Universidad de La Laguna

On the local structure of coisotropic submanifolds of linear Poisson manifolds.*

Mònica Aymerich Valls joint work with J.C. Marrero [‡]

Universidad de La Laguna, Tenerife, Islas Canarias

Abstract For a Lie algebroid A, the A-tangent bundle to A^* , $\mathcal{T}^A A^*$, is a symplectic Lie algebroid over A^* and the linear Poisson structure on A^* may be described in terms of the symplectic section on $\mathcal{T}^A A^*$. We discuss the local nature of a certain type of Lagrangian Lie subalagebroids of $\mathcal{T}^A A^*$ over an affine subbundle C of A^* that turns out to be coisotropic. We expect that these results may be applied in Hamilton-Jacobi theory for Hamiltonian systems on linear Poisson manifolds.

1. Lie Algebroids and linear Poisson structures

Definition 1 [5] A Lie Algebroid is a triple $(\tau_A, [,], \rho)$ such that, $\tau_A : A \to M$ is a vector bundle, [,] is a Lie algebra structure on the space of sections $\Gamma(A)$ and $\rho : A \to TM$ is a morphism of vector bundles, the anchor map, that induces a Lie algebra homomorphism $\rho : \Gamma(A) \to \mathcal{X}(M)$ satisfying the compatibility condition:

$$[X_1, fX_2] = f[X_1, X_2] + \rho(X_1)(f)X_2 \text{ for } f \in \mathcal{C}^{\infty}(M), X_1, X_2 \in \Gamma(A)$$

It is possible to define a differential operator on A, $d^A : \Gamma(\Lambda^k A^*) \to \Gamma(\Lambda^{k+1} A^*)$ as follows

$$\begin{split} d^A \phi(X_0, \cdots, X_k) = & \sum_{i=0}^k (-1)^i \rho(X_i) (\phi(X_0, \cdots, \hat{X}_i, \cdots, X_k)) \\ &+ \sum_{i < j} (-1)^{i+j} \phi([X_i, X_j], X_0, \cdots, \hat{X}_i, \cdots, \hat{X}_j, \cdots, X_k) \end{split}$$

for $X_0, \dots X_k \in \Gamma(A)$ and $\phi \in \Gamma(\Lambda^k A^*)$. On the dual bundle of a Lie algebroid A^* we have a linear Poisson structure given by

 $\{\tilde{f},\tilde{g}\}=0, \qquad \qquad \{\tilde{f},\hat{X}\}=\widetilde{\rho(X)f}, \qquad \qquad \{\hat{X},\hat{Y}\}=-\widehat{[X,Y]}$

where $\tilde{f} = f \circ \tau_{A^*}$ for $f \in C^{\infty}(M)$, $\tau_{A^*} : A^* \to M$ is the dual bundle projection and \hat{X} is the linear function associated with $X \in \Gamma(A)$ (see [5]).

Definition 2 [5] Let $(\tau_A, [,]_A, \rho_A)$ be a Lie algebroid over M and N be a submanifold of M. A Lie subalgebroid of A over N is a vector subbundle B of A over N such that $\rho_B = \rho_{A|B} : B \to TN$ is well defined and given two sections $X, Y \in \Gamma(B)$ and two extensions $\tilde{X}, \tilde{Y} \in \Gamma(A)$ we have that $([\tilde{X}, \tilde{Y}]_A)_{|N} \in \Gamma(B)$.

A-tangent bundle of the dual bundle of a Lie algebroid

Let $(\tau_A, [,], \rho)$ be a Lie algebroid over M.

Definition 3 [3] The A-tangent bundle of A^* is the vector bundle over A^* given by

$$\mathcal{T}^A A^* = \bigcup_{\alpha \in A^*} T^A_\alpha A^* = \bigcup_{\alpha \in A^*} \{(a, v) \in A \times T_\alpha A^* \mid \rho(a) = T_\alpha \tau_{A^*}(v)\}$$

We denote by $\tau^1 : T^A A^* \to A$ and $\rho^1 : T^A A^* \to T A^*$ the projections on the first and the second factor.

A section $\eta \in \Gamma(\mathcal{T}^A A^*)$ is projectable if there exists a section $X \in \Gamma(A)$ and a vector field $\bar{X} \in \mathcal{X}(A^*)$, τ_{A^*} -projectable over $\rho(X)$ such that $\eta = (X \circ \tau_{A^*}, \bar{X})$. Given two projectable sections $(X, \bar{X}), (Y, \bar{Y}) \in \Gamma(\mathcal{T}^A A^*)$, we define

$$[(X, \bar{X}), (Y, \bar{Y})]_{\mathcal{T}^A A^*} = ([X, Y], [\bar{X}, \bar{Y}]).$$

Proposition 1 [3] $(\mathcal{T}^A A^*, [,]_{\mathcal{T}^A A^*}, \rho^1)$ is a Lie algebroid.

It is possible to define the Liouville section on $T^A A^*$ as the section λ given by

 $\lambda(\alpha)(X) = \alpha(\tau^1(X)), \quad \forall \alpha \in A^* \text{ and } X \in T^A A^*$

and then, introduce the 2-section Ω on $\mathcal{T}^A A^*$ as $\Omega = -d^{\mathcal{T}^A A^*} \lambda$.

Proposition 2 [3] Ω is a symplectic section on $\mathcal{T}^A A^*$, i.e, Ω is non-degenerate and $d\mathcal{T}^A A^* \Omega = 0$.

Let $f: A^* \to \mathbb{R}$ be a Hamiltonian function. Since Ω is non-degenrate we may define its Hamiltonian section \mathcal{H}_f by $i_{\mathcal{H}_i}\Omega = d^{\mathcal{T}A_i}f$ and one may prove that (see [3])

 $\{f, g\} = \Omega(\mathcal{H}_f, \mathcal{H}_g).$

Using that Ω is a symplectic section on $\mathcal{T}^A A^*$, we may consider Lagrangian vector subbundles and Lagrangian Lie subalgebroids of $\mathcal{T}^A A^*$.

Proposition 3 Let $(\tau_A, [,], \rho)$ be a Lie algebroid and L be a Lagrangian Lie subalgebroid of $\mathcal{T}^A A^*$ over C. Then, C is coisotropic in A^* .

We recall that a submanifold C of a Poisson manifold M with Poisson 2-vector Π is said to be coisotropic if $\Pi^{\#}(T^{0}C) \subset TC$ (see [6]).

 Coisotropic submanifolds of linear Poisson manifolds

Let $(\tau_A, [\![\,,\,]\!], \rho)$ be a Lie algebroid over M.

Local model of coisotropic affine subbundles in A^* .

 $C(B,\phi) = \left\{ \alpha \in A^* \mid \alpha_{|B(\tau_{A^*}(\alpha))} = \phi(\tau_{A^*}(\alpha)), \ \tau_{A^*}(\alpha) \in N \right\}$

where B is a Lie subalgebroid of A over N and $\phi \in \Gamma(B^*)$ is a 1-cocycle, i.e, $d^B \phi = 0$.

In particular, the annihilator B^0 of a Lie subalgebroid B of A is a coisotropic submanifold of A^* (see [7]).

Theorem 1 [1]Local structure of coisotropic affine subbundles of the dual bundle to a Lie Algebroid Let $(A, [,], \rho)$ be a Lie algebroid over M, N be a submanifold of M and B be a vector subbundle over N. If $C \hookrightarrow A^*$ is a coisotropic affine subbundle of A^* modelled over B^0 and $j: A^*_N \to B^*$ is the canonical projection, then for every $\xi \in C$ there exists an open neighbourhood V of ξ and a 1-cocycle $\phi \in \Gamma(B^*)$, $d^B\phi = 0$, such that V is an open set of $j^{-1}(\phi(N))$

Example: Coisotropic affine subbundles of an action Lie algebroid

Let $\tau_A: M \times \mathfrak{g} \to M$ be an action Lie algebroid associated with the left infinitesimal action $\Phi: \mathfrak{g} \to \mathcal{X}(M)$. Let N be a submanifold of M and \mathfrak{h} be a Lie subalgebra of \mathfrak{g} acting on $\mathcal{X}(N)$, then $\tau_B: B = N \times \mathfrak{h} \to N$ is an action Lie subalgebroid. Furthermore, if $\alpha \in \mathfrak{h}^*$ is a 1-cocycle for the Lie subalgebra \mathfrak{h} , then α induces a 1-cocycle of the Lie subalgebroid B. Thus, if $\tilde{\alpha} \in \mathfrak{g}^*$ is an extension of $\alpha \in \mathfrak{h}^*$, the coisotropic affine subbundle of $\mathcal{T}^A A^*$ associated with $N \times \mathfrak{h}$ and α is

 $C(N \times \mathfrak{h}, \alpha) = \left\{ (q, \tilde{\alpha} + \gamma) \in N \times \mathfrak{g}^* \mid \gamma \in \mathfrak{h}^0 \right\}.$

3. Lagrangian Lie subalgebroids of $T^{A}A^{*}$

Relations between coisotropic submanifolds of a Poisson manifold P and Lagrangian Lie subalgebroids of T^*P were discussed in [2]. Next, we consider the case when P is the dual bundle A^* of a Lie algebroid and we replace T^*P by the Lie algebroid \mathcal{T}^AA^* .

Let B be a Lie subalgebroid over $N, \phi \in \Gamma(B^*)$ be a 1-cocycle on B and denote by $C(B, \phi)$ the corresponding coisotropic affine submanifold of A^* .

Local model of a Lagrangian Lie subalgebroid L of $\mathcal{T}^A A^*$ over $C = C(B, \phi)$ satisfying $\tau^1(L) \subset B$ $L = \mathcal{T}^B C = \bigcup_{\alpha_q \in C} \left\{ (b_q, X_{\alpha_q}) \in B \times T_{\alpha_q} C \mid \rho_B(b_q) = T_{\alpha_q} \tau_{A^*|C}(X_{\alpha_q}) \right\}$

Theorem 2 [1] Let $(\tau_A, [,]_A, \rho_A)$ be a Lie algebroid over M. Let L be a Lagrangian Lie subalgebroid of $(\mathcal{T}^A A^*, \Omega)$ over a coisotropic affine subbundle $C(B, \phi)$ of A^* such that $\tau^1(L) \subset B$. Then, $L = \mathcal{T}^B C$ locally.

Example: Lagrangian Lie subalgebroids of an action Lie algebroid

If $(q, \mu) \in A^* = M \times \mathfrak{g}^*$ it follows that

 $\mathcal{T}^{A}_{(q,\mu)}A^{*} = \left\{ \left((q,\eta), (X_{q},\alpha) \right) \in M \times \mathfrak{g} \times T_{q}M \times \mathfrak{g}^{*} \mid \Phi(\eta)(q) = X_{q} \right\} \cong \mathfrak{g} \times \mathfrak{g}^{*}.$

Then, the A-tangent bundle to A^* may be identified with the trivial vector bundle $(M \times \mathfrak{g}^*) \times (\mathfrak{g} \times \mathfrak{g}^*) \to M \times \mathfrak{g}^*$. Under this identification the Lagrangian Lie subalgebroid associated with $C(N \times \mathfrak{h}, \alpha)$ is given by

 $\mathcal{T}^B C(N \times \mathfrak{h}, \alpha) = \left\{ \left((q, \tilde{\alpha} + \gamma), (\xi, \gamma') \right) \in (M \times \mathfrak{g}^*) \times (\mathfrak{g} \times \mathfrak{g}^*) \mid q \in N, \ \gamma \in \mathfrak{h}^0, \ \xi \in \mathfrak{h} \text{ and } \gamma' \in \mathfrak{h}^0 \right\}$

Future work

- Local description of an arbitrary coisotropic submanifold of A^* (see [1]).
- Local desription of Lagrangian Lie subalgebroids of T^AA* over an arbitrary coisotropic submanifold of A* (see [1]).
- Apply these results to develop a Hamilton-Jacobi theory for Hamiltonian systems on linear Poisson manifolds.

References

- M AYMERICH VALLS AND JC MARRERO, Lagrangian Lie subalgebroids of the canonical symplectic Lie algebroid, work in progres,
- [2] A S CATTANEO, On the integration of Poisson manifolds, Lie algebroids, and coisotropic submanifolds, Lett. Math. Phys. 67 (2004), no. 1, 33-48.
- [3] M DE LEÓN, JC MARRERO AND E MARTÍNEZ, Lagrangian submanifolds and dynamics on Lie algebroids, J. Phys. A: Math. Gen. 38 (2005), R241–R308.
- [4] P LIBERMANN AND CHM MARLE, Symplectic Geometry and Analytical Mechanics, Kluwer, Dordrecht, 1987.
- [5] K MACKENZIE, General Theory of Lie Groupoids and Lie Algebroids, London Mathematical Society Lecture Note Series 213, Cambridge University Press, 2005.
- [6] A WEINSTEIN, Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan, 40 1988, 705-727.
- [7] P XU, On Poisson grupoids, International Journal Math. 6 (1) 1995, 101-124.

*This work has been partially supported by MICINN (Spain) grants MTM2009-13383, MTM2009-08166-E and by Cajacanarias grant from Universidad de La Laguna. *maymeric@ull.es *icmarre@ull.es