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Abstract

The theory of Lie systems of differential equations has been shown to be very efficient
in dealing with many problems in physics and in mathematics. The usefulness of the
existence of additional geometric structures in the manifold where the Lie system
is defined, for instance Poisson structures, will be analysed and the theory will be
illustrated with several examples as the Smorodinsky–Winternitz oscillator and the
second-order Riccati equation
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Lie systems: an introduction

Lie or Lie–Scheffers systems = Non-autonomous systems of first-order differential
equations admitting a ...

Superposition rule: a function Φ : Rn(m+1) → R, x = Φ(x(1), . . . , x(m); k1, . . . , kn),

such that the general solution is

x(t) = Φ(x(1)(t), . . . , x(m)(t); k1, . . . , kn) ,

with {x(a)(t) | a = 1, . . . ,m} being a set of particular solutions of the system and
where k1, . . . , kn are real numbers.

They are a generalisation of linear superposition rules for homogeneous linear systems
for which m = n and x = Φ(x(1), . . . , x(n); k1, . . . , kn) = k1 x(1) + · · ·+ kn x(n) but

i) The number m may be different form the dimension n

ii) The function Φ is nonlinear in the more general case
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They appear quite often in many different branches of Science ranging from pure
mathematics to classical and quantum physics, control theory, economy, etc

One particular example is Riccati equation, of a fundamental importance in physics
(for instance factorization of second order differential operators, Darboux transfor-
mations and in general Supersymmetry in Quantum Mechanics) and mathematics

These systems are related with equations in Lie groups and in general connections in
fibre bundles

In the solution of such non-autonomous systems of first-order differential equations
we can use techniques imported form group theory, for instance Wei–Norman method,
and reduction techniques coming from the theory of connections

Recent generalisations have also been shown to be useful for dealing with other
systems of differential equations (e.g. Emden–Fowler equations, Abel equations)

The existence of additional compatible geometric structures, like symplectic or Pois-
son structures may be useful in the search for solutions

4



Dynamical evolution is described by systems of time-dependent first order differential
equations

dxi(t)

dt
= Xi(x, t) , i = 1, . . . , n.

Autonomous systems, given

dxi(t)

dt
= Xi(x) , i = 1, . . . , n.

can be considered as those determining the integral curves of a vector field in Rn

X(x) =

n∑
i=1

Xi(x)
∂

∂xi
.

The theory can be generalised to vector fields in a differentiable manifold M instead
of Rn, X ∈ X(M), all the above expressions being local coordinate expressions.

Similarly, from the geometrical viewpoint, the previous non-autonomous system de-
termines the integral curves of the time-dependent vector field

X(x, t) =

n∑
i=1

Xi(x, t)
∂

∂xi
,

i.e. X is a vector field along π : M×R→M , whereM is a n–dimensional manifold.
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We recall that a vector field along π is given by a map

TM

τ

��
M × R

X

::
:z

:z
:z

:z
:z

π // M

and it can be seen as given by a R-linear map X : F(M)→ F(M × R) such that

X(fg) = (π∗f)Xg + (π∗g)Xf.

Its coordinate expression is

X(x, t) =
n∑
i=1

Xi(x, t)
∂

∂xi
.

A curve inM×R, γ : R→M×R, is said to be an integral curve ofX if the restriction
of X onto γ coincides with the tangent vector to the curve π ◦ γ. Therefore, γ is an
integral curve of X if X ◦ γ = Tπ ◦ γ̇.
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The important point is that the vector fieldX along π can be seen as a one-parameter
family of vector fields,

Xt = {X(·, t) ∈ X(M) | t ∈ R}

and it defines at each point of M a linear subspace (its rank may be non constant),
i.e. it determines a ‘generalised’ distribution.
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Lie theorem

Theorem: Given a non-autonomous system of n first order differential equa-
tions

dxi

dt
= Xi(x1, . . . , xn, t), i = 1 . . . , n,

a necessary and sufficient condition for the existence of a function Φ : Rn(m+1) →
Rn, x = Φ(x(1), . . . , x(m); k1, . . . , kn)n, such that the general solution is

x(t) = Φ(x(1)(t), . . . , x(m)(t); k1, . . . , kn) ,

with {x(a)(t) | a = 1, . . . ,m} being a set of particular solutions of the system and
where k1, . . . , kn, are n arbitrary constants, is that the system can be written as

dxi

dt
= Z1(t)ξi1(x) + · · ·+ Zr(t)ξir(x), i = 1 . . . , n,

where Z1, . . . , Zr, are r functions depending only on t and ξiα, α = 1, . . . , r, are
functions of x = (x1, . . . , xn), such that the r vector fields in Rn given by

Xα ≡
n∑
i=1

ξiα(x1, . . . , xn)
∂

∂xi
, α = 1, . . . , r,
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close on a real finite-dimensional Lie algebra, i.e. the Xα are l.i. and there are
r3 real numbers, cαβ γ , such that

[Xα, Xβ ] =

r∑
γ=1

cαβ
γXγ .

The number r satisfies r ≤ mn.

The t-dependent vector field

X(t, x) =

n∑
i=1

Xi(t, x)
∂

∂xi

can be seen as a family of vector fields {Xt | t ∈ R}, one for each value of t.

Definition: The minimal Lie algebra of a given a t-dependent vector field X

over M is the smallest real Lie algebra, V X , containing the vector fields {Xt}t∈R,
namely V X = Lie({Xt}t∈R).

Definition: The vector field associated to a non-autonomous system X allows
us to define a generalised distribution DX : x ∈ M 7→ DXx ⊂ TM , where Dx =

{Yx | Y ∈ V X} ⊂ TxM , and X also gives rise to a generalised co-distribution
V : x ∈M 7→ Vx ⊂ T ∗M , where Vx = {ωx | ωx(Yx) = 0,∀Yx ∈ DXx }.
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Remark that the Lie–Scheffers theorem can be reformulated as follows:

Theorem: A system X admits a superposition rule if and only if the minimal
Lie algebra V X is finite-dimensional.

Definition: A function f : U ⊂ UX → R is a local first integral (or t-
independent constant of the motion) for a given t-dependent vector field X over
Rn if Xf = 0

Then f is a first integral if and only if df ∈ VX |U .

One can easily prove that:

Property. Given a t-dependent vector field X on a n-dimensional manifold
M and a point x ∈ UX where the rank of DX is equal to k, the associated
co-distribution VX admits, in a neighbourhood of x, a local basis of the form,
df1, . . . , dfn−k, where, f1, . . . , fn−k, is a family of fist integrals of X. Additionally,
the space IX |U of first-integrals of the system X over an open U of M , can be
put in the form

IX |U = {g ∈ C∞(U) | ∃F : U ⊂ Rn−k → R, g = F (f1, . . . , fn−k)}.
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There exist different procedures to derive superposition rules for Lie systems. We
can use a method based on the diagonal prolongation notion.

Definition: Given a t-dependent vector field X over M , its diagonal prolonga-
tion to Mm+1 is the t-dependent vector field X̃ over Mm+1 such that

��� X̃ projects onto X by the map pr : (x(0), . . . , x(m)) ∈ Mm+1 7→ x(0) ∈ M ,
that is, pr∗X̃ = X.

��� X̃ is invariant under permutation of the variables x(i) ↔ x(j), with i, j =

0, . . . ,m.

The procedure to determine superposition rules described is:

i) Take a basis X1, . . . , Xr of the Vessiot–Guldberg Lie algebra V associated with
the Lie system.

ii) Choose the minimum integer m such that the diagonal prolongations to Mm of
the elements of the previous basis are linearly independent at a generic point.
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ii) Obtain n common first-integrals for the diagonal prolongations, X̃1, . . . , X̃r, to
Mm+1 (for instance, by means of the method of characteristics).

iii) Obtain the expression of the variables of one of the spaces M only in terms of
the other variables of Mm+1 and the above mentioned n first-integrals.

The so obtained expressions give rise to a superposition rule in terms of any generic
family of m particular solutions and n constants corresponding to the possible values
of the derived first-integrals.
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Examples of Lie systems

A) Inhomogeneous linear systems:

For inhomogeneous systems,

dxi

dt
=

n∑
j=1

Ai j(t)x
j +Bi(t) , i = 1, . . . , n.

the time-dependent vector field is

X =

n∑
i=1

 n∑
j=1

Ai j(t)x
j +Bi(t)

 ∂

∂xi
,

which is a linear combination with t-dependent coefficients,

X =

n∑
i,j=1

Ai j(t)Yij +

n∑
i=1

Bi(t)Yi ,

of the n2 vector fields Yij = xj∂/∂xi and the n vector fields

Yi =
∂

∂xi
, i = 1, . . . , n .

13



Now, these last vector fields commute among themselves

[Yi, Yk] = 0 , ∀ i, k = 1, . . . , n ,

and
[Yij , Yk] = −δkj Yi , ∀ i, j, k = 1, . . . , n .

Therefore, as the set {Yi | i = 1, . . . , n} generates an Abelian ideal and {Yij |
i, j = 1, . . . , n} generates a Lie subalgebra, the Lie algebra generated by the vector
fields {Yij , Yk | i, j, k = 1, . . . , n} is a semidirect sum that is isomorphic to the
(n2 + n)-dimensional Lie algebra of the affine group.

In this case r = n2 + n and m = n+ 1 and the equality r = mn also follows.

B) The Riccati equation (n = 1)

dx(t)

dt
= a2(t)x2(t) + a1(t)x(t) + a0(t) .

Now m = r = 3 and the superposition principle comes from the relation

x− x1

x− x2
:
x3 − x1

x3 − x2
= k ,
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or in other words,

x(t) =
x1(t)(x3(t)− x2(t)) + k x2(t)(x1(t)− x3(t))

(x3(t)− x2(t)) + k (x1(t)− x3(t))
.

The value k =∞ must be accepted, otherwise we do not obtain the solution x2.

Here the superposition rule involves three different solutions, m = 3.

The vector fields Y (1), Y (2) and Y (3) are given by

Y (1) =
∂

∂x
, Y (2) = x

∂

∂x
, Y (3) = x2 ∂

∂x
,

that close on a three-dimensional real Lie algebra, i.e. r = 3, with defining relations

[Y (1), Y (2)] = Y (1) , [Y (1), Y (3)] = 2Y (2) , [Y (2), Y (3)] = Y (3) ,

i.e. the sl(2,R) algebra.

C) Lie–Scheffers systems on Lie groups

A prototypical example is when M is a Lie group G and the vector fields Xα in G
are either left–invariant or right–invariant as corresponding to the Lie algebra g of G
or the opposite algebra.
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Let us choose a basis {a1, . . . , ar} for the tangent space TeG at the neutral element
e ∈ G. If XR

α denotes the right invariant vector field in G such that XR
α (e) = aα,

the Lie–Scheffers system will be written

ġ(t) = −
r∑

α=1

bα(t)XR
α (g(t)) .

When applying (Rg(t)−1)∗g(t) to both sides of the equation we will obtain the differ-
ential equation on TeG

(Rg(t)−1)∗g(t)(ġ(t)) = −
r∑

α=1

bα(t)aα . (∗∗)

This equation is usually written with a slight abuse of notation:

(ġ g−1)(t) = −
r∑

α=1

bα(t)aα .

If ḡ(t) is a solution of (**) with initial condition ḡ(0) = e, the solution with initial
conditions g(0) = h is given by ḡ(t)h.
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Let H be a closed subgroup of G and consider the homogeneous space M = G/H.
Then, G can be seen as a principal bundle over G/H: (G, τ,G/H).

It is known that the right–invariant vector fields XR
α are τ -projectable and the τ -

related vector fields in M are the fundamental vector fields −Xα = −Xaα corre-
sponding to the natural left action of G on M .

τ∗gX
R
α (g) = −Xα(gH) ,

and we will have an associated Lie–Scheffers system on M :

X(x, t) =

r∑
α=1

bα(t)Xα(x) .

Therefore, a solution of this last system starting from x0 will be:

x(t) = Φ(g(t), x0) ,

with g(t) being a solution of (**).

The converse property is true: Given a Lie Scheffers system defined by complete
vector fields with associated Lie algebra g, we can see these as fundamental vector
fields relative to an action given by integrating the vector fields.
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The restriction to an orbit will provide a homogeneous space of the above type.

The choice of a point x0 in the homogeneous space allows us to identify the homo-
geneous space M with G/H, where H is the stability group of x0. Different choices
for x0 will lead to conjugate subgroups.

D) As another example consider the differential equation of an n-dimensional
Winternitz–Smorodinsky oscillator of the form ẋi = pi,

ṗi = −ω2(t)xi +
k

x3
i

,
i = 1, . . . , n.

which describes the integral curves of the t-dependent vector field on T∗Rn

Xt =

n∑
i=1

[
pi

∂

∂xi
+

(
−ω2(t)xi +

k

x3
i

)
∂

∂pi

]
,

which can be written as Xt = X2 + ω2(t)X1 with X1, X2 and X3 = −[X1, X2]

being given by

X1 = −
n∑
i=1

xi
∂

∂pi
, X2 =

n∑
i=1

(
pi

∂

∂xi
+

k

x3
i

∂

∂pi

)
, X3 =

n∑
i=1

1

2

(
xi

∂

∂xi
− pi

∂

∂pi

)
.
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Note that Xt is a Lie system, because X1, X2 and X3 close on a sl(2,R) algebra:

[X1, X2] = −2X3, [X1, X3] = −X1, [X2, X3] = X2.

Moreover, the preceding vector fields are Hamiltonian vector fields with respect to

the usual symplectic form ω0 =

n∑
i=1

dxi ∧ dpi with Hamiltonian functions

h1 =
1

2

n∑
i=1

x2
i , h2 =

1

2

n∑
i=1

(
p2
i +

k

x2
i

)
, h3 = frac12

n∑
i=1

xipi,

which obey that

{h1, h2} = 2h3, {h1, h3} = h1, {h2, h3} = −h2.

Consequently, every curve ht that takes values in the Lie algebra (W, {·, ·}) spanned
by h1, h2 and h3 gives rise to a Lie system which is Hamiltonian in T∗Rn with respect
to the symplectic structure ω0 in such a way that the t-dependent vector field is given
by

Xt = X2 + ω2(t)X1 = ω̂−1
0 (dh2 + ω2(t)dh1),

i.e. the Hamiltonian is ht = h2 + ω2(t)h1.

This suggests us to consider Lie systems admitting a similar Hamiltonian description.
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Lie systems admitting symplectic structures

An interesting case is when (M,Ω) is a symplectic manifold and the vector fields
arising in the expression of the t-dependent vector field describing a Lie system are
Hamiltonian vector fields closing on a real finite-dimensional Lie algebra.

These vector fields correspond to a symplectic action of the group G on (M,Ω).

The Hamiltonian functions of such vector fields, defined by i(Xα)Ω = dhα = −dfa,
do not close on the same Lie algebra when the Poisson bracket is considered, but we
can only say that

d
(
{fα, fβ} − f[aα,aβ ]

)
= 0 ,

and then they span a Lie algebra extension of the original one.

More explicitly, we first recall that:

0 // R // C∞(M)
−Ω̂−1◦d// XH(M,Ω) // 0

is an exact sequence of Lie algebras.
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A strongly symplectic action of a Lie group on (M,Ω) defines a Lie algebra mor-
phism X : g → XH(M,Ω), and choosing a Hamiltonian function ha for each
fundamental vector field Xa, i.e. i(Xa)Ω = dha we obtain a map from g to
C∞(M) and the property of −Ω̂−1 ◦ d being a Lie algebra homomorphism implies
that d

(
{fα, fβ} − f[aα,aβ ]

)
= 0, with hα = −fa . In fact,

d{fa, fb} = −Ω̂([Xa, Xb]) = −Ω̂(X[a,b]) = df[a,b]

and then {fa, fb}− f[a,b] is a constant function, giving rise to a skewsymmetric map
λ : g× g→ R,

λ(a, b) = {fa, fb} − f[a,b].

If we replace fa by a different f ′a = fa + r(a), the function λ becomes λ′(a, b) =

λ(a, b)−r([a, b]) and sometimes we can use this ambiguity to obtain a comomentum
map that is Lie algebra homomorphism, when there exists a linear map r : g → R
such that λ(a, b) = r([a, b]). The action is then said to be Hamiltonian

The important fact is that we can define a t-dependent Hamiltonian

ht =
∑
α

bα(t)hα,

with the functions hα = −fa closing a Lie algebra, in such a wat hat i(Xt)Ω = −dht.
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The situation in Quantum Mechanics is quite similar:

The Hilbert space H can be seen as a real manifold with a global chart. The tangent
space TφH at any point φ ∈ H can be identified with H itself: the isomorphism
associates ψ ∈ H with the vector ψ̇ ∈ TφH given by:

ψ̇f(φ) :=

(
d

dt
f(φ+ tψ)

)
|t=0

, ∀f ∈ C∞(H) .

It is endowed with a symplectic 2-form Ω:

Ωφ(ψ̇, ψ̇′) = 2 Imag 〈ψ̇|ψ̇′〉 .

A vector field is just a map A : H → H; therefore a linear operator A on H is a
special kind of vector field.

Given a smooth function a : H → R, its differential daφ at φ ∈ H is an element of
the (real) dual H′ given by:

〈daφ, ψ〉 :=

(
d

dt
a(φ+ tψ)

)
|t=0

.
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Actually, the skew-Hermitian linear operators in H define Hamiltonian vector fields,
the Hamiltonian function of −i A for a self-adjoint operator A being a(φ) =
1
2 〈φ,Aφ〉.

The Schrödinger equation plays the rôle of Hamilton equations because it determines
the integral curves of the vector field −iH.

Lie system theory applies when the t-dependent Hamiltonian can be written as a linear
combination with t-dependent coefficients of Hamiltonians Hi closing on, under the
commutator bracket, a real finite-dimensional Lie algebra.

Note however that this Lie algebra does not necessarily coincide with the correspond-
ing classical one, but it is a Lie algebra extension.
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An example: t-dependent linear potential

Let us consider the classical system described by a classical Hamiltonian

Hc =
p2

2m
+ f(t)x ,

and the corresponding quantum Hamiltonian

Hq =
P 2

2m
+ f(t)X ,

describing, for instance when f(t) = q E0 + q E cosωt, the motion of a particle of
electric charge q and mass m driven by a monochromatic electric field.

E0 is the strength of the constant confining electric field and E that of the time-
dependent electric field that drives the system with a frequency ω/2π.

We will study in parallel the classical and the quantum problem by reduction of both
problems to similar equations and using the Wei–Norman method to solve such an
equation. The only difference is that the Lie algebra arising in the quantum problem
is not the same one as in the classical one, but a central extension.

24



The classical Hamilton equations of motion are{
ẋ =

p

m
,

ṗ = −f(t) ,

and therefore, the motion is given by

x(t) = x0 +
p0 t

m
− 1

m

∫ t

0

dt′
∫ t′

0

f(t′′) dt′′ ,

p(t) = p0 −
∫ t

0

f(t′) dt′

The t-dependent vector field describing the time evolution is

X =
p

m

∂

∂x
− f(t)

∂

∂p
.

This vector field can be written as a linear combination

X =
1

m
X1 − f(t)X2 ,

with
X1 = p

∂

∂x
, X2 =

∂

∂p
,
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being vector fields closing on a 3-dimensional Lie algebra with

X3 =
∂

∂x
,

isomorphic to the Heisenberg algebra, namely,

[X1, X2] = −X3 , [X1, X3] = 0 , [X2, X3] = 0 .

The flow of these vector fields is given, respectively, by

φ1(t, (x0, p0)) = (x0 + p0 t, p0) ,
φ2(t, (x0, p0)) = (x0, p0 + t) ,
φ3(t, (x0, p0)) = (x0 + t, p0) .

X1, X2 and X3 are Hamiltonian vector fields w.r.t. the usual symplectic structure,
Ω = dx∧ dp, the corresponding Hamiltonian functions hi such that i(Xi)Ω = −dhi
being

h1 = −p
2

2
, h2 = x , h3 = −p ,

therefore
{h1, h2} = −h3 , {h1, h3} = 0 , {h2, h3} = −1 ,

which close on a four-dimensional Lie algebra with h4 = 1, that is, a central extension
of the previous one.
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If {a1, a2, a3} be a basis of the Lie algebra with non-vanishing defining relations
[a1, a2] = −a3, the corresponding equation in the group is

ġ g−1 = − 1

m
a1 + f(t) a2 .

Using the the Wei–Norman formula with the factorization g = exp(−u3 a3) exp(−u2 a2) exp(−u1 a1)

we will arrive to the system of differential equations

u̇1 =
1

m
, u̇2 = −f(t) , u̇3 − u̇1 u2 = 0 ,

together with the initial conditions

u1(0) = u2(0) = u3(0) = 0 ,

with solution

u1 =
t

m
, u2 = −

∫ t

0

f(t′) dt′ , u3 = − 1

m

∫ t

0

dt′
∫ t′

0

f(t′′) dt′′ .

Therefore the motion will be given by x
p
1

 =

 1 t
m − 1

m

∫ t
0
dt′
∫ t′

0
f(t′′) dt′′

0 1 −
∫ t

0
f(t′) dt′

0 0 1


 x0

p0

1

 .

27



We can recover the constants of motion

I1 = p(t) +

∫ t

0

f(t′) dt′ ,

I2 = x(t)− 1
m

(
p(t) +

∫ t

0

f(t′) dt′
)
t+ 1

m

∫ t

0

dt′
∫ t′

0

f(t′′) dt′′ ,

As far as the quantum problem is concerned, notice that the quantum Hamiltonian
Hq may be written as a sum

Hq =
1

m
H1 − f(t)H2 ,

with
H1 =

P 2

2
, H2 = −X .

Note that −iH1 and −iH2 close on a four-dimensional Lie algebra with −iH3 =

−i P , and −iH4 = i I, isomorphic to the above mentioned extension of the Heisen-
berg Lie algebra,

[−iH1,−iH2]=−iH3 , [−iH1,−iH3]=0 , [−iH2,−iH3]=−iH4 .
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The Schrödinger equation for the Hamiltonian Hq is like that of a Lie system. This
Hamiltonian is time–dependent and such systems are seldom studied, because it is
generally difficult to find the time evolution of such systems. However, this system is
a Lie system and therefore we can find the time-evolution operator by applying the
reduction of the problem to an equation on the Lie group and using the Wei–Norman
method.

Let {a1, a2, a3, a4} be a basis of the Lie algebra with non-vanishing defining relations
[a1, a2] = a3 and [a2, a3] = a4.

The equation in the group to be considered is now

ġ g−1 = − 1

m
a1 + f(t) a2 .

Using g = exp(−u4 a4) exp(−u3 a3) exp(−u2 a2) exp(−u1 a1) the Wei–Norman
method provides the following equations:

u̇1 = 1
m , u̇2 = −f(t) ,

u̇3 + u2 u̇1 = 0 , u̇4 + u3 u̇2 − 1
2 u

2
2 u̇1 = 0 ,

and written in normal form

u̇1 = 1
m , u̇2 = −f(t) ,

u̇3 = − 1
m u2 , u̇4 = f(t)u3 + 1

2mu
2
2 ,
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together with the initial conditions u1(0) = u2(0) = u3(0) = u4(0) = 0, whose
solution is

u1(t) =
t

m
, u2(t) = −

∫ t

0

f(t′) dt′ ,

u3(t) =
1

m

∫ t

0

dt′
∫ t′

0

f(t′′) dt′′ ,

and

u4 =
1

m

∫ t

0

dt′f(t′)

∫ t′

0

dt′′
∫ t′′

0

f(t′′′) dt′′′ +
1

2m

∫ t

0

dt′

(∫ t′

0

dt′′f(t′′)

)
2 .

These functions provide the explicit form of the time-evolution operator:

U(t,0)=exp(−iu4(t))exp(iu3(t)P )exp(−iu2(t)X)exp(iu1(t)P 2/2) .

Note that in order to find the expression of the wave-function in a simple way, it is
advantageous to use the factorization

g = exp(−v4 a4) exp(−v2 a2) exp(−v3 a3) exp(−v1 a1) .

In such a case, the Wei–Norman method gives the system

v̇1 = 1
m , v̇2 = −f(t) ,

v̇3 = − 1
m v2 , v̇4 = − 1

2mv
2
2 ,
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jointly with the initial conditions v1(0) = v2(0) = v3(0) = v4(0) = 0. The solution
is

v1(t) =
t

m
, v2(t) = −

∫ t

0

dt′ f(t′) ,

v3(t) =
1

m

∫ t

0

dt′
∫ t′

0

dt′′f(t′′) ,

v4(t) = − 1

2m

∫ t

0

dt′

(∫ t′

0

dt′′f(t′′)

)2

.

Then, applying the evolution operator onto the initial wave-function φ(p, 0), which
is assumed to be written in momentum representation, we have

φ(p, t) = U(t, 0)φ(p, 0)
= exp(−iv4(t))exp(−iv2(t)X)exp(iv3(t)P ) exp(iv1(t)P 2/2)φ(p, 0)

= exp(−iv4(t)) exp(−iv2(t)X)ei(v3(t)p+v1(t)p2/2)φ(p, 0)

= exp(−iv4(t))ei(v3(t)(p+v2(t))+v1(t)(p+v2(t))2/2)φ(p+ v2(t), 0) ,

where the functions vi(t) are given by the preceding equations.
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Second order Riccati differential equation

The usual Riccati equation comes from reduction of a linear differential equation by
taking into account the invariance under dilations of such equations.

Starting from
A3

...
y +A2 ÿ +A1 ẏ +A0 y = 0

where we can assume that A3(t) > 0, and writing y = eu, with x = u̇ we arrive to

A3(ẍ+ 3xẋ+ x3) +A2(ẋ+ x2) +A1 x+A0 = 0,

and if we change the independent variable t to a new variable τ , then d/dt = τ̇ d/dτ ,
and if we denote x′ = dx/dτ , x′′ = d2x/dτ2, we obtain

ẋ = τ̇ x′, ẍ = τ̇
d

dτ

(
τ̇
dx

dτ

)
= τ̇2 x′′ +

τ̈

τ̇
x′

and therefore the original equation reduces to

A3

(
τ̇2 x′′ +

τ̈

τ̇
x′ + 3xτ̇ x′ + x3

)
+A2

(
τ̇x′ + x2

)
+A1 x+A0 = 0.
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If we choose τ such that A3 τ̇
2 = 1, and therefore

τ̇ = A
−1/2
3 =⇒ τ̈ = −1

2
A
−3/2
3 Ȧ3,

τ̈

τ̇
= −1

2
A−1

3 Ȧ3,

we find the equation

x′′ − 1

2
A−1

3 Ȧ3 x
′ + 3A

−1/2
3 xx′ +A3 x

3 +A2A
−1
3 x′ +A2 x

2 +A1 x+A0 = 0,

which can be rewritten in he form:

ẍ+ (b0(t) + b1(t)x)ẋ+ c0(t) + c1(t)x+ c2(t)x2 + c3(t)x3 = 0,

with

b1(t) = 3
√
A3(t), b0(t) =

A2(t)√
A3(t)

− Ȧ3(t)

2A3(t)
,

and is considered as the most general second orden Riccati equation.

It has recently been shown (JFC+ MF Rañada+M Santander, JMP 46, 062703
(2005)) that such a second-order Riccati equations admit a Lagrangian of the form:

L(t, x, v) =
1

v + U(t, x)
,

with U(t, x) = a0(t) + a1(t)x+ a2(t)x2.
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The corresponding t-dependent Hamiltonian obtained from the Legendre transfor-
mation

p =
∂L

∂v
= − 1

(v + U(t, x)2
=⇒ v =

1√
−p
− U(t, x),

i.e. the image is the open submanifold O = {(x, p) ∈ T∗xR | p < 0} and we can
define in O the Hamiltonian

h(t, x, p) = p

(
1√
−p
− U(t, x)

)
−
√
−p = −2

√
−p− pU(t, x).

Consequently, the Hamilton equations for h are
ẋ =

∂h

∂p
=

1√
−p
− U(t, x),

ṗ = −∂h
∂x

= p
∂U

∂x
(t, x).

which, taking into account the form of U(t, x) turn out to be
ẋ =

∂h

∂p
=

1√
−p
− a0(t)− a1(t)x− a2(t)x2,

ṗ = −∂h
∂x

= p(a1(t) + 2a2(t)x).
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This is a Lie system: In fact, consider the set of vector fields

X1 =
1√
−p

∂

∂x
, X2 =

∂

∂x
, X3 = x

∂

∂x
− p ∂

∂p
,

X4 = x2 ∂

∂x
− 2xp

∂

∂p
, X5 =

x√
−p

∂

∂x
+ 2
√
−p ∂

∂p
.

The time-dependent vector field describing the system is

X(t, x) = X1 − a0(t)X2 − a1(t)X3 − a2(t)X4,

and the vector fields close on the commutation relations

[X1, X2] = 0, [X1, X3] =
1

2
X1, [X1, X4] = X5, [X1, X5] = 0,

[X2, X3] = X2, [X2, X4] = 2X3, [X2, X5] = X1,

[X3, X4] = X4, [X3, X5] =
1

2
X5,

[X4, X5] = 0.

and then we see that it is a Lie system related to a Vessiot-Guldberg Lie algebra of
vector fields V .
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More specifically, the vector fields X1, . . . , X5 span a five dimensional Lie algebra of
vector fields V that is not solvable because [V, V ] = V .

Moreover, V is not a semisimple algebra. It admits an Abelian solvable ideal
V1 = 〈X1, X5〉, and V2 = 〈X2, X3, X4〉 is a Lie subalgebra isomorphic to sl(2,R).
Therefore V is a semidirect sum V1 ⊕s V2.

Consequently, the Lie algebra V gives rise to a Lie group of the form G = R2 C

SL(2,R), where C denotes the semidirect product of SL(2,R) by R2, and a Lie
group action Φ : G × O → O whose fundamental vector fields are exactly those of
V .

Indeed, it is a long, but straightforward computation, to show that

Φ

((
(λ1, λ2),

(
α β
γ δ

))
, (x, p)

)
=

(
x̄− λ1

√
−p̄

1 + λ2(−p̄)−1/2
,−(
√
−p̄+ λ2)2

)
,

where
x̄ =

αx+ β

γx+ δ
, p̄ = p (δ + γx)

2
.
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This action enables us to put the general solution ξ(t) of the system of Hamilton
equations in the form ξ(t) = Φ(g(t), ξ0), where g(t) is the solution of the equation

dg

dt
= −

5∑
α=1

bα(t)XR
α (g), g(0) = e,

on G, with the XR
α being a family of right-invariant vector fields over G such that

the XR
α (e) ∈ TeG close the same commutation relations as the Xα.

To be remarked that the vector fieldsXi here considered are Hamiltonian with respect
to the usual symplectic form in T∗R, their Hamiltonians being respectively given by:

h1 = 2
√
−p, h2 = −p, h3 = −xp, h4 = −x2p,

and it turns out that their nonvanishing Poisson brackets are

{h1, h3} = 1
2h1, {h1, h4} = h5, {h1, h5} = 2, {h2, h3} = h2,

{h2, h4} = 2h3, {h2, h5} = h1, {h3, h4} = h4, {h3, h5} = 1
2h5

with h5 = 2x
√
−p. They close on a six-dimensional real Lie algebra with the function

h6 = 1. Moreover, it can be seen that the t-dependent system can be put into the
form Λ̂(−dht), where ht is a t-parametrized family of functions over O of the form
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ht = h1− a0(t)h2− a1(t)h3− a2h4 and therefore the Lie system we are considering
is Hamiltonian

Finally, a superposition rule for the second order Riccati equation can be ob-
tained through the common first-integrals for the appropriated diagonal prolongations
X̂1, X̂2, X̂3, X̂4, X̂5 on a certain O(m) ⊂ T∗R(m) (i.e. such that their projections
π∗(X̂α), with α = 1, . . . , 5, are linearly independent at a generic point of T∗Rm).
In our case, it can be easily verified that m = 4. The resulting first-integrals, turn
out to be

∆1 = (x(2) − x(3))
√
p(2)p(3) + (x(3) − x(1))

√
p(3)p(1) + (x(1) − x(2))

√
p(2)p(1),

∆2 = (x(1) − x(2))
√
p(1)p(2) + (x(2) − x(0))

√
p(2)p(0) + (x(0) − x(1))

√
p(1)p(0),

∆3 = (x(1) − x(3))
√
p(1)p(3) + (x(3) − x(0))

√
p(3)p(0) + (x(0) − x(1))

√
p(1)p(0).

In order to obtain a superposition principle, we just need to obtain the value of p(0)

in terms of the remaining variables from one of the above integrals, e.g. ∆2, to get

√
−p(0) =

∆2 + (x(2) − x(1))
√
p(1)p(2)

(x(2) − x(0))
√
−p(2) + (x(0) − x(1))

√
−p(1)

,
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and to plug this value in one of the others variables, e.g. ∆3, to have

x(0) =
∆3(
√
−p(2)x(2)−

√
−p(1)x(1))+∆2(

√
−p(1)x(1)−

√
−p(3)x(3))−∆1x(1)

√
−p(1)

∆3(
√
−p(2)−

√
−p(1))+∆2(

√
−p(1)−

√
−p(3))−

√
−p(1)∆1

,

p(0) = −
[

k2(
√
−p(1)−

√
−p(3))−k3(

√
−p(1)−

√
−p(2))−∆1

√
−p(1)

(∆1
√
p(1)p(2)(x(1)−x(2))−∆1k2)(k2+

√
p(1)p(2)(x(2)−x(1)))−1

]2

.

The above expression gives us a superposition rule for second order Riccati differential
equation.

In addition, as its general solution, (x(0)(t), p(0)(t)), satisfies that x(0)(t) is the
general solution, the first part of the above expressions gives us the solution of second-
order Riccati equations in terms of three particular solutions x(1)(t), x(2)(t), x(3)(t),
their associated moments p(1)(t), p(2)(t), p(3)(t), and two constants ∆1,∆2

Note that once a family of particular solutions is chosen the constant ∆1 gets fixed.
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Lie systems admitting Poisson structures

Note that some of the above examples of Lie systems are Hamiltonian dynamical
systems. We can go a step further and consider Lie systems in (may be degenerate)
Poisson manifolds.

Definition: A Poisson manifold is a pair (M,Λ) where Λ is a bivector in the
differentiable manifold M in such a way that the Schouten bracket [·, ·]S.B. = 0.
The bivector field gives by contraction a map denoted Λ̂ such that

Λ̂(α)(β) = Λ(α, β)

In particular, if f1, f2 ∈ C∞(M), we define the Poisson bracket {f1, f2} by

{f1, f2} = Λ(df1, df2),

and this Poisson bracket satisfies Jacobi identity because of the vanishing of the
Schouten bracket condition
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The Lie bracket over C∞(M) holds the Leibnitz rule

{fg, h} = {f, h}g + {g, h}f, ∀f, g, h ∈ C∞(M).

Consequently, the above Lie bracket becomes a derivation in each entry and, hence,
given a function f ∈ C∞(M), there exists a vector field Xf over M such that
Xfg = {g, f} for each g ∈ C∞(M), i.e. Xf = Λ̂(−df). The vector field Xf is
called the Hamiltonian vector field associated with f . The Jacobi identity for the
Poisson structure entails that

X{f,g} = −[Xf , Xg], ∀f, g ∈ C∞(M).

In other words, the mapping f 7→ Xf is a Lie algebra anti-homomorphism between
the Lie algebras (C∞(M), {·, ·}) and (Γ(τM ), [·, ·]).

Equivalently, we can say that Λ̂ ◦ d : C∞(M) → XH(M,Λ) is a Lie algebra homo-
morphism.

Definition: The elements of the kernel of the previous homomorphism are called
Casimir functions. The set of such Casimir functions will be denoted C, We call
Casimir codistribution of the Poisson manifold (M,Λ) the codistribution given by
CΛ = ker Λ̂.
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This can be summarising by saying that the following sequence is exact:

0 // C // C∞(M)
Λ̂◦d // XH(M,Λ) // 0

Definition. A Lie–Hamiltonian structure is a triple (M,Λ, h), where (M,Λ) is
a Poisson manifold and h is a t-parametrised family of functions ht : M → R
such that Lie({ht}t∈R) is a finite-dimensional real Lie algebra.

Definition: A t-dependent system X on a manifold M is said to be a Lie–
Hamilton system if there exists a Lie–Hamiltonian structure (M,Λ, h) such that
Xt ∈ Λ̂(−dht), for every t ∈ R.

As an example, the previously studied cases of Winternitz–Smorodinsky oscillators
and second-order Riccati equations were Lie–Hamilton system with respect to non-
degenerated Poisson structures. For instance, in the latter case if Λ denotes the
Poisson bivector associated with the natural symplectic structure in O ⊂ T∗R and
ht = h1−a0(t)h2−a1(t)h3−a2h4, then, Xt = −Λ̂(−dht) is a Lie–Hamilton system
with Lie–Hamiltonian structure (O ⊂ T∗R,Λ, h).

The dual g∗ of a Lie algebra (g, [·, ·]) is endowed with a natural structure of a Poisson
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manifold.

The differential (df)u of a function f ∈ C∞(g∗) at a point u ∈ g∗ is a linear map
(df)u : Tug

∗ → R.

On the other side as g∗ is a linear space, when considered as a differentiable manifold,
we can identify in a natural way the linear space g∗ with the tangent space Tug

∗, at
each point and then (df)u : Tug

∗ → R can be seen as an element of (g∗)∗, i.e. of g.

Denoting such element as δuf , i.e.

〈y, δuf〉 = (df)u(y) =
d

dt
f(u+ ty)

∣∣∣∣
t=0

, y ∈ g∗,

the Poisson structure in g∗ is given by

{f, g}(u) =
〈
u, [δuf, δug]

〉
.

In particular Jacobi identity for {·, ·} is a consequence of Jacobi identity for [·, ·].

If a ∈ g, let ξa denotes the linear function ξa ∈ C∞(g∗) given by

ξa(u) = 〈u, a〉,
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and then δuξa ∈ g is such that δuξa = a, because

(dξa)u(y) =
d

dt
ξa(u+ ty)

∣∣∣∣
t=0

= 〈y, a〉.

Consequently, for any pair, a, b of elements in g,

{ξa, ξb}(u) =
〈
u, [a, b]

〉
= ξ[a,b](u).

Given a basis of g, {a1, . . . , an}, and {α1, . . . , αn} the dual basis of g∗, and using
the shorter notation ξi for ξai , we see that if u ∈ g∗ is u =

∑n
i=1 uiα

i, then

〈u, ak〉 = uk = ξk(u),

and therefore ξi are coordinate functions in g∗, corresponding to the dual basis. The
expression of the Poisson structure is the one given by

{f, g}(u) =
∂f

∂ξi

∂g

∂ξj
{ξi, ξj} =

∂f

∂ξi

∂g

∂ξj
cij

kξk,

where cijk are the structure constants of g relative to the basis {a1, . . . , an} of g,
i.e.

[ai, aj ] =

r∑
k=1

cij
k ak.
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The Hamiltonian vector fields corresponding to the coordinate functions ξi are given
by

Xξi =

n∑
j=1

{ξj , ξi}
∂

∂ξj
= −

n∑
j,k=1

cij
kξk

∂

∂ξj
= −

n∑
j,k=1

[ad(ai)]
k
jξk

∂

∂ξj
,

and therefore, if a =

n∑
i=1

yi ai,

Xa =

n∑
j,k=1

coad

(
n∑
i=1

yi ai

)
j

k ξk
∂

∂ξj
,

that can be written as
Xa = coad(a)

One can see that these vector fields turn out to be the fundamental vector fields
corresponding to the coadjoint action of a group G with Lie algebra g on g∗.
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Therefore, the vector fields Xi(θ) = [coad(ai)](θ) ∈ Tθg
∗, with α = 1, . . . , r, span a

Vessiot–Guldberg Lie algebra for a system in g∗. Indeed, they generate the Lie algebra
of fundamental vector fields of the coadjoint action of the Lie group G corresponding
to g over g∗ and moreover these vector fields are Hamiltonian with respect to Λ̂g∗

with Hamiltonian functions hi = −ξi.

The functions hi themselves are a basis for a finite-dimensional real Lie algebra
(W, {·, ·}g∗) of functions:

{hi, hj} = −
r∑

k=1

cij
k hk.

Therefore, every curve ht in the Poisson manifold (g∗, {·, ·}g∗) gives rise to a Lie–
Hamiltonian (g∗,Λg∗ , h).

As an example, let us consider, for example, Euler equations on the dual g∗ of a Lie
algebra (g, [·, ·]g), i.e.

dθ

dt
= coadφ(t)θ, θ ∈ g∗, (1)

where φ(t) is a curve in g and coadφ(t)θ = −θ ◦ adφ(t) ∈ g∗. These equations can
be found, for instance, in the study of geometric phases for classical systems.
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This system describes the integral curves of the t-dependent vector field Xt =
r∑

α=1

bα(t)Xα, where we have assumed φ(t) =

r∑
α=1

bα(t)eα.

Since Xα are Hamiltonian vector fields with respect to Λ∗g, it follows that

Xt =

r∑
α=1

bα(t)Xα =

r∑
α=1

bα(t)Λ̂(−dhα) = Λ̂

[
−d

(
r∑

α=1

bα(t)hα

)]
.

In other words, ht =

r∑
α=1

bα(t)hα allows us to build up a Lie–Hamiltonian structure

(g∗,Λg∗ , h) for X.

Lemma For each Lie–Hamilton system X admitting a Lie–Hamiltonian structure
(M,Λ, h), the mapping Λ̂ ◦ d : Lie({ht}t∈R) → V X is a Lie algebra epimorphism.
In consequence, as the functions hi are closing in a real Lie algebra the restriction of
Λ̂ ◦ d to

V X ' Lie({ht}t∈R)

ker
(

Λ̂ ◦ d
) .

Proof.- It suffices to consider the restriction of Λ̂ ◦ d to the subalgebra Lie({ht}t∈R)

and observe that the image of such a map is V X .
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Lie–Hamilton systems and superposition rules

If (A, ∗) is an unital associative algebra there are linear maps m : A⊗A → A and
η : K→ A such that ∗ = m◦π, where π : A×A → A⊗A is the natural projection,
and

m ◦ (m⊗ id ) = m ◦ (id ⊗m) , m ◦ (η ⊗ id ) = id = m ◦ (id ⊗ η) , (2)

where m and η are given by

m(a1 ⊗ a2) = a1 ∗ a2 , η(1) = 1A ,

with 1A being the unity in A.
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Both relations are equivalent to the commutativity of he diagrams

A⊗A⊗A
m⊗id

xxqqqqqqqqqq
id⊗m

&&MMMMMMMMMM

A⊗A

m

&&NNNNNNNNNNNN A⊗A

m

xxpppppppppppp

A

K⊗A
η⊗id //

%%JJJJJJJJJJ A⊗A

m

��

A⊗K
id⊗ηoo

yytttttttttt

A
where use has been made of the natural isomorphisms

(A⊗A)⊗A ≈ A⊗A⊗A ≈ A⊗ (A⊗A) .

In order to define commutative algebra we van introduce the interchange map τ :

A⊗A → A⊗A defined by

τ(a1 ⊗ a2) = a2 ⊗ a1 .
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Then the algebra (A, ∗) is commutative if m ◦ τ = m.

Definition: If (A1,m1, η1) and (A2,m2, η2) are algebras over the field K, then
the tensorial product is given by (A1 ⊗ A2, (m1 ⊗m2) ◦ (id ⊗ τ ⊗ id ), η1 ⊗ η2),
namely,

mA1⊗A2 = (m1 ⊗m2) ◦ (id ⊗ τ ⊗ id ) .

With this notation morphism of the algebra (A1,m1, η1) in the algebra (A2,m2, η2)

is a linear map f : A1 → A2 such that m2 ◦ (f ⊗ f) = f ◦m1, i.e. the following
diagram is commutative:

A1 ⊗A1
f⊗f //

m1

��

A2 ⊗A2

m2

��
A1

f
// A2

The coalgebra concept appears when using duality in the definition of algebra using
themaps m and η. The dual maps

∆ = m∗ : A∗ → A∗ ⊗A∗ , ε = η∗ : A∗ → K∗
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enjoys the dual properties:

(id ⊗∆) ◦∆ = (∆⊗ id ) ◦∆ , (ε⊗ id ) ◦∆ = (id ⊗ ε) ◦∆,

which can be expressed by the commutativity of the following diagrams:

A∗
∆

vvnnnnnnnnnnnnn
∆

((PPPPPPPPPPPPP

A∗ ⊗A∗

∆◦id ''PPPPPPPPPPPP A∗ ⊗A∗

id⊗∆wwnnnnnnnnnnnn

A∗ ⊗A∗ ⊗A∗

A∗

xxqqqqqqqqqqq

&&MMMMMMMMMMM

∆

��
K⊗A∗ A∗ ⊗A∗

id⊗ε
//

ε⊗id
oo A∗ ⊗K
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This leads to introduce the following concept:

Definition: A coalgebra is a triple (C,∆, ε), where ∆ : C → C⊗C and ε : C → K
are linear maps que called comultiplication and counity (or augmentation), such
that the following diagrams are commutative:

C
∆

xxrrrrrrrrrrr
∆

&&LLLLLLLLLLL

C ⊗ C

∆⊗id %%LLLLLLLLLL C ⊗ C

id⊗∆yyrrrrrrrrrr

C ⊗ C ⊗ C

C

zzuuuuuuuuuu

$$IIIIIIIIII

∆

��
K⊗ C C ⊗ C

id⊗ε
//

ε⊗id
oo C ⊗K

Therefore, (∆⊗ id ) ◦∆ = (id ⊗∆) ◦∆, (ε⊗ id ) ◦∆ = (id ⊗ ε) ◦∆.

Definition: A coalgebra (C,∆, ε) is cocommutative if τ ◦∆ = ∆.
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Definition: A linear map from the coalgebra (C,∆, ε) in the coalgebra (C′,∆′, ε′)
is a morphism of coalgebras when

∆′ ◦ f = (f ⊗ f) ◦∆ , ε′ ◦ f = ε ,

which can be expressed by the commutativity of the diagrams:

C ⊗ C
f⊗f // C′ ⊗ C′

C
f //

∆

OO

C′
∆′

OO C
f //

ε
��?

??
??

??
? C′

ε′

��
K

Recall that (A, ·, [·, ·]) is a Poisson algebra if (A, ·) is a commutative algebra and
(A, [·.·]) is a Lie algebra such that

[a3, a2 · a1] = [a3, a2] · a1 + a2 · [a3, a1]

for arbitrary elements ai ∈ A, i.e. [a, ·] : A → A is a derivation of the algebra (A, ·).

As an example, if (M,Λ) is a Poisson manifold, then (C∞(M), {·, ·}) is a Poisson
algebra where · is the usual product of functions and {·, ·} denotes the Poisson bracket
defined by Λ.
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Moreover, if (A, ·, [·, ·]) is a Poisson algebra we can define a new Poisson algebra
structure in A⊗A by means of (a2 ⊗ b2) ? (a1 ⊗ b1)) = (a2 · a1)⊗ (b2 · b1) and

{a4 ⊗ a3, a2 ⊗ a1}A⊗A = {a4, a2}A ⊗ (a3 · a1) + (a4 · a2)⊗ {a3, a1}A, ai ∈ A.

Definition: A Poisson coalgebra is given by (A, ·, {·, ·},∆) where (A, ·, {·, ·}) is a
Poisson algebra and the coproduct ∆ : A → A⊗A is a Poisson algebra morphism
between A and A⊗A, i.e.

∆(a2 · a1) = ∆(a2) ·∆(a1), ∆({a2, a1}) = {∆(a2),∆(a1)}.

Let g be a Lie algebra and T (g) its associated tensor algebra, the adjoint representa-
tion of g, i.e. the Lie algebra morphism ad : v ∈ g 7→ adv ∈ Der(g), can be extended
to a representation of g on T (g) by derivations. In other words, there exists a Lie
algebra homomorphism ad : v ∈ g→ adv ∈ Der(T (g)).
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Definition: The symmetric algebra of g is the free commutative unital associa-
tive algebra (S(g), ·) given by the quotient space T (g)/R, where R is the linear
subspace of T (g) spanned by the elements

P ⊗ (v ⊗ w − w ⊗ v)⊗Q, v, w ∈ g, P,Q ∈ T (g),

endowed with the commutative product P ·Q = π̄(P ⊗Q), where π̄ : T (g)→ S(g)

is the quotient map.

As R is invariant through the action of the derivations adv, the adjoint action can
be extended to a Lie algebra morphism ad : g → Der(S(g)). Furthermore, since
g ' (g∗)∗, every element of g can be regarded as a linear function over g∗. As the
space S(g) is isomorphic to the unital commutative associated ring of polynomials
in the elements of a basis of g, we can consider S(g) as the commutative unital
associative ring of polynomials in a basis of linear functions over g∗. In addition, such
a space can be equipped with a unique Poisson bracket {, } : S(g) × S(g) → S(g)

satisfying that {v, w} = advw for every v, w ∈ g. In addition S(g) becomes a
coalgebra by defining ∆(w) = w⊗ 1 + 1⊗w for every w ∈ g ⊂ S(g) and extending
conveniently ∆ to an homomorphism from S(g) to S(g)× S(g).

55



Definition: The universal enveloping algebra U(g) of g is the unital associative
algebra obtained by taking the quotient of T (g) by the linear subspace L ⊂ T (g)

spanned by the elements

P ⊗ (v ⊗ w − w ⊗ v − [v, w])⊗Q, v, w ∈ g, P,Q ∈ T (g),

and defining π̄(P ) ⊗ π̄(Q) = π̄(P ⊗ Q), where π̄ : T (g) → U(g) is the quotient
map and P,Q ∈ T (g).

As previously, the adjoint action extends to a well-defined action ad : g→ Der(U(g)).
To us the following interpretation takes special relevance. The universal enveloping
algebra U(g) of a Lie algebra g can be endowed with a structure of coalgebra by
defining

∆(vi) = 1⊗ vi + vi ⊗ 1,

over a basis v1, . . . , vr of g and extending the value of the above morphisms over
U(g) by linearity.

It is worth noting that Friederichs theorem ensures that the only primitive elements
of U(g), i.e. those Y ∈ U(g) obeying that ∆(v) = 1⊗ v+ v⊗ 1, are the generators
vi.
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The so-called symmetrized map, i.e. the linear mapping λ : S(g) → U(g) of the
form

λ(vi1 · . . . · vil) =
1

l!

∑
s∈Πp

λ(vs(i1)) . . . λ(vs(il)), ∀vi1 , . . . , vir ∈ g,

establishes a linear isomorphism between U(g) and S(g). In addition, we have that

λ(advP ) = v ⊗ λ(P )− λ(P )⊗ v = advλ(P ).

The above relation relates the so-called Casimirs of the Lie algebra g, namely those
elements C of U(g) such that advC = 0 for all v ∈ g, with the Casimir elements of
the Poisson algebra S(g). More specifically, if C is a Casimir for g, then C = λ−1(C)
obeys advC = 0, for every v ∈ g and C Poisson commutes with all the elements of
S(g).

Given a Lie algebra g, we know that (g∗)∗ ' g. In other words, the elements of g
can be understood as linear functions over g∗. Moreover, if v1, . . . , vr is a basis for
g, these elements can be considered as a coordinate system over g∗. Consequently, if
we assume [vi, vj ] =

∑r
k=1 cijkvk for i, j = 1, . . . , r, the Poisson bivector Λg∗ over
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g∗ reads

Λ =

r∑
i,j,k=1

cijkvk
∂

∂vi
∧ ∂

∂vj
.

The space A of polynomials in these variables becomes a Poisson algebra with the
commutative product of functions and the restriction of the above Poisson bracket
over A. Indeed, this space is the same as the Poisson algebra S(g). In fact, {vi, vj} =

adviv
j and hence every element C = λ−1(C) for a Casimir C of g commutes with all

the elements of A, i.e. it is a Casimir element of A. This is a very relevant fact,
as it allows us to build up Casimir elements for A from Casimirs of the initial Lie
algebra g. Similarly to S(g), the space A is a Poisson coalgebra.

If we denote ∆(2) = ∆, we can define the algebra morphisms ∆(N) : A → A⊗
N

of
the form

∆(N) = (id⊗ id⊗ N−2. . . ⊗id⊗∆(2)) ◦∆(N−1).

Obviously, we have that

{∆(N)(vi),∆
(N)(vj)}A⊗N = ∆(N){vi, vj}A.

Take now a representation D : g→ C∞(T∗Rn). It is straightforward to check that
the space (Ā, ·, {, }) of polynomials in the coordinate functions D(v1), . . . , D(vr) is
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a Poisson algebra with respect to the product of functions and the Lie bracket over
Ā defined by the restriction over Ā of the Poisson bracket {, } over C∞(T∗Rn). In
addition, Ā is also a Poisson coalgebra with the coproduct ∆̄ : Ā → Ā ⊗ Ā, taking
∆(D(vi)) = D(vi)⊗ 1 + 1⊗D(vi) and extending to the whole Ā. Summing up, A
and Ā are isomorphic Poisson coalgebras.

The Lie algebra representation D can be extended to a Lie algebra morphism D :

C∞(g∗)→ C∞(T∗Rn) by defining

D(H(v1, . . . , vr)) = H(D(v1), . . . , D(vr)).

or to the Poisson algebra morphism D : A⊗. . .⊗A→ C∞(T∗Rn)⊗. . .⊗C∞(T∗Rn)

induced by the relations

D(vi1 ⊗ . . .⊗ vir ) = D(vi1)⊗ . . .⊗D(vir ).

More even, D can be defined over the functions of the form ∆(N)H(v1, . . . , vr) by
setting

D∆(N)(C(v1, . . . , vr)) = (C(D∆(N)(v1), . . . , D∆(N)(vr))).

From here, it easily turns out that

{D∆(N)(C), D∆(N)(vj)} = D∆(N){C, vj}A = 0.
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Theorem 1 (Ballesteros, Corsetti & Ragnisco 1996) Let g be a Lie algebra
with a Casimir element C and D a realization of g in C∞(T∗Rn). The Hamiltonian

H(s)(q1, . . . , qs, p1, . . . , ps) = D[C(∆(s)(v1), . . . ,∆(s)(vr))], (qi, pi) ∈ T∗Rn,

where v1, . . . , vr is a basis of g, defines a dynamical system in which the H(m)

functions with m = 1, . . . , s are s constants of the motion in involution with respect
to the canonical Poisson bracket over T∗Rsn.

Let us apply the above formalism to describe superposition rules for Lie-Hamilton
systems through a certain Lie algebra morphism D : g→ C∞(T∗Rn).

If we chose a basis v1, . . . , vr of g, then Xt = −Λ̂(dht) takes values in the Vessiot–
Guldberg Lie algebra V generated by the vector fields Xα = −Λ̂(dD(vα)), with
α = 1, . . . , r, over T∗Rn.

Recall that determining a superposition rule for Xt relies on obtaining a family of
common first-integrals for all the prolongations X̂1, . . . , X̂r to a certain (T∗Rn)m+1

of the vector fields X1, . . . , Xr.
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As these vector fields are Hamiltonian vector fields with Hamiltonian functions hα =

D(vα), their prolongations X̂α to (T ∗N)m+1 are Hamiltonian vector fields with
respect to the Poisson bivector Λm+1 induced by the canonic symplectic structure
on T ∗Nm+1 with Hamiltonian functions

∆(m+1)hα = hα⊗1⊗. . .⊗1+1⊗hα⊗1⊗. . .⊗1+. . .+1⊗. . .⊗1⊗hα = D∆(m+1)vα.

Therefore, if C is a Casimir function, then we can construct functions of the form

C(m+1) ≡ D∆(m+1)(C) ∈ C∞((T∗Rn)m+1).

Such functions are common first-integrals for the vector fields X̂α, namely

X̂α(C(m+1)) = D{∆(m+1)C,∆(m+1)vα} = −D∆(m+1){C, vα} = 0.

Moreover, recall that

{C(s), C(k)} = 0, s ≤ k = 1, . . . ,m+ 1.
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As an example, consider the Lie algebra morphism D : sl(2,R)→ C∞(T ∗R)

D(J−) = q2
1 , D(J+) = p2

1 +
1

x2
, D(J3) = q1p1.

where J−, J+ and J3 are a basis for sl(2,R) closing on the commutation relations

[J3, J+] = 2J+, [J3, J−] = −2J−, [J−, J+] = 4J3.

In this case A becomes the polynomials in J−, J+ and J3. Now, we define

∆(J−) = J−⊗1+1⊗J−, ∆(J+) = J+⊗1+1⊗J+, ∆(J3) = J3⊗1+1⊗J3.

As C = J−J+ − J2
3 is a Casimir element, we obtain that

{D∆(s)(C), D∆(m+1)Ji} = 0, i = +,−, 3.

Consequently, the functions D∆(s)(C) are first integrals of the prolongations of the
vector fields to T∗R(m+1). For m = 2, they lead to the first-integrals used in the
determination of superposition rules for Milne–Pinney equations, i.e.

Iij = (xipi − xjpi)2 +

(
x2
j

x2
i

+
x2
i

x2
j

)
, i < j = 1, 2, 3.
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