Poisson Reduction

Chiara Esposito

Department of Mathematical Sciences, University of Copenhagen Universitetsparken 5, 2100, Copenhagen, Denmark

We want to show that, given a Poisson Lie group acting on a Poisson manifold in such a way that action preserves the Poisson structure, we can reduce this manifold to another Poisson manifold. It is well known that, given a Lie group G acting on a symplectic manifold M, the orbit space M/G has a reduced Poisson structure. The Marsden-Weinstein reduction [1] gives a description of the symplectic leaves on M/G in case of an action induced by an equivariant momentum map. By applying such a prescription, it is possible to reduce the phase space and obtain another symplectic manifold in which the symmetries are divided out. We want to generalize this procedure to the case of a Poisson Lie group G acting on a Poisson manifold M. Our main result is the definition of a foliation of the reduced space M/G that inherits a Poisson structure from M. Given a Poisson action $\Phi: G \times M \to M$ with a momentum map $\mu: M \to G^*$, we define a G-invariant foliation \mathcal{F} of M. The leaves are not Poisson manifolds, but considering the action of G on the space of the leaves, we can prove that the Poisson structure on M induces a Poisson structure on the orbit space $\mathcal{L}/G_{\mathcal{L}}$. This shows that we can reduce M to another Poisson manifold $\mathcal{L}/G_{\mathcal{L}}$ that we define as the **Poisson reduced space**.

Poisson manifold and Splitting Theorem

Poisson structure on orbit space

Recall some basic notions of Poisson manifolds which will be used in the following. A **Poisson manifold** is a pair $(M, \{\cdot, \cdot\})$, where M is a manifold and $\{\cdot, \cdot\}$ is a bilinear operation on $C^{\infty}(M)$ such that $(C^{\infty}(M), \{\cdot, \cdot\})$ is a Lie algebra and $\{\cdot, \cdot\}$ is a derivation in each argument. The pair $(C^{\infty}(M), \{\cdot, \cdot\})$ is called **Poisson algebra** [2]. In terms of local coordinates (x_i) on M

$$\{f,g\}(m) = \pi^{ij} \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j}.$$

where the tensor π^{ij} is called the **Poisson tensor** of M. The vector bundle map $\pi^{\sharp}: T^*M \to TM$ naturally associated to π is defined by

$$\pi(m)(\alpha_m,\beta_m) = \langle \alpha_m, \pi^{\sharp}(\beta_m) \rangle.$$

Intuitively, any Poisson manifold is obtained by gluing together symplectic manifolds. More precisely, the local structure of a Poisson manifold at $O \in M$ is described by the **Splitting Theorem** [3], [4]: on a Poisson manifold (M, π) , any point $O \in M$ has a neighborhood with coordinates (q, p, y) centered at O, such that

$$\pi = \sum_{i} \frac{\partial}{\partial q_{i}} \wedge \frac{\partial}{\partial p_{i}} + \frac{1}{2} \sum_{i,j} \phi_{ij}(y) \frac{\partial}{\partial y_{i}} \wedge \frac{\partial}{\partial y_{j}}, \quad \phi_{ij}(0) = 0.$$

For any point O of the Poisson manifold, if (q, p, y) are the normal coordinates, then the symplectic leaf through O is given locally by the equation y = 0. Hence, for any point $m \in M$, we have a symplectic leaf through it. Locally, this leaf has canonical coordinates (q, p), where the bracket is given by canonical symplectic relations. The term

$$\frac{1}{2} \sum_{i,j} \phi_{ij}(y) \frac{\partial}{\partial y_i} \wedge \frac{\partial}{\partial y_j}$$

is called the **transverse Poisson structure** of dimension *l*. Locally, the transverse structure is determined by the structure functions $\pi_{ij}(y) = \{y_i, y_j\}$ which vanishes at y = 0.

Given a Poisson Lie group G acting on a Poisson manifold M, if the orbit space is a smooth manifold, it still carries a Poisson structure such that the natural projection pr : $M \to M/G$ is a Poisson mapping [6].

Consider a Poisson Lie group (G, π_G) acting freely on a Poisson manifold (M, π) . Assume that this is a Poisson action induced by an equivariant momentum map $\mu : M \to G^*$. From the Splitting Theorem we know that, on the symplectic leaves of the dual Poisson Lie group (G^*, π^*) , the transverse Poisson structure $\pi_{ij}^*(y) = \{y_i, y_j\}$ vanishes. Since the orbits of the dressing action of G on G^* are the same as symplectic leaves of π^* , then the generic orbit $G \cdot x$ is a closed submanifold of G^* with local transversal coordinates y_i and the Poisson structure π^* has zero transversal structure on it. Moreover, the momentum map is a submersion, then the image of Mis an open neighborhood of $G \cdot x$.

Let us define the set of functions $H_i \in C^{\infty}(M)$ as a pullback by μ of the transversal coordinates y_i to the orbit on G^*

$$H_i := y_i \circ \boldsymbol{\mu}.$$

Since $\{H_i, H_j\}$ vanish on the preimage $\mu^{-1}(G \cdot x)$ and using the fact that we can rewrite the one-form $\alpha_{\xi} = \mu^*(\theta_{\xi})$ in terms of dH_i , we get an expression of the infinitesimal generator of the action as a linear combination of Hamiltonian vector fields:

$$\xi_M = \pi^{\sharp}(\boldsymbol{\mu}^*(\alpha_{\xi})) = \sum_i c_i(\xi) \{H_j, \cdot\}.$$

Using this observation, we can easily review the procedure of Poisson reduction [6]. In fact, let $f, g \in C^{\infty}(M)^G$, then $\xi_M[f] = \xi_M[g] = 0$ for any $\xi \in \mathfrak{g}$. Using the relation above, we get

 $\xi_M[\{f,g\}] = 0.$

Hence $\{f, g\}$ is G-invariant and we can conclude that $C^{\infty}(M)^G$ is a Lie subalgebra in $C^{\infty}(M)$.

Poisson Reduction for Poisson Lie group actions

Poisson action and Momentum map

A **Poisson Lie group** (G, π) is a Lie group equipped with a Poisson structure π such that the multiplication $G \times G \to G$ is a Poisson map, where $G \times G$ is given the product Poisson structure. In the following we will consider G compact, connected and simply connected.

The action of (G, π_G) on (M, π) is called **Poisson action** if the map $\Phi : G \times M \to M$ is Poisson, i.e. preserves the Poisson structure, where $G \times M$ is given the product Poisson structure $\pi_G \oplus \pi$. Let $\Phi: G \times M \to M$ be a Poisson action of a Poisson Lie group (G, π_G) on the Poisson manifold (M,π) . Let G^* be the dual Poisson Lie group of G. For each $\xi \in \mathfrak{g}$, let θ_{ξ} be the left invariant 1-form on G^* with value ξ at e and $\xi_M \in \Lambda^1(M)$ the infinitesimal generator of the action. Given the map $\alpha : \mathfrak{g} \to \Omega^1(M)$, the dual map of α defines a \mathfrak{g}^* -valued one-form on M by $\alpha_{\xi} = \alpha(\xi)$ that satisfies the Maurer-Cartan equation.

A momentum map [5] is a map $\mu : M \to G^*$ such that

$$\xi_M = i_{lpha_\xi} \pi^{\sharp}$$

where $\alpha_{\xi} = \mu^*(\theta_{\xi})$ is a \mathfrak{g}^* -valued one-form on M and μ^* is the cotangent lift of μ .

The dressing action of G on G^* is a notable example of Poisson action, where the momentum mapping is given by the identity map. It's important to recall that the symplectic leaves of G(resp., G^*) are the connected components of the orbits of the dressing action of G^* (resp., G). Recall that a momentum map is G-equivariant if and only if it is a Poisson map, i.e. $\mu_*\pi = \pi_{G^*}$.

Consider the \mathfrak{g}^* -valued one-form α_{ξ} defined by μ such that $\xi_M = i_{\alpha_{\xi}} \pi^{\sharp}$ for $\xi \in \mathfrak{g}$. The distribution $\{\alpha_{\mathcal{E}}|\xi \in \mathfrak{g}\}$ defines a *G*-invariant foliation \mathcal{F} on *M*. In fact, considering the distribution \mathcal{D}_{α} spanned by the vector fields in the kernel of the one-forms α_{ξ} , the foliation \mathcal{F} associated to the distribution \mathcal{D}_{α} has the property that for each $m \in M$, with \mathcal{L} passing through m,

$T_m \mathcal{L} = \mathcal{D}_\alpha(m).$

Since α_{ξ} is a linear combination of dH_i , it is obvious that \mathcal{F} is given by the kernel of dH_i . Let $\mathcal{L} = \mu^{-1}(x)$. The leaf \mathcal{L} is not a Poisson submanifold but we can prove that, considering the action of G on the space of leaves, the quotient $\mathcal{L}/G_{\mathcal{L}}$ inherits a Poisson structure by M, where

$$G_{\mathcal{L}} = \{ g \in G | g \cdot \mathcal{L} = \mathcal{L} \}$$

is the stabilizer of the action of G on \mathcal{L} .

Consider $x \in G^*$ a regular value of μ ; the preimage $N = \mu^{-1}(G \cdot x)$ of the symplectic orbit of G in G^* is a closed G-invariant submanifold of M. By definition, H_i are defined locally in a G-invariant open neighborhood U of $N = \mu^{-1}(G \cdot x)$.

Let \mathcal{I} be the ideal generated by H_i . We can show that \mathcal{I} is well defined and is closed under Poisson bracket. Finally, notice the following identifications

 $C^{\infty}(\mathcal{L}/G_{\mathcal{L}}) = C^{\infty}(N/G) = (C^{\infty}(U)/\mathcal{I})^{G}.$

Under the assumption of compactness of G we can also identify $(C^{\infty}(U)/\mathcal{I})^G$ with $(C^{\infty}(U)^G + C^{\infty}(U)^G)$ \mathcal{I}/\mathcal{I} and show that the Poisson bracket of M induces a well defined Poisson bracket on $(C^{\infty}(U)^G +$ $\mathcal{I})/\mathcal{I}.$

We can conclude that, given a free Poisson action of (G, π_G) on a Poisson manifold (M, π) with equivariant momentum map $\mu: M \to G^*$, the orbit space $\mathcal{L}/G_{\mathcal{L}}$ has a Poisson structure induced by π .

References

[1] J. Marsden and A. Weinstein, "Reduction of symplectic manifolds with symmetry," Rep. Math. Phys., 1974.

[2] I. Vaisman, Lectures on the Geometry of Poisson Manifolds. Birkhäuser Verlag, 1994.

[3] A. C. de Silva and A. Weinstein, *Geometrical models of Non Commutative Algebras*. American Mathematical Society, 1999.

[4] A.Weinstein, "The local structure of poisson manifolds," Journal of Differential Geometry, 1983.

[5] J-H.Lu, Multiplicative and Affine Poisson structure on Lie groups. PhD thesis, University of California (Berkeley), 1990.

[6] M. A. Semenov-Tian-Shansky, "Dressing transformations and poisson lie group actions," Publ. RIMS, Kyoto University, vol. 21, pp. 1237–1260, 1985.