we recover the notion of Poisson-Nijenhuis structure on A.

2.1 Deforming-Nijenhuis pair for the Θ_n hierarchy

Starting from a Nijenhuis tensor I for the Courant algebroid (E, Θ) , we construct a hierarchy of Courant structures Θ_n , and we show that, under some conditions, if (J, I) is a deforming-Nijenhuis pair for Θ , it remains a deforming-Nijenhuis pair for the whole hierarchy.

LEMMA 2.3. Let I be a skew-symmetric (1,1)-tensor on the Courant algebroid (E, Θ) and X, Y sections of E. Then, $\forall n \in \mathbb{N}$,

 $\mathcal{T}_{\Theta_n}I(X,Y) = \mathcal{T}_{\Theta_{n-1}}I(IX,Y) + \mathcal{T}_{\Theta_{n-1}}I(X,IY) - I(\mathcal{T}_{\Theta_{n-1}}I(X,Y)).$

The proposition below follows easily from the lemma.

PROPOSITION 2.4. Let I be a Nijenhuis tensor for the Courant algebroid (E, Θ) . Then, for all $n \in \mathbb{N}_0$, Θ_n is a Courant algebroid structure on E and I is Nijenhuis for Θ_n .

It makes therefore sense to ask if a deforming-Nijenhuis pair for Θ remains deforming-Nijenhuis for all the Courant structures of the hierarchy.

THEOREM 2.5. Let I and J be two skew-symmetric tensors on the Courant algebroid (E, Θ) . If (J, I) is a deforming-Nijenhuis pair for Θ such that $\{\Theta, \{J, I \circ J\}\} = k\Theta_I$, for some $k \in \mathbb{R}$, then (J, I) is a deforming-Nijenhuis pair for the Courant structures Θ_n , $n \in \mathbb{N}$.

2.2 Hierarchy of deforming-Nijenhuis pairs for Θ

Starting with a deforming-Nijenhuis pair (J, I) for Θ , our aim is to construct a hierarchy $(J, I^{2n+1})_{n \in \mathbb{N}}$ of deforming-Nijenhuis pairs for Θ . This goes as follows:

THEOREM 2.6. Let I and J be two skew-symmetric tensors on the Courant algebroid (E, Θ) . If (J, I) is a deforming-Nijenhuis pair for Θ , then (J, I^{2n+1}) is, for all $n \in \mathbb{N}$, a deforming-Nijenhuis pair for the *Courant structure* Θ *.*

The theorem is an immediate consequence of two technical lemmas: **LEMMA 2.7.** Let I be a (1, 1)-tensor on the Courant algebroid (E, Θ) . Then, for $n \ge 2$ we have, for all sections X and Y on E,

LEMMA 2.8. If I is Nijenhuis and is compatible with J w.r.t. Θ , then $C_{\Theta}(I^{2n+1}, J) = 0$ for all $n \in \mathbb{N}$.

We introduce the notion of Poisson tensor for a Courant algebroid (E, Θ) and then show that, in the presence of a compatible Nijenhuis tensor I, a Poisson tensor J induces a hierarchy of Poisson tensors $I^n \circ J$ (indeed, we show that $(I^n \circ J, I)_{n \in \mathbb{N}}$ is a hierarchy of Poisson-Nijenhuis pairs).

DEFINITION 2.12. Let I and J be two skew-symmetric (1, 1)-tensors on a Courant algebroid (E,Θ) . The pair (J,I) is said to be a **Poisson-Nijenhuis pair** for Θ if

COROLLARY 2.14. Let (J, I) be a Poisson-Nijenhuis pair on (E, Θ) such that $\{\Theta, \{J, I \circ J\}\} = 0$. Then $(I^n \circ J, I)_{n \in \mathbb{N}}$ is a hierarchy of *Poisson-Nijenhuis pairs for* (E, Θ) *.*

THEOREM 3.3. If (I, J) is a Nijenhuis pair for Θ , then

 $i=1,\ldots,p;$

 $\mathcal{T}_{\Theta}I^{n}(X,Y) = \mathcal{T}_{\Theta}I(I^{n-1}X,I^{n-1}Y) + I(\mathcal{T}_{\Theta}I^{n-1}(IX,Y))$ + $\mathcal{T}_{\Theta}I^{n-1}(X, IY)) - I^2(\mathcal{T}_{\Theta}I^{n-2}(IX, IY)) + I^{2n-2}(\mathcal{T}_{\Theta}I(X, Y)).$

2.3 Hierarchy of Poisson-Nijenhuis pairs for Θ

DEFINITION 2.9. A skew-symmetric (1, 1)-tensor J on a Courant algebroid (E, Θ) satisfying $\Theta_{J,J} = 0$ is said to be a Poisson tensor for Θ . **EXAMPLE 2.10.** When $\Theta = \mu$ is a Lie algebroid on A, we recover the notion of Poisson bivector on A:

 $\Theta_{\pi,\pi} = 0 \Leftrightarrow \{\pi, \{\pi, \mu\}\} = 0 \Leftrightarrow [\pi, \pi]_{\mu} = 0.$

THEOREM 2.11. Let I and J be two skew-symmetric (1, 1)-tensors on a Courant algebroid (E, Θ) , such that I and J are compatible w.r.t. Θ and $\mathcal{T}_{\Theta}I(JX,Y) = \mathcal{T}_{\Theta}I(X,JY) = 0$, for all sections X and Y on E. If J is a Poisson tensor for Θ and $\{\Theta, \{J, I \circ J\}\} = 0$, then $I^n \circ J$ is also a Poisson tensor for Θ , for all $n \in \mathbb{N}$.

• I and J are compatible w.r.t. Θ ; • I is Nijenhuis and J is Poisson.

PROPOSITION 2.13. *Let I and J be two skew-symmetric* (1, 1)*-tensors* on (E,Θ) that are compatible with respect to Θ and such that $\mathcal{T}_{\Theta}I(JX,Y) = \mathcal{T}_{\Theta}I(X,JY) = 0$, for all sections X and Y of E, then $C_{\Theta}(I, I^n \circ J) = 0, \forall n \in \mathbb{N}_0.$

3. Hierarchies of Nijenhuis pairs

Beyond deforming-Nijenhuis pairs, there is an other generalization of usual Poisson-Nijenhuis structures that induces hierarchies:

DEFINITION 3.1. A pair (I, J) of Nijenhuis skew-symmetric (1, 1)tensors on a Courant algebroid (E, Θ) which are compatible w.r.t. Θ , is called a Nijenhuis pair for Θ .

EXAMPLE 3.2. Let (J, I) be a deforming-Nijenhuis pair. If $\Theta_{J,J} = \lambda \Theta$ and $J^2 = \lambda Id_E$, for some $\lambda \in \mathbb{R}$, then (J, I) is a Nijenhuis pair. In particular, if (J, I) is a Poisson-Nijenhuis pair, and $J^2 = 0$, then (J, I)is a Nijenhuis pair.

(a) $\Theta_{K_1,K_2,\ldots,K_p}$ is a Courant structure, where K_i is either I or J, for

(b) $(I^{2m+1}, J)_{m \in \mathbb{N}_0}$ is a hierarchy of Nijenhuis pairs for Θ or, more generally, for all the Courant structures of item (a);

 $(c) (I^{2m+1} \circ J^n, J)_{m,n \in \mathbb{N}_0}$ is a hierarchy of Nijenhuis pairs for Θ or, more generally, for all the Courant structures of item (a).

EXAMPLE 3.4. Given a Nijenhuis pair (I, J) s.t. $I^2 = J^2 = -Id_E$, the triple $(I, J, I \circ J)$ is a hypercomplex structure. Conversely, for every hypercomplex structure (I, J, K), the pairs (I, J), (J, K) and (K, I) are Nijenhuis pairs.

A word on proofs

of Proposition 2.13.

 $I(C_{\Theta}(I,J)(X,$

 $2\mathcal{T}_{\Theta}I(JX,Y) = 2([IJX,IY] - I[IJX,Y] - I[JX,IY] + I^{2}[JX,Y]),$ $2\mathcal{T}_{\Theta}I(X,JY) = 2([IX,IJY] - I[IX,JY] - I[X,IJY] + I^{2}[X,JY]).$ Summing up the right-hand sides of the three equations gives

$$\begin{split} &2([IX,IJY]-IJ[IX,Y]+[IJX,IY]\\ &-IJ[X,IY]-I[IJX,Y]-I[X,IJY])=C_{\Theta}(I,I\circ J)(X,Y), \end{split}$$

 $C_{\Theta}(I, I \circ J)(X,$

and the statement of Proposition 2.13 follows immediately.

Other results come from routine calculations using the supergeometric tools. As an example, the statement of Theorem 2.11 follows, for n = 1, from the formula

$$\begin{split} \Theta_{I \circ J, I \circ J} &= \frac{1}{9} \Theta_{J, J, I, I} - \frac{5}{9} \Theta_{\{J, I \circ J\}, I} - \frac{1}{2} \{I \circ J, C_{\Theta}(I, J)\} - \\ &- \frac{2}{9} \{I, \{J, C_{\Theta}(I, J)\}\} + \frac{1}{6} \{J, C_{\Theta_{I}}(I, J)\}, \end{split}$$

References

- [1] P. Antunes, Crochets de Poisson gradués et applications: structures compatibles et généralisations des structures hyperkählériennes, Thèse de doctorat de l'École Polytechnique, March 2010.
- [2] P. Antunes, C. Laurent-Gengoux, J.M. Nunes da Costa, Compatibilities and hierarchies on Courant algebroids, in preparation.
- [3] J. Grabowski, Courant-Nijenhuis tensors and generalized geometries, in Groups, geometry and physics, Monogr. Real Acad. Ci. Exact. Fís.- Quím. Nat. Zaragoza, 29, 2006, pp. 101-112.
- [4] Y. Kosmann-Schwarzbach, Nijenhuis structures on Courant alge*broids*, preprint arXiv:1102.1410.
- [5] Y. Kosmann-Schwarzbach, F. Magri, *Poisson-Nijenhuis structures*, Ann. Inst. H. Poincare Phys. Théor. 53, 1990, no. 1, 35-81.
- [6] D. Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids, in Quantization, Poisson brackets and beyond, T. Voronov, ed., Contemp. Math., **315**, 2002, pp. 169– 185.
- [7] M. Stiénon, *Hypercomplex structures on Courant algebroids*, C. R. Acad. Sci. Paris 347, 2009, pp. 545–550.

Several results in this work are based on direct computations involving the definitions of the Nijenhuis torsion of a (1, 1)-tensor or the concomitant of two (1, 1)-tensors. As an example we give the proof, for n = 1,

Proof. Using the definitions of $C_{\Theta}(I, J)$ and $\mathcal{T}_{\Theta}I$, and taking into account that I and J anti-commute, we have

$$\begin{split} Y)) &= 2I \left([JX, IY] - I[JX, Y] - J[X, IY] \\ &+ [IX, JY] - I[X, JY] - J[IX, Y] \right), \end{split}$$

where we used the fact that I and $I \circ J$ anticommute. Therefore,

$$Y) = I(C_{\Theta}(I, J)(X, Y)) + 2(\mathcal{T}_{\Theta}I(JX, Y) + \mathcal{T}_{\Theta}I(X, JY))$$

which is obtained by successive applications of the Jacobi identity of $\{., .\}$.