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Theorem (rough version)

If G is a proper Lie groupoid over a manifold M, O ⊂ M is an
orbit of G then, around O, G is isomorphic to its linearization
NO(G).
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Linearization of proper Lie groupoids
About the proof

Starting point: Conn’s linearization theorem

conjectured by A. Weinstein (in his JDG paper)

proved by J. Conn (Annals, 1985).

Conn’s proof: based on “hard analysis”, with no geometric
insight ...

Weinstein’s question: find a geometric proof for Conn’s
theorem, like the similar ones from group actions, etc.
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About the proof

The geometric approach to Conn’s theorem

Weinstein’s, based on his discovery of symplectic groupoids:
W1 Integrability.
W2 Linearization of proper groupoids.
W3 Take care of the symplectic form.

Our geometric solution (M.C., Rui Loja Fernandes):
CF1 : Integrability.
CF2 : standard methods (Moser, averaging, etc), in the context

of Lie groupoids instead of Lie groups.

This also allowed for generalizing Conn’s theorem around
arbitrary symplectic leaves (joint with I.Marcut).
... which, in turn, indicate that W2 itself could be handeled by
similar methods (Moser deformation arguments and averaging).
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Linearization of proper Lie groupoids
About the proof

Linearization of proper Lie groupoids

conjectured by Weinstein motivated by Conn’s theorem.

2002: Weinstein shows that the statement can be reduced
to the case of fixed points.

2004: Zung proves it for fixed points (... Zung’s theorem).
Still uses analytic arguments, but not so “hard”.
2011: with I. Struchiner:

indeed, Zung’s theorem can be proved directly by Moser
arguments, averaging.
Weinstein’s reduction to the fixed point-case is is just a
manifastation of Morita invariance.
The precise statements/conditions are clarified.
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Linearization of proper Lie groupoids
About the proof

Submanifolds
Orbits of group actions
Leaves of foliations
Conn’s theorem
Symplectic leaves

Submanifolds

Setting: O a submanifold of a manifold M.

The local (linear) model for M around O: the normal bundle:

NO = TOM/TO.

The linearization theorem:

Theorem (the standard tubular neighborhood theorem)

If O is embedded then, around O, M is diffeomorphic to NO.
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Linearization of proper Lie groupoids
About the proof

Submanifolds
Orbits of group actions
Leaves of foliations
Conn’s theorem
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Orbits of group actions

Setting: O- an orbit of a Lie group G action on M.

The local (linear) model for M around O: still NO (with the
induced “linear” action). Standard description:

NO = G ×Gx Nx

(uses a point x ∈ O, Gx - the isotropy group at x , Nx the normal
space of O at x , with the linear isotropy Gx -action).

The linearization theorem:

Theorem (the standard slice theorem)

If G-compact then, around O, M is G-equivariantly
diffeomorphic to G ×Gx Nx .
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Leaves of foliations

Setting: O- a leaf of a foliation F of M.

The local (linear) model for M around O: still NO (with the
induced “linear” foliation). Standard description:

NO = Õ ×Γx Nx

(uses x ∈ O, the universal cover Õ of O, the fundamental group
Γx = π(O, x), and the linear holonomy ρ : Γx −→ GL(Nx)).

The linearization theorem:

Theorem (the standard local Reeb stability)

If Õ is compact then, around O, M is diffeomorphic (as a
foliated manifold) to Õ ×Γx Nx .
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If Õ is compact then, around O, M is diffeomorphic (as a
foliated manifold) to Õ ×Γx Nx .
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induced “linear” foliation). Standard description:

NO = Õ ×Γx Nx

(uses x ∈ O, the universal cover Õ of O, the fundamental group
Γx = π(O, x), and the linear holonomy ρ : Γx −→ GL(Nx)).

The linearization theorem:

Theorem (the standard local Reeb stability)

If Õ is compact then, around O, M is diffeomorphic (as a
foliated manifold) to Õ ×Γx Nx .
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If Õ is compact then, around O, M is diffeomorphic (as a
foliated manifold) to Õ ×Γx Nx .

Marius Crainic On the linearization of proper Lie groupoids



The linearization of proper groupoids: some history
Some linearization theorems (= linear normal forms)

Linearization of proper Lie groupoids
About the proof

Submanifolds
Orbits of group actions
Leaves of foliations
Conn’s theorem
Symplectic leaves

Conn’s theorem

Setting: O = {x} a singular point of a Poisson manifold (M, π).

The local (linear) model for M around x : still TxM, endowed
with the linearization of π at x . Equivalently: use the isotropy
Lie algebra gx at x , and

TxM = (gx)∗

with the linear Poisson structure.

The linearization theorem:

Theorem (Conn’s theorem)

If gx is semi-simple of compact type then, around x, M and g∗x
are Poisson diffeomorphic.
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Local forms around symplectic leaves (with I.Marcut)

Setting: O a symplectic leaf of a Poisson manifold (M, π).

The local (linear) model for M around x : still NO, endowed with
“the linearization of π along O”. Equivalently:

NO = Px ×Gx g∗x

uses x ∈ O, the Poisson homotopy group Gx , and the Poisson
homotopy cover Px −→ Ox .

The linearization theorem:

Theorem (Crainic-Marcut, 2011)

If Px is compact and 2-connected then, around O, M and
Px ×Gx g∗x are Poisson diffeomorphic.
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The setting
The local model
Using the isotropy data
The hypothesis
The statement
Examples

A Lie groupoid

G
t

//
s // M .

An induced partition of M:

x ∼ y iff ∃ g ∈ G with s(g) = x , t(g) = y .

Orbits of G: the members of this partition.
Examples: orbits of group actions, leaves of foliations,
symplectic leaves, etc.

Problem: linear local form for G around an orbit O.
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The setting
The local model
Using the isotropy data
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The local model: a groupoidNO(G) overNO

Remark 1: we look not only at O, but also at the induced:

GO = {g ∈ G : s(g), t(g) ∈ O}.

Remark 2: TG is a groupoid overTM:

TG
dt

//
ds // TM. (1)

Conclusion: NO(G) is the normal bundle of GO in G.

NO(G) := TG/TGO dt
//

ds //
NO := TM/TO (2)

Marius Crainic On the linearization of proper Lie groupoids



The linearization of proper groupoids: some history
Some linearization theorems (= linear normal forms)

Linearization of proper Lie groupoids
About the proof

The setting
The local model
Using the isotropy data
The hypothesis
The statement
Examples

The local model: a groupoidNO(G) overNO

Remark 1: we look not only at O, but also at the induced:

GO = {g ∈ G : s(g), t(g) ∈ O}.

Remark 2: TG is a groupoid overTM:

TG
dt

//
ds // TM. (1)

Conclusion: NO(G) is the normal bundle of GO in G.

NO(G) := TG/TGO dt
//

ds //
NO := TM/TO (2)

Marius Crainic On the linearization of proper Lie groupoids



The linearization of proper groupoids: some history
Some linearization theorems (= linear normal forms)

Linearization of proper Lie groupoids
About the proof

The setting
The local model
Using the isotropy data
The hypothesis
The statement
Examples

The local model: a groupoidNO(G) overNO

Remark 1: we look not only at O, but also at the induced:

GO = {g ∈ G : s(g), t(g) ∈ O}.

Remark 2: TG is a groupoid overTM:

TG
dt

//
ds // TM. (1)

Conclusion: NO(G) is the normal bundle of GO in G.

NO(G) := TG/TGO dt
//

ds //
NO := TM/TO (2)

Marius Crainic On the linearization of proper Lie groupoids



The linearization of proper groupoids: some history
Some linearization theorems (= linear normal forms)

Linearization of proper Lie groupoids
About the proof

The setting
The local model
Using the isotropy data
The hypothesis
The statement
Examples

The local model: a groupoidNO(G) overNO

Remark 1: we look not only at O, but also at the induced:

GO = {g ∈ G : s(g), t(g) ∈ O}.

Remark 2: TG is a groupoid overTM:

TG
dt

//
ds // TM. (1)

Conclusion: NO(G) is the normal bundle of GO in G.

NO(G) := TG/TGO dt
//

ds //
NO := TM/TO (2)

Marius Crainic On the linearization of proper Lie groupoids



The linearization of proper groupoids: some history
Some linearization theorems (= linear normal forms)

Linearization of proper Lie groupoids
About the proof

The setting
The local model
Using the isotropy data
The hypothesis
The statement
Examples

The local model: a groupoidNO(G) overNO

Remark 1: we look not only at O, but also at the induced:

GO = {g ∈ G : s(g), t(g) ∈ O}.

Remark 2: TG is a groupoid overTM:

TG
dt

//
ds // TM. (1)

Conclusion: NO(G) is the normal bundle of GO in G.

NO(G) := TG/TGO dt
//

ds //
NO := TM/TO (2)

Marius Crainic On the linearization of proper Lie groupoids



The linearization of proper groupoids: some history
Some linearization theorems (= linear normal forms)

Linearization of proper Lie groupoids
About the proof

The setting
The local model
Using the isotropy data
The hypothesis
The statement
Examples

Choosing x ∈ O, we have

Gx = s−1(x) ∩ t−1(x)- the isotropy group at x .

Px = s−1(x)- a principal Gx -bundle over O.

A linear action of Gx on Nx = TxM/TxO.

Using these,
NO ∼= Px ×Gx Nx

and
NO(G) ∼= (Px × Px)×Gx Nx .

Marius Crainic On the linearization of proper Lie groupoids



The linearization of proper groupoids: some history
Some linearization theorems (= linear normal forms)

Linearization of proper Lie groupoids
About the proof

The setting
The local model
Using the isotropy data
The hypothesis
The statement
Examples

Choosing x ∈ O, we have

Gx = s−1(x) ∩ t−1(x)- the isotropy group at x .

Px = s−1(x)- a principal Gx -bundle over O.

A linear action of Gx on Nx = TxM/TxO.

Using these,
NO ∼= Px ×Gx Nx

and
NO(G) ∼= (Px × Px)×Gx Nx .

Marius Crainic On the linearization of proper Lie groupoids



The linearization of proper groupoids: some history
Some linearization theorems (= linear normal forms)

Linearization of proper Lie groupoids
About the proof

The setting
The local model
Using the isotropy data
The hypothesis
The statement
Examples

Choosing x ∈ O, we have

Gx = s−1(x) ∩ t−1(x)- the isotropy group at x .

Px = s−1(x)- a principal Gx -bundle over O.

A linear action of Gx on Nx = TxM/TxO.

Using these,
NO ∼= Px ×Gx Nx

and
NO(G) ∼= (Px × Px)×Gx Nx .

Marius Crainic On the linearization of proper Lie groupoids



The linearization of proper groupoids: some history
Some linearization theorems (= linear normal forms)

Linearization of proper Lie groupoids
About the proof

The setting
The local model
Using the isotropy data
The hypothesis
The statement
Examples

Choosing x ∈ O, we have

Gx = s−1(x) ∩ t−1(x)- the isotropy group at x .

Px = s−1(x)- a principal Gx -bundle over O.

A linear action of Gx on Nx = TxM/TxO.

Using these,
NO ∼= Px ×Gx Nx

and
NO(G) ∼= (Px × Px)×Gx Nx .

Marius Crainic On the linearization of proper Lie groupoids



The linearization of proper groupoids: some history
Some linearization theorems (= linear normal forms)

Linearization of proper Lie groupoids
About the proof

The setting
The local model
Using the isotropy data
The hypothesis
The statement
Examples

Recall: a continuous map f : X −→ Y is called proper if: for any
compact K ⊂ Y , f−1(K ) is compact.
It is called proper at y ∈ Y if any sequence (xn) with f (xn)→ y
has a convergent sub-sequence.

Definition

Given a Lie groupoid G over M, x ∈ M, we say that

G is s-proper (at x) if s : G −→ M is proper (at x).

G is proper (at x) if (s, t) : G −→ M ×M is proper (at (x , x)).
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Theorem

G is a Lie groupoid over M, O-the orbit through x ∈ M.If G is
proper at x, then G is linearizable at x, i.e. there exists
neighborhoods U and V of O in M and NO, such that

G|U ∼= NO(G)|V .

Corollary

If G is s-proper at x, then G is inv-linearizable at x, i.e. there
exists an invariant neighbrohood U of O in M such that

G|U ∼= NO(G).
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About the proof

The setting
The local model
Using the isotropy data
The hypothesis
The statement
Examples

1 For a Lie group G acting on M, take G = the action Lie
groupoid ... the slice theorem.

2 For a foliated manifold (M,F), take G = the foliated
fundamental groupoid ... the local Reeb stability.

3 For a singular point x of a Poisson manifold, take G = the
symplectic groupoid (... if smooth) ... Conn’s theorem.

4 Similarly for arbitrary symplectic leaves.
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Linearization of proper Lie groupoids
About the proof

Reduction to the fixed point case
The fixed point case

Morita equivalence: a well-behaved notion of “isomorphism” in
the world of groupoids, which reflects “the transversal
geometry”. Given groupoids G over M and H over N, a Morita
equivalence between them is given by a principal G-H bibundle
P

M ← P → N.

Say that x ∈ M and y ∈ N are P-related if there is p ∈ P
mapping into them.

Proposition

If x and y are P-related, then

G is proper at x iff H is proper at y.

G is linearizable at x iff H is linearizable at y.
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Linearization of proper Lie groupoids
About the proof

Reduction to the fixed point case
The fixed point case

Slices

Given G overM, x ∈ M, a slice at x is any embedded
submanifold Σ ⊂ M s.t.:

Σ is transversal to every orbit that it meets.

Σ is of dimension complementary to the dimension of Ox

and Σ ∩ Ox = {x}.
Remark: properness at x implies:

Ox - embedded submanifold.

there exist slices at x .
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Linearization of proper Lie groupoids
About the proof

Reduction to the fixed point case
The fixed point case

Using slices

Given G overM, x ∈ M and a slice Σ through x :

G|Σ is is a Lie groupoid over Σ, which has x as a fixed
point.

The saturation U ⊂ M of Σ is open, and G|U is Morita
equivalent to G|Σ.

Hence: the linearization theorem for G at x is equivalent to the
one for G|Σ at x .
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Linearization of proper Lie groupoids
About the proof

Reduction to the fixed point case
The fixed point case

Hence we may assume that O = {x} (fixed point). The idea:
construct a family {Gε} of groupoids with G1 = G and G0 = the
local model; then use (flows) of multiplicative vector fields to
relate the different Gε.

Small step: by passing from M to a neighborhood of x , we may
furthermore assume that:

G is proper.

M = Rn.

G sits openly inside Gx × Rn:

G ↪→ E := Gx × Rn,

the source map is the first projection and the unit at any
v ∈ Rn is (e, v).
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About the proof

Reduction to the fixed point case
The fixed point case

Deforming G into its linearization

Deform G into the local model:

Gε = {g ∈ E : εg ∈ G} ⊂ E = Gx × Rn,

sitting over Rn, with structure maps

sε(g) = s(g), tε(g) =
1
ε

t(εg), mε(g, h) =
1
ε

m(εg, εh).

Useful: put all of these into a (proper!) Lie groupoid over M ×R:

G̃ = {(g, ε) ∈ E × R : εg ∈ G} ,

with source, target, multiplication and inversion maps

σ(g, ε) = (sε(g), ε), µ((g, ε), (h, ε)) = (mε(g, h), ε), etc.
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Linearization of proper Lie groupoids
About the proof

Reduction to the fixed point case
The fixed point case

The deformation cocycle

Roughly speaking, it is d
dεmε.

Small problem: the domain of mε varries with respect to ε.
Small sollution: for a groupoid H over N, instead of using the
multiplication map

m(g, h) = gh defined onH(2) = {(g, h) ∈ H ×H : s(g) = t(h)},

use

m̄(g, h) = gh−1 defined onH[2] = {(g, h) ∈ H×H : s(g) = s(h)}.

Note: the associativity for m translates into:

m̄(m̄(u, k), m̄(v , k)) = m̄(u, v).
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Linearization of proper Lie groupoids
About the proof

Reduction to the fixed point case
The fixed point case

The deformation cocycle

Consider m̄ε instead of mε; “the deformation cocycle” ξλ (at λ):

G[2]
λ 3 (p, q) 7→ ξλ(p, q) :=

d
dε
|ε=λm̄ε(p, q) ∈ Tm̄λ(p,q)Gλ.

The cocycle equation: d
dε of the associativity equation for m̄ε:

Lemma

For any u, v , k ∈ Gλ such that (u, k), (v , k) ∈ G[2]
λ ,

(dm̄λ)(ξλ(u, k), ξλ(v , k)) = ξλ(u, v)− ξλ(m̄λ(u, k), m̄λ(v , k)).

(also important, but easier to handle: d
dε tε).
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Linearization of proper Lie groupoids
About the proof

Reduction to the fixed point case
The fixed point case

Using multiplicative vector field

Look for multiplicative vector fields X̃ on G̃ with second
component ∂ε

X̃p,λ = Xλ
p + ∂λ

(each Xλ is a vector field on Gλ!).

Lemma

X̃ is a multiplicative vector field if and only if(each Xλ is
“compatible with s and u” and)

(dm̄λ)p,q(Xλ
p , Xλ

q ) = Xλ
m̄λ(p,q) − ξλ(p, q)

for all λ and for all (p, q) ∈ G[2]
λ .
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Linearization of proper Lie groupoids
About the proof

Reduction to the fixed point case
The fixed point case

Conclusion

Hence we have G[2]
λ 3 (p, q) 7→ ξλ(p, q) ∈ Tm̄λ(p,q)Gλ satisfying

the cocycle condition

(dm̄λ)(ξλ(u, k), ξλ(v , k)) = ξλ(u, v)− ξλ(m̄λ(u, k), m̄λ(v , k))

and we are looking for Gλ 3 p 7→ Xλ(p) ∈ TpGλ satisfying

(dm̄λ)p,q(Xλ
p , Xλ

q ) = Xλ
m̄λ(p,q) − ξλ(p, q).

... an this always has solution: use a Haar system and set:

Xλ
p =

∫ λ

s(p)
ξλ(mλ(p, q), q)dq ∈ TpGλ.
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and we are looking for Gλ 3 p 7→ Xλ(p) ∈ TpGλ satisfying

(dm̄λ)p,q(Xλ
p , Xλ

q ) = Xλ
m̄λ(p,q) − ξλ(p, q).

... an this always has solution: use a Haar system and set:

Xλ
p =

∫ λ

s(p)
ξλ(mλ(p, q), q)dq ∈ TpGλ.
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