

Dongho Joseph University of Maroua, Cameroon

Abstract

We introduce the logarithmic Poisson structures and background, on a commutative ring \mathcal{A} with singularities along an ideal \mathcal{I} of \mathcal{A} , and we prove that such structure generalized Poisson structure induced by logsymplectic. We also prove that each logarithmic principal Poisson structure along \mathcal{I} induce Lie-Rinehart structure on $\Omega_{\mathcal{A}}(\log \mathcal{I})$ with image in the module of logarithmic principal derivations. We define the notion of logarithmic Poisson cohomology and used it to prove Vaisman condition of prequantization of such Poisson structures.

. Basic Definitions

In this section we will recall known structures such as Lie-Rinehart algebra structures on the module Ω_A of Kälher differentials of a commutative Poisson Poisson algebra \mathcal{A} . Follows E. Okassa [1] and J. Huebshmann [2], we define Poisson cohomology of a Poisson algebra $(\mathcal{A}, \{-, -\})$. We also recall the notion of Kälher logarithmic differentials and logarithmic differential.

Let $(\mathcal{A}, \{-, -\})$ be a Poisson algebra and \mathcal{I} an ideal of \mathcal{A} generated by $S = \{u_1, ..., u_p\} \subset \mathcal{I}$ A and L an A-module which is also a Lie algebra with Lie bracket [-, -]. A structure of Lie-Rinehart algebra on L is an Lie algebra homomorphism $\rho: L \to Der_{\mathcal{A}}$ satisfying compatibly condition.

$$[l_1, al_2] = \rho(l_1)(a)l_2 + a[l_1, l_2] \tag{1}$$

More generally, let P be an A-algebra and L a P-module of Lie. A structure of P-Lie-Rinehart algebra on L is a Lie algebra homomorphism $\rho: L \to \text{Diff}_1(P, P)$ satisfying condition (1); where $\text{Diff}_1(P, P)$ denoted the module of first order differential operators on P.

Let $H: \Omega_{\mathcal{A}} \to Der_{\mathcal{A}}$ be the Hamiltonian map associated to $\{-, -\}$ and ω the Poisson 2-form $\{-, -\}$. For all $a, b \in \mathcal{A}$, we define

$$[da, db] = d\{a, b\}$$
(2)

The following is well known.

THEOREM 1.1. If $(\mathcal{A}, \{-, -\})$ is commutative Poisson algebra, then:

a) $(\Omega_{\mathcal{A}}, [-, -])$ is a Lie Algebra b) $H : \Omega_{\mathcal{A}} \to Der_{\mathcal{A}}$ is a structure of Lie-Rinehart algebra on $\Omega_{\mathcal{A}}$.

From this result, we deduce the following.

DEFINITION 1.2. A Poisson cohomology of $(\mathcal{A}, \{-, -\})$ is that associated to the representation H.

Observation. Since $\{-,-\}$ satisfy Jacobi identity, $[\omega,\omega]_{SN} = 0$ and then $\Delta^2 = 0$ where $[-, -]_{SN}$ is the Schouten-Nijenhuis bracket, $\triangle = i_{\omega}d - di_{\omega}$. Therefore, for all $\alpha \in \Omega^p_{\dashv}, \beta \in \bigoplus_{i \ge 1} \Omega^i$, we have

 $[\alpha,\beta]_{\triangle} = [\alpha,\beta]_{\omega} = (-1)^p (\triangle(\alpha\beta) - \triangle(\alpha)\beta - (-1)^p \alpha \triangle(\beta))$

(the bracket induced by the 2-order differential operator \triangle) satisfy the Jacobian identity (see [3]). The bracket defined by (2) is then $[\alpha, \beta]_{\triangle}$. For all $adu, bdv \in \Omega_A$, we have:

> $[adu, bdv] = a\{u, b\}dv + b\{a, v\}du + abd(\{u, v\})$ (3)

2. Logarithmic Poisson structures and first properties

DEFINITION 2.1. A derivation D of A is saying logarithmic along \mathcal{I} if $D(\mathcal{I}) \subset \mathcal{I}$. We denoted $Der_{\mathcal{A}}(\log \mathcal{I})$

On logarithmic Poisson cohomology and applications.

By definition, $Der_{\mathcal{A}}(\log \mathcal{I})$ is a Lie sub-algebra of $Der_{\mathcal{A}}$ and for all $D \in Der_{\mathcal{A}}, u \in \mathcal{S}$ we have; $uD(u) \in \mathcal{A}$. It result that the set $Der_{\mathcal{A}}(\log \mathcal{I})$ of logarithmic derivations δ such that for all $u \in S$, $\delta(u) \in uA$ is not trivial. In this note, we will called logarithmic principal derivation along \mathcal{I} each element of $Der_{\mathcal{A}}(\log \mathcal{I})$. It is well known that

$$Der_{\mathcal{A}} \xrightarrow{\sigma} \mathcal{H}om_{\mathcal{A}}(\Omega_{\mathcal{A}}, \mathcal{A})$$
 (4)

We denote $\Omega_{\mathcal{A}}(\log \mathcal{I})$ the \mathcal{A} -module generated by $\{\frac{du_i}{u_i}, 1 \leq i \leq p\} \cup \Omega_{\mathcal{A}}$. By definition

$$\Omega_{\mathcal{A}}(\log \mathcal{I}) \cong (\mathcal{A} - \mathcal{A}[\mathcal{S}])\{\frac{du}{u}, u \in \mathcal{S}\} \oplus \Omega_{\mathcal{A}}$$
(5)

 $\Omega_{\mathcal{A}}(\log \mathcal{I})$ is called the \mathcal{A} -module of Kälher logaririthmic differential along \mathcal{I} . By construction, it is submodule of

$$(\mathcal{I}^* \cup 1_{\mathcal{A}})^{-1} \Omega_{\mathcal{A}} \cong (\mathcal{I}^* \cup 1_{\mathcal{A}})^{-1} \mathcal{A} \otimes \Omega_{\mathcal{A}}.$$
 (6)

which is the module of rational kälher differential with poles along S.

Observation. Let $a_0 \in \mathcal{A} - (O_{\mathcal{A}} \cup \mathcal{S})$ and $u \in \mathcal{S}$. Since $\frac{1}{a_0} \notin \mathcal{S}^{-1}\mathcal{A}$, then:

 $\frac{da_0}{du} + \frac{du}{du} \in (\mathcal{I}^* \cup 1_{\mathcal{A}})^{-1}\mathcal{A} - \Omega_{\mathcal{A}}(\log \mathcal{I}).$ It follow from definition of logarithmic forms giving in [4] which clarify and comp let the one giving in [5] that the submodule of elements α of $(\mathcal{I}^* \cup 1_{\mathcal{A}})^{-1}\Omega_{\mathcal{A}}$ such that there is $u \in \mathcal{S}, u\alpha \in [\mathcal{A} - \mathcal{I}]^{-1}\mathcal{A} \otimes \Omega_{\mathcal{A}}$ is the suitable module of Kälher logarithmic differentials along \mathcal{I} . In other hand, it follow from definition of $\widetilde{Der_{\mathcal{A}}(\log \mathcal{I})}$ that for all $\delta \in \widetilde{Der_{\mathcal{A}}(\log \mathcal{I})}, \frac{1}{-}\delta(u) \in \mathcal{A}$. Therefore, the following map

$$\hat{\sigma}: Der_{\mathcal{A}}(\log \mathcal{I}) \to \mathcal{H}_{\mathcal{A}}om(\Omega_{\mathcal{A}}, \mathcal{A}), a\frac{du}{u} \mapsto \frac{a}{u}\sigma(\delta)(du)$$
(7)

is an \mathcal{A} -modules homomorphism.

PROPOSITION 2.2. Let $\mathcal{A}, \mathcal{S}, \mathcal{I}$ as above. The map and $\hat{\sigma}$ is an isomorphism of A-modules.

Proof. In is easy calculation. See [4] for more explanation.

Let us introduce the definition of the main structure of this section.

DEFINITION 2.3. A Poisson structure $\{-, -\}$ on \mathcal{A} is logarithmic along \mathcal{A} if for all $a \in \mathcal{A}$, the map

$$\delta_a: x \mapsto \{a, x\}$$

is element of $Der_{\mathcal{A}}(\log \mathcal{I})$ *.* It is saying logarithmic principal if $\delta_a \in Der_{\mathcal{A}}(\log \mathcal{I})$.

THEOREM 2.4. if $\{-,-\}$ is logarithmic principal Poisson structure along \mathcal{I} on an integral algebra \mathcal{A} , then for all $u, v \in \mathcal{S}, \frac{1}{uv} \{u, v\} \in \mathcal{A}.$

Proof. According to above definition of logarithmic principal derivation, for all $a \in A$ and $u \in S$, there is $\varphi_1(a) \in A$ such that $\{a, u\} = u\varphi_1(a)$. Therefore, $u\varphi_1(v) = u\varphi_1(a)$. $\{u,v\} = v\varphi_2(u)$. Then there is $a_2 \in \mathcal{A}$ such that $\varphi_2(u) = va_2$. Therefore $\frac{1}{uv}\{u,v\} = 1$

When $\{-, -\}$ is a logarithmic principal Poisson structure along \mathcal{I} , then $(\mathcal{A}, \mathcal{I}, \{-, -\})$ is called logarithmic principal

COROLLARY 2.5. Let $\{-,-\}$ be a logarithmic principal Poisson structure on \mathcal{A} and H the associated Hamiltonian map. $H(\Omega_A) \subset Der_A(\log \mathcal{I})$ and for and for all $u \in \mathcal{S}, \frac{1}{u}H(du) = \frac{1}{u}\{u, -\} \subset \widetilde{Der_{\mathcal{A}}(\log \mathcal{I})}).$

We define $\tilde{H} : \Omega_{\mathcal{A}}(\log \mathcal{I}) \to Der_{\mathcal{A}}(\log \mathcal{I}))$ by

$$\tilde{H}(a\frac{du}{u}+bdv) = \frac{a}{u}\{u,-\} + b\{v,-\}$$

DEFINITION 2.6. *H* is called logarithmic Hamiltonian map of logarithmic principal Poisson structure $\{-, -\}$.

We defined

We have:

2)

Therefore

PROPOSITION 3.1. Let $\{-, -\}_S$ be a logarithmic principal Poisson bracket along \mathcal{I} and \tilde{H} the associated logarithmic Hamiltonian map. \tilde{H} satisfy the following properties:

Observation. Let $(\mathcal{A}, \mathcal{I}, \{-, -\})$ be a logarithmic Poisson algebra; where $S = \{u^i; i \geq i\}$ 0.}. Denote by $M_S := S^{-1}\mathcal{A}$. It is well known that $\{a, \frac{b}{u}\}_s = \frac{1}{u}\{a, b\} - \frac{b}{u^2}\{a, u\}$ is the unique prolongation of $\{-, -\}$ on the fraction field of \mathcal{A} . By definition, elements of M_S are in the form $m = \frac{a}{u^n}$; $n \in \mathbb{Z}$. Let $m_p = \frac{a_p}{u_p^{\lambda}}$ and $m_q = \frac{a_q}{u_q^{\lambda}}$ two elements of M_S . We have: $\frac{dm_p}{m_p} = -\lambda_p \frac{du}{u} + \frac{da_p}{a_p} \in \Omega_{\mathcal{A}}(\log \mathcal{I})$. Since $\tilde{H}(\frac{dm_p}{m_p}) \in Der_{\mathcal{A}}(\log \mathcal{I})$, then we can computed the its image by $\hat{\sigma}$; which is element of the dual of $\Omega_{\mathcal{A}}(\log \mathcal{I})$.

$$\{m_p, m_q\}_S = \begin{cases} \hat{\sigma}(\tilde{H}\frac{dm_p}{m_p})(\frac{dm_q}{m_q}) & \text{if} \quad m_i \in M_S - \mathcal{A} \\ \hat{\sigma}(Hdm_p)(\frac{dm_q}{m_q}) & \text{if} \quad m_q \in M_S - \mathcal{A} \quad \text{and} \quad m_p \in \mathcal{A} \\ \hat{\sigma}(Hdm_p)(dm_q) & \text{if} \quad m_i \in \mathcal{A} \end{cases}$$

$$\tag{8}$$

PROPOSITION 2.7. The bracket $\{-, -\}_S$ satisfy the following

1) $\{-,-\}_D$ is *R*-bilinear skew-symmetric.

$$\{m_p, m_q\}_S = \begin{cases} \frac{1}{m_p m_q} \{m_p, m_q\}_s & \text{if} \quad m_i \in M_S - \mathcal{A} \\ \frac{1}{m_q} \{m_p, m_q\}_s & \text{if} \quad m_q \in M_S - \mathcal{A} \quad \text{and} \quad m_p \in \mathcal{A} \\ \{m_p, m_q\} & \text{if} \quad m_i \in \mathcal{A} \end{cases}$$
(9)

3) $\{-,-\}_S$ is a logarithmic derivation of $M_S - A$ in each components

4) For all $m_p, m_q \in M_S - \mathcal{A}, rac{1}{m_p m_q} \{m_p, m_q\}_s \in \mathcal{A}$ **COROLLARY 2.8.** $\{-, -\}_S$ is a Lie bracket on M_S .

Proof. In the case where if $m_i \in M_S - A$, we have:

$$\{u, \{v, a\}_S\}_S = \{u, \frac{1}{v}\{v, a\}_s\}_D = \frac{1}{uv}\{u, \{v, a\}_s\}_s - \frac{1}{uv^2}\{u, v\}_s\{v, a\}_s$$

 $\{u, \{v, a\}_S\}_S + \circlearrowleft = \frac{1}{uv} \{u, \{v, a\}_s\}_s - \frac{1}{uv^2} \{u, v\}_s \{v, a\}_s + \frac{1}{uv} \{v, \{a, u\}_s\}_s$ $-\frac{1}{u^{2}v}\{a,u\}_{s}\{v,u\}_{s}+\frac{1}{uv}\{a,\{u,v\}_{s}\}_{s}-\frac{1}{uv^{2}}\{u,v\}_{s}\{a,v\}_{s}-\frac{1}{u^{2}v}\{u,v\}_{s}\{a,u\}_{s}$ With the same methods, we prove other cases.

We suppose that $S = \{u_i, 1 \leq i \leq p\}$ and that \mathcal{I} is generated by S. Consider the bracket $[-, -]_S$ defined by:

 $[\frac{du}{u}, \frac{dv}{v}]_S = d(\frac{1}{uv}\{u, v\}); [da, \frac{du}{u}]_S = d(\frac{1}{u}\{a, u\}) \text{ and } [da, bb]_S = d(\{a, b\}) \text{ For all }$ $u, v \in S$ and $a, b \in \mathcal{A} - S$

PROPOSITION 2.9. For all $u, v \in S$ and $a, b \in A - S$, the bracket $[-, -]_S$ is a Lie bracket on $\Omega_A(\log \mathcal{I})$.

3. Logarithmic Poisson cohomology Example of computation

In this section we will prove that logarithmic Hamiltonian map is a Lie-Rinehart structure on $\Omega_{\mathcal{A}}(\log \mathcal{I})$ and we compute some example of associate cohomology which is called logarithmic cohomology.

We begin the section with the following proposition.

a) It is a Lie algebra homomorphism

b) It satisfy equation (1) for all $l_1, l_2 \in \Omega_A(\log \mathcal{I})$.

DEFINITION 3.2. Logarithmic Poisson cohomology of the logarithmic principal Poisson structure $\{-, -\}$ is the cohomology associated to the representation H of $\Omega_{\mathcal{A}}(\log \mathcal{I})$.

We will denoted cohomology groups by H_{SP}^* .

PROPOSITION 3.3. Let \mathcal{A} be the algebra of polynomials in two variables $\mathbb{C}[X,Y]$ and $S = \{X\}$. The bracket $\{X, Y\} = X$ is logarithmic principal Poisson bracket along the ideal generated by S. Its logarithmic Poisson cohomology is $H^0_{SP} \cong \mathbb{C}$, $H_{SP}^1 \cong \mathbb{C}, \ H_{SP}^2 \cong 0_{\mathcal{A}}.$

PROPOSITION 3.4. Let \mathcal{A} be the algebra of polynomials in three variables $\mathcal{A} =$ $\mathbb{C}[x, y, z]$ The bracket $\{x, y\} = 0, \{x, z\} = 0, \{y, z\} = xyz$ is logarithmic principal Poisson bracket along the ideal generated by $S = \{xyz\}$. We have:

And the associated Poisson cohomology is:

4. Application of logarithmic Poisson cohomology

In this section, we give a little application of logarithmic Poisson cohomology to prequantization. We suppose that X is finale complex dimensional manifold and D is a reduced divisor of X. As in [5], we denoted $\Omega_{X,p}(\log D)$ the sheaf of germs of logarithmic form with poles along D. We also suppose that D is defined bay holomorphic map h. By definition, the usual De Rham complex of X is sub complex of the logarithmic De Rham complex.

$$0 \xrightarrow{d} \mathcal{O}_X \xrightarrow{d} \bigwedge^1 \Omega_X(\log D) \xrightarrow{d} \cdots \xrightarrow{d} \bigwedge^i \Omega_X(\log D) \xrightarrow{d} \bigwedge^i \Omega_X(\log D) \xrightarrow{d} \cdots$$
(10)

A Poisson structure on X is saying logarithmic along D if it is logarithmic along ideal of definition \mathcal{I} of D. Therefore the associated Poisson tensor π is a section of $\bigwedge^2 Der_X(\log D)$ where $Der_{X,p}(\log D)$ is the sheaf of germs at $p \in D$ of logarithmic vector fields. If there is a logarithmic Poisson structure on X, then, the logarithmic Hamiltonian map induce a morphism in cohomology

sequence of morphism

THEOREM 4.2. Suppose that the divisor D satisfy hypotheses of Theorem 2.9 in [5] and that Definition 1.2 of [5] is modify as in [4]. A closed element $\omega = \frac{dh}{h} \wedge res(\omega) + \eta$ of $\bigwedge^2 \Omega_X(\log D)$ is integral iff $res(\omega)$ is exact and there is an integral element $[\omega_0]$ of $H^2(X)$ such that $[\eta] = [\omega_0]$.

We can state now the main result of this section. **THEOREM 4.3.** Let D be as in Theorem 2.9 of [5]. A logarithmic principal Poisson structure on X; defined by π is prequantizable iff there exist an integral logarithmic 2-form ω_0 and a logarithmic vector field δ such that

Aknowledgements. I would like to thank Vladimir Rubtsov for suggesting these topics and for always useful discussions about this work.

References

- [1] E.Okassa algèbres de Poisson, acte de la troisième rencontre de Géométrie et Topologie d'Afrique Centrale.
- [2] J. Huebschmann. Poisson cohomology and quantization, J. Reine. Angew. Math., vol. 408, pages 57-113, 1990

- [4] J. Dongho, Logarithmic Poisson cohomology: example of calculation and appli*cation to prequantization*, arXiv:1012.4683v2[math.DG]
- [5] K. Saito, Theory of logarithmic differential forms and logarithmic vector fields, Sec. IA, J.Fac.Sci. Univ. Tokyo (1980) 265–291.
- [6] I. Vaisman. On the geometric quantization of Poisson manifolds. J. Math. Phys 32(1991), 3339-3345.

Tan Vie

 $H^3_{PS} \cong \mathbb{C}[y] \oplus z\mathbb{C}[z] \oplus x\mathbb{C}[x]$

 $H_P^3 \cong \mathbb{C}[y] \oplus z\mathbb{C}[z] \oplus x\mathbb{C}[x] \oplus xy\mathbb{C}[y] \oplus xy\mathbb{C}[x] \oplus$ $xz\mathbb{C}[x] \oplus xz\mathbb{C}[z] \oplus yz\mathbb{C}[y] \oplus yz\mathbb{C}[z]$

$$H^*_{Dr-S} \to H^*_{PS}$$

Where H^*_{Dr-S} is the cohomology of the complex 10. Therefore, we have the following

$$H^2(X,\mathbb{Z}) \longrightarrow H^2(X) \longrightarrow H^*_{Dr-S} \longrightarrow H^2_{PS}$$
 (11)

DEFINITION 4.1. A closed section of $\bigwedge^2 \Omega_X(\log D)$ is saying integral if its cohomology class is in image of the composite map

$$H^2(X,\mathbb{Z}) \longrightarrow H^2(X) \longrightarrow H^2_{Dr-S}$$

A logarithmic Poisson cocycle is saying integral if its cohomology class is in the image

$$\pi + \partial(\delta) = \tilde{H}(\omega_0).$$

This theorem is the logarithmic version of Vaisman integral Theorem see [6].

[3] J. Koszul, Crochet de Schouten-Nijenhuis, Société Mathématique de France, Astérisque, hors série, 1985, p.257-271.