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On the Nature of Transverse Poisson Structures to a Coadjoint Orbit

General Poisson structures

Notation

(M,P) - smooth/analytic, real, finite-dimensional Poisson
manifold.

Bundle morphism associated to P:

P] : T∗M −→ TM

such that < β,P](α) >= P(α, β).

Bracket associated to P:

{f , g} = P(df , dg)

Matrix of P in coordinates

P =

 {xi, xj}
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General Poisson structures

Equivalence

Definition
(M,P) and (N,Q) are (Poisson) equivalent if there exists a
diffeomorphism ϕ : M → N such that

ϕ∗P = Q.

Remarks:
if P, Q and ϕ are analytic then (M,P) and (N,Q) are
analytically-equivalent;
if P, Q and ϕ are smooth then (M,P) and (N,Q) are
smoothly-equivalent;
all these notions can be taken locally.
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General Poisson structures

Linear Poisson structures

Definition
If M = V a vector space, a Poisson structure P is said to be
linear if (V∗, {, }) is a Lie subalgebra of (C∞(M), {, }).

Equivalently, the expression of P in linear coordinates on V is
linear.

Remark: the notion of linear is usually stretched to affine
spaces

A = x0 + V

by taking linear coordinates on V as coords on A. A Poisson
structure on A is then said to be linear if its expression in such
coordinates is linear.
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General Poisson structures

Linear Poisson structures

Lie-Poisson structures

Conversely, if (g, [, ]) is a Lie algebra, then there is a linear
Poisson structure on M = g∗: the Lie-Poisson structure L.

Using natural identifications (TµM ∼= g∗,T∗µM ∼= g), the bundle
morphism at µ ∈ g∗ is:

L]µ : g −→ g∗

X 7−→ ad∗Xµ

All linear Poisson structures are of the form (g∗,L).
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General Poisson structures

Linear Poisson structures

Linear approximation

For general (M,P), and x a point of rank zero2, there is a linear
Poisson structure associated to (M,P).

Definition
The linear approximation to (M,P) at x is the (unique) linear
Poisson structure P(1)on TxM satisfying

{dfx, dgx}(1) = d ({f , g})x , ∀f , g ∈ C∞(M)

In natural coordinates on TxM, P(1) is just the 1st order Taylor
polynomial of P at x.

The dual space T∗x M is therefore a Lie algebra, the Lie algebra
associated to (M,P) at x.

2i.e., Px = 0
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General Poisson structures

Linear Poisson structures

Linearization problem

In the following x will always denote a zero-rank point.

Definition
(M,P) is said to be (smoothly/analytically) linearizable at x if
(M,P) is locally (smoothly/analytically) equivalent to (TxM,P(1)).

Answers to this linerization problem depend on:
the Lie algebra associated to (M,P) at x;
the category (smooth or analytic) of the equivalence;
on (M,P) itself.
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General Poisson structures

Linearization theorems

Theorem (Conn, 1984, 1985)

If the associated Lie algebra to (M,P) at x is semisimple,
then (M,P) is analytically linearizable at x;

If the associated Lie algebra to (M,P) at x is semisimple
and of compact type, then (M,P) is smoothly linearizable
at x.

Theorem (Dufour, 1990)

If the associated Lie algebra to (M,P) at x is R n Rn and
nonresonant, and rank(P) ≤ 2, then (M,P) is smoothly
linearizable at x.

Theorem (Dufour-Zung, 2002)

If the associated Lie algebra to (M,P) at x is aff(n), then (M,P)
is analytically linearizable at x.
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General Poisson structures

Polynomial Poisson structures

A polynomial Poisson structure on a vector space is defined
analogously.

Definition
A Poisson structure P on a vector space V, is said to be
polynomial if the expression of P in linear coordinates on V is
polynomial.

This definition can again be stretched to fit affine spaces

A = x0 + V
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General Poisson structures

Polynomialization

Given a Poisson structure (M,P) and x a zero-rank point, a
polynomial approximation to (M,P) at x (of degree n) can be
defined as P(n), the nth order Taylor polynomial of P at x.

Such polynomial approximation will generally fail to be Poisson

0 = [P1 + P2 + P3 + · · · ,P1 + P2 + P3 + · · · ] =
= [P1,P1]︸ ︷︷ ︸

0

+2 [P1,P2]︸ ︷︷ ︸
0

+ [P2,P2] + 2[P1,P3]︸ ︷︷ ︸
0

+2[P2,P3] + · · ·

Still...

Definition
A Poisson structure (M,P) is polynomializable at a zero-rank
point x, if it is (locally) equivalent to a polynomial Poisson
structure.
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Transverse Poisson structures

Transverse Poisson structures?

Most of these notions
linear/polynomial
linearizable/polynomializable

make sense and are not trivial in the family of transverse
Poisson structures (TPS) (to symplectic leaves of some
Poisson manifold).

TPS to symplectic leaves of Lie-Poisson manifolds (g∗,L)
have rank zero at the splitting point;
can be chosen to live on affine subspaces of g∗;
are, typically, rational functions of linear coordinates on the
affine subspace.
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Transverse Poisson structures

Weinstein’s splitting theorem

Theorem (Weinstein, 1983)

Given x ∈ (M,P) with rank(P)x = 2r, there exist:
(S, ω) symplectic manifold, dim S = 2r;
(N,T) Poisson manifold, codim N = 2r,

such that (M,P) is (locally) equivalent to (S, ω)× (N,T).

Remarks:
necessarily (N,T) has zero rank at the splitting point x;
if x is regular (i.e., rank(P) is constant around x) then T ≡ 0,
so we will consider only singular points;
a natural representative for (S, ω) is (Sx, ω) where

Sx is the symplectic leaf through x (set of points that can be
reached from x by flows of Hamiltonian vector fields);
ωy(u, v) = 〈(P])−1

y (v), u〉
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Transverse Poisson structures

TPS to a symplectic leaf

Natural questions:

Q1: how do we choose N?
Q2: how do we build T on N?

Answers:
A1: N can be any submanifold of M, transversal to S at x:

TxN ⊕ TxS = TxM

A2: T is built according to the following steps (Weinstein’s
construction, 1983):
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Transverse Poisson structures

TPS to a symplectic leaf

Step 1 due to transversality of N, the decomposition3

TyN ⊕ P]y(T
◦
y N) = TyM (1)

holds in a neighbourhood of x in N. Consider the
associated projection

πy : TyM → TyN (2)

Step 2 the bundle morphism T] is given by the composition

T∗y N TyN

T∗y M TyM
?

π∗y

-
P]y

6
πy

3W◦ denotes the annihilator of W ≤ V in V∗
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Transverse Poisson structures

TPS to a symplectic leaf

Theorem (Weinstein, 1983)

If x and x′ belong to the same symplectic leaf S and N and N′

intersect S transversally at a single point, then (N,T) and
(N′,T ′) are locally equivalent.

z x
2

y
2

+( )!=

N 
N’ 

x	
x’	


S 

Any (N,T) as in the splitting theorem is known as a transverse
Poisson structure to S.
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Transverse Poisson structures

TPS to a coadjoint orbit

We now restrict to the Lie-Poisson case M = g∗, P = L.

Recall the bundle morphism is

L]µ : g −→ g∗

X 7−→ ad∗Xµ

In this case
the symplectic leaf of µ is Oµ = Ad∗Gµ (coadjoint orbit of µ)

ker L]µ = gµ (isotropy subalgebra of µ);

TµOµ = L]µ(g) = g◦µ.
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Transverse Poisson structures

TPS to a coadjoint orbit

In this situation there is a (family of) natural choice(s) for N.

Transversality condition for N

TµN ⊕ TµOµ = Tµg∗

translates to

T◦µN ⊕ T◦µOµ = g −→ T◦µN ⊕ gµ = g

so T◦µN must be a complementary subspace (h) of gµ in g.

The most natural choice for N is the affine subspace of g∗

N = µ+ h◦

(with h⊕ gµ = g as vector spaces)
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Transverse Poisson structures

TPS to a coadjoint orbit

From now on we will consider

N = µ+ h◦

and the following notation/identifications will be used:

elements of h◦ will be denoted by ν;
Tµ+νN = h◦ ∼= g∗µ;
T∗µ+νN ∼= gµ;
T◦µ+νN ∼= h;

L]µ+ν

(
T◦µ+νN

) ∼= L]µ+ν(h) =: ad∗h(µ+ ν)
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Following Weinstein’s construction of T, and using the indicated
identifications one arrives at:

Proposition (C.-Fardilha, 2003)
The TPS to Oµ is given by:

T]µ+ν : gµ −→ g∗µ
X 7−→ πµ+ν(ad∗Xν)

where

πµ+ν : g∗ −→ h◦, ker (πµ+ν) = ad∗h(µ+ ν).
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Linearization of TPS

Remarks:

because a projection is involved, T will typically be a
rational function of ν;
P. Molino (1984) proved that

“the linear approximation to (N,T) at µ is the
Lie-Poisson structure on g∗µ”

Conn’s linearization theorem then translates to

Theorem (Conn)

If gµ is semisimple, then (N,T) is analytically linearizable at
µ;
If gµ is semisimple and of compact type, then (N,T) is
smoothly linearizable at µ.
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Example ( so(4)∗)

Take g∗ = so(4)∗.

Choose the usual basis for so(4):

X1 = E1,2 − E2,1, X2 = E1,3 − E3,1, X3 = E1,4 − E4,1,
X4 = E2,3 − E3,2, X5 = E2,4 − E4,2, X6 = E3,4 − E4,3.

and identify Xi ∈ so(4) with linear coordinate xi ∈ so(4)∗. In
these coordinates L is given by the matrix:

L =



. −x4 −x5 x2 x3 .
x4 . −x6 −x1 . x3
x5 x6 . . −x1 −x2
−x2 x1 . . −x6 x5
−x3 . x1 x6 . −x4
. −x3 x2 −x5 x4 .
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Example

Since det(L) = 0, points of rank 4 (which exist) are regular.

Singular points of rank 2 are of the form:

(a, b, c,−c, b,−a) or (a, b, c, c,−b, a)

(a, b, c not all zero).

Take µ = (a, b, c,−c, b,−a), c 6= 0. Then

gµ = 〈X1 + X6,X2 − X5,X3 + X4, cX4 − bX5 + aX6〉.

Choosing h = 〈X1,X2〉 the affine subspace N is given by

N = {(a, b, c + y1,−c + y2, b + y3,−a + y4) : yi ∈ R}
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Linearization of TPS

Example
Following the expression for T given in the proposition, we
arrive at:

T =


0 (2c+y1−y2)(y1+y2)

y2−c
y3(2c+y1−y2)

y2−c
b(c+y1−y2)(y1+y2)+cy3(c−y2)

y2−c

∗ 0 y4(2c+y1−y2)
y2−c − a(c+y1−y2)(y1+y2)+cy4(c−y2)

y2−c

∗ ∗ 0 (c+y1−y2)(ay3+by4)
y2−c

∗ ∗ ∗ 0


for the TPS to Oµ.
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Linearization of TPS

Concerning linearity of TPS

Remarks:

T is not linear nor polynomial on the chosen N;
Conn’s results can not be used because gµ is not
semisimple.

Natural questions:
Q3 under which conditions is there a choice of N = µ+ h◦

producing linear TPS to Oµ?
Q4 what happens if we consider different points of same

coadjoint orbit Oµ?
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Linearity of TPS

A3 The most natural answer was given by P. Molino and can
be proved using the previous proposition.

Theorem (Molino, 1984)
If h is a complementary subspace of gµ in g such that

[gµ, h] ⊂ h (3)

then (N = µ+ h◦,T) is linear.

Proof: under Molino’s condition (3) it’s easy to show that

ad∗Xν ∈ h◦, ∀X ∈ gµ, ν ∈ h◦.

Consequently T]µ+ν(X) = πµ+ν(ad∗Xν) = ad∗Xν, and the
result is linear4. 2

4coincides with the Lie-Poisson structure on g∗µ
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Linearity of TPS

Another answer (based on Molino’s condition):

Theorem (C.-Fardilha, 2003)
Let B : g× g→ R be any adgµ-invariant symmetric bilinear form.
If B|gµ×gµ

is nondegenerate, then (N = µ+ (g⊥µ )◦,T) is linear.

Remarks:
B is adgµ-invariant if:

B([X,Y],Z) + B(Y, [X,Z]) = 0, ∀X ∈ gµ,∀Y,Z ∈ g

g⊥µ stands for the orthogonal of gµ with respect to B.
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Corollary
If g is of compact type, then there is a linear TPS to any
coadjoint orbit Oµ of g∗.

Proof: on g there is a positive definite ad-invariant symmetric
bilinear form.

Its restriction to any subalgebra is nondegenerate and the
theorem can be used. 2

As a result, there is a linear TPS to the coadjoint orbit of every
µ ∈ so(4)∗.

The right choice for h (last example) would have been:

h = 〈c(X1 − X6) + a(X4 − X3), c(X2 + X5) + b(X4 − X3)〉
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This shows that, at the same µ, changing h can change the
nature of the TPS.
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Transverse Poisson structures

Linearity of TPS

Corollary

If µ ∈ g∗ is such that gµ is semisimple a, then there is a
linear TPS to Oµ.

If µ ∈ g∗ is such that Gµ (isotropy subgroup) is compact b,
then there is a linear TPS to Oµ.

ain this situation Conn’s theorem applies, but gives weaker answer
bit’s not enough to impose gµ of compact type

Proof: in the first situation, the Killing form of g will be
nondegenerate when restricted to gµ.

For the second case, the adjoint representation of Gµ on g will
be completely reducible. This gives h satisfying Molino’s
condition. 2
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Linearity of TPS

Corollary

If g is semisimple and µ ∈ g∗ is semisimple a, then there is a
linear TPS to Oµ.

ausing the Killing form to identify g∗ with g

Proof: if X ∈ g is associated to µ (via Killing form), then gµ is
the centralizer of X, z(X).

In this situation the restriction to z(X) of the Killing form of g is
nondegenerate. 2
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Linearity of TPS

A4 Concerning Q4:

Theorem (C.-Fardilha, 2010)

If µ and µ′ belong to the same coadjoint orbit O of (g∗,L) and if
there is a linear TPS to O at µ, then there is also a linear TPS
to O at µ′.

z x
2

y
2

+( )!=

x
2
y
2

z
3

+ + 1=

x
2
y
2

z
2

+ + 1=

N =μ + ho 

μ	


O 

μ’ = Ad*
g μ	


N’ = μ’ + Ad*
g ho 



On the Nature of Transverse Poisson Structures to a Coadjoint Orbit

Transverse Poisson structures

Linearity of TPS

A4 Concerning Q4:

Theorem (C.-Fardilha, 2010)

If µ and µ′ belong to the same coadjoint orbit O of (g∗,L) and if
there is a linear TPS to O at µ, then there is also a linear TPS
to O at µ′.

z x
2

y
2

+( )!=

x
2
y
2

z
3

+ + 1=

x
2
y
2

z
2

+ + 1=

N =μ + ho 

μ	


O 

μ’ = Ad*
g μ	


N’ = μ’ + Ad*
g ho 



On the Nature of Transverse Poisson Structures to a Coadjoint Orbit

Transverse Poisson structures

Linearity of TPS

A4 Concerning Q4:

Theorem (C.-Fardilha, 2010)

If µ and µ′ belong to the same coadjoint orbit O of (g∗,L) and if
there is a linear TPS to O at µ, then there is also a linear TPS
to O at µ′.

z x
2

y
2

+( )!=

x
2
y
2

z
3

+ + 1=

x
2
y
2

z
2

+ + 1=

N =μ + ho 

μ	


O 

μ’ = Ad*
g μ	


N’ = μ’ + Ad*
g ho 



On the Nature of Transverse Poisson Structures to a Coadjoint Orbit
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Polynomiality of TPS

Concerning the existence of a polynomial TPS to Oµ:

Theorem (Y. Oh, 1986)

If h is a subalgebra of g then (N = µ+ h◦,T) is polynomial (of
degree ≤ 2).

Conjecture by Damianou (1996)

Theorem (Cushman - Roberts, 2002)
If g is semisimple then there is a polynomial TPS to any Oµ.
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Polynomiality of TPS

Example ( e(3)∗)

Take g = e(3) = so(3) n R3.

Choosing a natural basis for e(3) and identifying Xi ∈ e(3) with
linear coordinate xi ∈ e(3)∗, L is given by the matrix:

L =



. x3 −x2 . x6 −x5
−x3 . x1 −x6 . x4
x2 −x1 . x5 −x4 .
. x6 −x5 . . .
−x6 . x4 . . .
x5 −x4 . . . .


Again det(L) = 0, and points of rank 4 (which exist) are regular.



On the Nature of Transverse Poisson Structures to a Coadjoint Orbit

Transverse Poisson structures

Polynomiality of TPS

Example ( e(3)∗)

Take g = e(3) = so(3) n R3.

Choosing a natural basis for e(3) and identifying Xi ∈ e(3) with
linear coordinate xi ∈ e(3)∗, L is given by the matrix:

L =



. x3 −x2 . x6 −x5
−x3 . x1 −x6 . x4
x2 −x1 . x5 −x4 .
. x6 −x5 . . .
−x6 . x4 . . .
x5 −x4 . . . .


Again det(L) = 0, and points of rank 4 (which exist) are regular.



On the Nature of Transverse Poisson Structures to a Coadjoint Orbit

Transverse Poisson structures

Polynomiality of TPS

Example ( e(3)∗)

Take g = e(3) = so(3) n R3.

Choosing a natural basis for e(3) and identifying Xi ∈ e(3) with
linear coordinate xi ∈ e(3)∗, L is given by the matrix:

L =



. x3 −x2 . x6 −x5
−x3 . x1 −x6 . x4
x2 −x1 . x5 −x4 .
. x6 −x5 . . .
−x6 . x4 . . .
x5 −x4 . . . .



Again det(L) = 0, and points of rank 4 (which exist) are regular.



On the Nature of Transverse Poisson Structures to a Coadjoint Orbit

Transverse Poisson structures

Polynomiality of TPS

Example ( e(3)∗)

Take g = e(3) = so(3) n R3.

Choosing a natural basis for e(3) and identifying Xi ∈ e(3) with
linear coordinate xi ∈ e(3)∗, L is given by the matrix:

L =



. x3 −x2 . x6 −x5
−x3 . x1 −x6 . x4
x2 −x1 . x5 −x4 .
. x6 −x5 . . .
−x6 . x4 . . .
x5 −x4 . . . .


Again det(L) = 0, and points of rank 4 (which exist) are regular.



On the Nature of Transverse Poisson Structures to a Coadjoint Orbit

Transverse Poisson structures

Polynomiality of TPS

Example
Singular points of rank 2 are of the form:

µ = (a, b, c, 0, 0, 0), a2 + b2 + c2 6= 0

For such µ we have

gµ = 〈aX1 + bX2 + cX3,X4,X5,X6〉.

Assuming c 6= 0 we can choose h = 〈X1,X2〉 and the affine
subspace N is given by

N = {(a, b, c + y1, y2, y3, y4) : yi ∈ R}
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Example
Computing the relevant projection we arrive at:

T =


0 c(cy3−by4+y1y3)

c+y1

c(ay4−cy2−y1y2)
c+y1

c(by2−ay3)
c+y1

∗ 0 − y 2
4

c+y1

y3y4
c+y1

∗ ∗ 0 − y2y4
c+y1

∗ ∗ ∗ 0


for the TPS to Oµ.

The linear approximation at µ is:

T (1) =


0 cy3 − by4 ay4 − cy2 by2 − ay3
∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0
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Polynomiality of TPS

Remarks:

there is no possibility of finding a linear TPS (or even of
linearizing T) since T and T(1) are not locally-equivalent;
regarding polynomiality, the results of Y. Oh and Cushman
& Roberts do not apply;
there are additional problems as T(2),T(3),T(4), . . . are not
Poisson unless a = b = 0.
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Polynomiality of TPS

Example

In view of the last item we will consider µ = (0, 0, 1, 0, 0, 0),
which gives (on same N)

T =


0 y3 −y2 0

∗ 0 − y 2
4

1+y1

y3y4
1+y1

∗ ∗ 0 − y2y4
1+y1

∗ ∗ ∗ 0



By parametrizing all possible complements h (9 parameters
required) we proved that any polynomial TPS would have to be
linear and hence does not exist.
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Polynomialization of TPS in e(3)∗

Example

Although there is no polynomial TPS to Oµ in e(3)∗, the
diffeomorphism

ϕ(y1, y2, y3, y4) =
(

1− 1
1 + y1

, y2(1 + y1), y3(1 + y1), y4(1 + y1)
)

is an equivalence between T and the polynomial Poisson
structure:

P =


0 z3(1− z1)2 −z2(1− z1)2 0
∗ 0 −(1− z1)

(
z 2

2 + z 2
3 + z 2

4

)
0

∗ ∗ 0 0
∗ ∗ ∗ 0


showing that the TPS to Oµ is polynomializable (to degree 3).
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