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Abstract
We introduce the logarithmic Poisson structures and background, on a commutative
ring A with singularities along an ideal I of A, and we prove that such structure
generalized Poisson structure induced by logsymplectic. We also prove that each loga-
rithmic principal Poisson structure along I induce Lie-Rinehart structure on ΩA(log I)
with image in the module of logarithmic principal derivations. We define the notion of
logarithmic Poisson cohomology and used it to prove Vaisman condition of prequanti-
zation of such Poisson structures.

1. Basic Definitions

In this section we will recall known structures such as Lie-Rinehart algebra structures
on the module ΩA of Kälher differentials of a commutative Poisson Poisson algebra
A. Follows E. Okassa [1] and J. Huebshmann [2], we define Poisson cohomology
of a Poisson algebra (A, {−,−}). We also recall the notion of Kälher logarithmic
differentials and logarithmic differential.

Let (A, {−,−}) be a Poisson algebra and I an ideal ofA generated by S = {u1, ...., up} ⊂
A and L an A-module which is also a Lie algebra with Lie bracket [−,−]. A struc-
ture of Lie-Rinehart algebra on L is an Lie algebra homomorphism ρ : L → DerA
satisfying compatibly condition.

[l1, al2] = ρ(l1)(a)l2 + a[l1, l2] (1)

More generally, let P be anA-algebra and L a P -module of Lie. A structure of P -Lie-
Rinehart algebra on L is a Lie algebra homomorphism ρ : L→ Diff1(P, P ) satisfying
condition (1); where Diff1(P, P ) denoted the module of first order differential opera-
tors on P.

Let H : ΩA → DerA be the Hamiltonian map associated to {−,−} and ω the Poisson
2-form{−,−}. For all a, b ∈ A, we define

[da, db] = d{a, b} (2)

The following is well known.

THEOREM 1.1. If (A, {−,−}) is commutative Poisson al-
gebra, then:

a) (ΩA, [−,−]) is a Lie Algebra

b)H : ΩA → DerA is a structure of Lie-Rinehart algebra
on ΩA.

From this result, we deduce the following.

DEFINITION 1.2. A Poisson cohomology of (A, {−,−})
is that associated to the representation H.
Observation. Since {−,−} satisfy Jacobi identity, [ω, ω]SN = 0 and then 42 = 0
where [−,−]SN is the Schouten-Nijenhuis bracket, 4 = iωd − diω. Therefore, for all
α ∈ Ωp

a, β ∈
⊕

i=1 Ωi, we have

[α, β]4 = [α, β]ω = (−1)p(4(αβ)−4(α)β − (−1)pα4 (β))

(the bracket induced by the 2-order differential operator4) satisfy the Jacobian iden-
tity (see [3]). The bracket defined by (2) is then [α, β]4.
For all adu, bdv ∈ ΩA, we have:

[adu, bdv] = a{u, b}dv + b{a, v}du + abd({u, v}) (3)

2. Logarithmic Poisson structures
and first properties

DEFINITION 2.1. A derivation D of A is saying logarith-
mic along I if D(I) ⊂ I. We denoted DerA(log I)

By definition, DerA(log I) is a Lie sub-algebra of DerA and for all D ∈ DerA, u ∈ S
we have; uD(u) ∈ A. It result that the set ̂DerA(log I) of logarithmic derivations δ
such that for all u ∈ S, δ(u) ∈ uA is not trivial. In this note, we will called logarithmic
principal derivation along I each element of ̂DerA(log I). It is well known that

DerA
σ
∼=

//HomA(ΩA,A) (4)

We denote ΩA(log I) theA-module generated by {dui
u1
, 1 5 i 5 p}∪ΩA. By definition

ΩA(log I) ∼= (A−A[S ]){du
u
, u ∈ S} ⊕ ΩA (5)

ΩA(log I) is called theA-module of Kälher logaririthmic differential along I. By con-
struction, it is submodule of

(I∗ ∪ 1A)−1ΩA ∼= (I∗ ∪ 1A)−1A⊗ ΩA. (6)

which is the module of rational kälher differential with poles along S.

Observation. Let a0 ∈ A− (OA ∪ S) and u ∈ S. Since
1

a0
/∈ S−1A, then:

da0
a0

+
du

du
∈ (I∗ ∪ 1A)−1A−ΩA(log I). It follow from definition of logarithmic forms

giving in [4] which clarify and comp let the one giving in [5] that the submodule of
elements α of (I∗ ∪ 1A)−1ΩA such that there is u ∈ S, uα ∈ [A− I]−1A⊗ ΩA is the
suitable module of Kälher logarithmic differentials along I. In other hand, it follow

from definition of ̂DerA(log I) that for all δ ∈ ̂DerA(log I),
1

u
δ(u) ∈ A. Therefore,

the following map

σ̂ : ̂DerA(log I)→ HAom(ΩA,A), a
du

u
7→ a

u
σ(δ)(du) (7)

is an A-modules homomorphism.

PROPOSITION 2.2. Let A,S, I as above. The map and σ̂
is an isomorphism of A-modules.

Proof. In is easy calculation. See [4] for more explanation.

Let us introduce the definition of the main structure of this section.

DEFINITION 2.3. A Poisson structure {−,−} onA is log-
arithmic along A if for all a ∈ A, the map

δa : x 7→ {a, x}

is element of DerA(log I).

It is saying logarithmic principal if δa ∈ ̂DerA(log I).

THEOREM 2.4. if {−,−} is logarithmic principal Pois-
son structure along I on an integral algebra A, then for all

u, v ∈ S, 1

uv
{u, v} ∈ A.

Proof. According to above definition of logarithmic principal derivation, for all a ∈ A
and u ∈ S, there is ϕ1(a) ∈ A such that {a, u} = uϕ1(a). Therefore, uϕ1(v) =

{u, v} = vϕ2(u). Then there is a2 ∈ A such that ϕ2(u) = va2. Therefore
1

uv
{u, v} =

a2.

When {−,−} is a logarithmic principal Poisson structure along I, then (A, I, {−,−})
is called logarithmic principal

COROLLARY 2.5. Let {−,−} be a logarithmic principal Poisson structure on A
and H the associated Hamiltonian map. H(ΩA) ⊂ ̂DerA(log I) and for and for all

u ∈ S, 1

u
H(du) =

1

u
{u,−} ⊂ ̂DerA(log I)).

We define H̃ : ΩA(log I)→ ̂DerA(log I)) by

H̃(a
du

u
+ bdv) =

a

u
{u,−} + b{v,−}

DEFINITION 2.6. H̃ is called logarithmic Hamiltonian map
of logarithmic principal Poisson structure {−,−}.

Observation. Let (A, I, {−,−}) be a logarithmic Poisson algebra; where S = {ui; i =
0.}. Denote by MS := S−1A. It is well known that {a, b

u
}s =

1

u
{a, b} − b

u2
{a, u} is

the unique prolongation of {−,−} on the fraction field of A. By definition, elements
of MS are in the form m =

a

un
;n ∈ Z. Let mp =

ap
uλp

and mq =
aq
uλq

two elements of

MS. We have:
dmp

mp
= −λp

du

u
+
dap
ap
∈ ΩA(log I). Since H̃(

dmp

mp
) ∈ ̂DerA(log I)),

then we can computed the its image by σ̂; which is element of the dual of ΩA(log I).
We defined

{mp,mq}S =


σ̂(H̃

dmp

mp
)(
dmq

mq
) if mi ∈MS −A

σ̂(Hdmp)(
dmq

mq
) if mq ∈MS −A and mp ∈ A

σ̂(Hdmp)(dmq) if mi ∈ A

(8)

We have:

PROPOSITION 2.7. The bracket {−,−}S satisfy the following

1) {−,−}D is R-bilinear skew-symmetric.

2)

{mp,mq}S =


1

mpmq
{mp,mq}s if mi ∈MS −A

1

mq
{mp,mq}s if mq ∈MS −A and mp ∈ A

{mp,mq} if mi ∈ A

(9)

3) {−,−}S is a logarithmic derivation of MS −A in each components

4) For all mp,mq ∈MS −A,
1

mpmq
{mp,mq}s ∈ A

COROLLARY 2.8. {−,−}S is a Lie bracket on MS.

Proof. In the case where ifmi ∈MS −A, we have:

{u, {v, a}S}S = {u, 1

v
{v, a}s}D

=
1

uv
{u, {v, a}s}s −

1

uv2
{u, v}s{v, a}s

Therefore
{u, {v, a}S}S+ 	=

1

uv
{u, {v, a}s}s −

1

uv2
{u, v}s{v, a}s +

1

uv
{v, {a, u}s}s

− 1

u2v
{a, u}s{v, u}s +

1

uv
{a, {u, v}s}s −

1

uv2
{u, v}s{a, v}s −

1

u2v
{u, v}s{a, u}s

With the same methods, we prove other cases.

We suppose that S = {ui, 1 5 i 5 p} and that I is generated by S. Consider the

bracket [−,−]S defined by:

[
du

u
,
dv

v
]S = d(

1

uv
{u, v}); [da,

du

u
]S = d(

1

u
{a, u}) and [da, bb]S = d({a, b}) For all

u, v ∈ S and a, b ∈ A− S

PROPOSITION 2.9. For all u, v ∈ S and a, b ∈ A−S, the
bracket [−,−]S is a Lie bracket on ΩA(log I).

3. Logarithmic Poisson cohomology
Example of computation

In this section we will prove that logarithmic Hamiltonian map is a Lie-Rinehart struc-
ture on ΩA(log I) and we compute some example of associate cohomology which is
called logarithmic cohomology.
We begin the section with the following proposition.

PROPOSITION 3.1. Let {−,−}S be a logarithmic principal Poisson bracket along
I and H̃ the associated logarithmic Hamiltonian map. H̃ satisfy the following prop-
erties:

a) It is a Lie algebra homomorphism

b) It satisfy equation (1) for all l1, l2 ∈ ΩA(log I).

DEFINITION 3.2. Logarithmic Poisson cohomology of the logarithmic principal Pois-
son structure {−,−} is the cohomology associated to the representation H̃ of ΩA(log I).

We will denoted cohomology groups by H∗SP .

PROPOSITION 3.3. Let A be the algebra of polynomials in two variables C[X, Y ]
and S = {X}. The bracket {X, Y } = X is logarithmic principal Poisson bracket
along the ideal generated by S. Its logarithmic Poisson cohomology is H0

SP
∼= C,

H1
SP
∼= C, H2

SP
∼= 0A.

PROPOSITION 3.4. Let A be the algebra of polynomials in three variables A =
C[x, y, z] The bracket {x, y} = 0, {x, z} = 0, {y, z} = xyz is logarithmic principal
Poisson bracket along the ideal generated by S = {xyz}. We have:

H3
PS
∼= C[y]⊕ zC[z]⊕ xC[x]

And the associated Poisson cohomology is:

H3
P
∼= C[y]⊕ zC[z]⊕ xC[x]⊕ xyC[y]⊕ xyC[x]⊕
xzC[x]⊕ xzC[z]⊕ yzC[y]⊕ yzC[z]

4. Application of logarithmic Poisson cohomology

In this section, we give a little application of logarithmic Poisson cohomology to pre-
quantization. We suppose that X is finale complex dimensional manifold and D is a
reduced divisor ofX. As in [5], we denoted ΩX,p(logD) the sheaf of germs of logarith-
mic form with poles alongD.We also suppose thatD is defined bay holomorphic map
h. By definition, the usual De Rham complex of X is sub complex of the logarithmic
De Rham complex.

0 d //OX d //
1∧

ΩX(logD)
d // ... d //

i∧
ΩX(logD)

d //
i∧

ΩX(logD)
d // ... (10)

A Poisson structure on X is saying logarithmic along D if it is logarithmic along
ideal of definition I of D. Therefore the associated Poisson tensor π is a section of∧2DerX(logD) where DerX,p(logD) is the sheaf of germs at p ∈ D of logarithmic
vector fields. If there is a logarithmic Poisson structure on X, then, the logarithmic
Hamiltonian map induce a morphism in cohomology

H∗Dr−S → H∗PS

Where H∗Dr−S is the cohomology of the complex 10. Therefore, we have the following
sequence of morphism

H2(X,Z) //H2(X) //H∗Dr−S //H2
PS (11)

DEFINITION 4.1. A closed section of
∧2 ΩX(logD) is saying integral if its cohomol-

ogy class is in image of the composite map

H2(X,Z) //H2(X) //H2
Dr−S

A logarithmic Poisson cocycle is saying integral if its cohomology class is in the image
of

THEOREM 4.2. Suppose that the divisor D satisfy hypotheses of Theorem 2.9 in [5]

and that Definition 1.2 of [5] is modify as in [4]. A closed element ω =
dh

h
∧res(ω)+η

of
∧2 ΩX(logD) is integral iff res(ω) is exact and there is an integral element [ω0] of

H2(X) such that [η] = [ω0].

We can state now the main result of this section.

THEOREM 4.3. Let D be as in Theorem 2.9 of [5]. A logarithmic principal Poisson
structure on X; defined by π is prequantizable iff there exist an integral logarithmic
2-form ω0 and a logarithmic vector field δ such that

π + ∂(δ) = H̃(ω0).

This theorem is the logarithmic version of Vaisman integral Theorem see [6].
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