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Goals

Understand non-commutative integrable systems on
Poisson manifolds.

Describe obstructions to the existence of global
action-angle variables.
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Integrable systems

Integrable systems: definition

Definition

An integrable system on a symplectic manifold (M2n, ω) is a
hamiltonian system Xh admitting a family of first integrals {f1, . . . , fn}
satisfying:

1 involution: {fi , fj} = 0 for all i , j ;

2 independence: df1 ∧ · · · ∧ dfn 6= 0.

This definition involves naturally the Poisson bracket, not the symplectic
form: ⇒ Poisson manifolds.

Such a system can be integrated by quadratures. There are other
examples of systems integrated by quadratures where the Poisson
brackets do not commute: ⇒ non-commutative integrable systems.
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Integrable systems

Integrable systems: example (“normal form”)

Let M = T ∗Tn with canonical symplectic form:

ω =
n∑

i=1

dsi ∧ dθi

Any h = h(s1, . . . , sn) defines an integrable system with first
integrals the action variables (s1, . . . , sn).

The angle variables (θ1, . . . , θn) evolve linearly in time.

How far is an integrable system from this example?
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Integrable systems

Integrable systems: existence of normal form

Arnold-Liouville Theorem: under connecteness and
compactness assumptions every integrable systems is locally of
this form.

Duistermaat: Obstructions to the existence of global
action-angle variables can be described.

Rui Loja Fernandes IST

Global action-angle variables for non-commutative integrable systems



Classical Integrable systems Non-commutative integrable systems

Integrable systems

Integrable systems: existence of normal form

Arnold-Liouville Theorem: under connecteness and
compactness assumptions every integrable systems is locally of
this form.

Duistermaat: Obstructions to the existence of global
action-angle variables can be described.

Rui Loja Fernandes IST

Global action-angle variables for non-commutative integrable systems



Classical Integrable systems Non-commutative integrable systems

Integrable systems

Integrable systems: existence of normal form

Arnold-Liouville Theorem: under connecteness and
compactness assumptions every integrable systems is locally of
this form.

Duistermaat: Obstructions to the existence of global
action-angle variables can be described.

Rui Loja Fernandes IST

Global action-angle variables for non-commutative integrable systems



Classical Integrable systems Non-commutative integrable systems

Integrable systems

Integrable systems: existence of normal form

Arnold-Liouville Theorem: under connecteness and
compactness assumptions every integrable systems is locally of
this form.

Duistermaat: Obstructions to the existence of global
action-angle variables can be described.

The local problem, the global problem and their solutions are best
described using groupoid language.
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Lagrangian fibrations, Poisson fibrations & Groupoid actions

Integrable systems & fibrations

To every integrable system (f1, . . . , fn) on a symplectic manifold
(M2n, ω) there is associated a Lagrangian fibration:

φ : M2n → Rn, x 7→ (f1(x), . . . , fn(x))

Proposition

Conversely, every Lagrangian fibration

φ : (M2n, ω)→ Bn

is locally of this form.

Notice that these are Poisson fibrations if we equip the base with the
trivial bracket:

φ : (M2n, ω−1)→ (Bn, π ≡ 0)
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Lagrangian fibrations, Poisson fibrations & Groupoid actions

Poisson fibrations & Groupoids

Every complete Poisson fibration φ : (M, πM)→ (B, πB) gives rise to:

A Lie algebroid action of T ∗B on φ : M → B:

α 7→ π]M(φ∗α).

A symplectic groupoid action of Σ(B) on φ : M → B.
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Lagrangian fibrations, Poisson fibrations & Groupoid actions

Poisson fibrations & Groupoids

Every complete Poisson fibration φ : (M, πM)→ (B, πB) gives rise to:

A Lie algebroid action of T ∗B on φ : M → B:

α 7→ π]M(φ∗α).

A symplectic groupoid action of Σ(B) on φ : M → B.

Proposition

For a Lagragian fibration with compact connected fibers, the kernel of
the symplectic action T ∗B ⇒ B on the fibration φ : M → B is a
Lagrangian, full rank, lattice Λ ⊂ T ∗B.
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Lagrangian fibrations, Poisson fibrations & Groupoid actions

Poisson fibrations & Groupoids

Conclusion

For any Lagrangian fibration φ : (M, ω)→ B with compact, connected
fibers:

(i) There exists a full rank, Lagrangian, lattice Λ ⊂ T ∗B;

(ii) T ∗B/Λ ⇒ B is a symplectic groupoid integrating (B, πB = 0)
which acts freely and properly in a symplectic manner in the
fibration φ : (M, ω)→ B.

These facts form the basis to understand the existence of both
local and global normal forms of Lagrangian fibrations/integrable
systems.
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Groupoid actions and canonical forms

Groupoid actions and canonical forms

Proposition

Given a Poisson action of a Poisson groupoid G ⇒ B on a Poisson
fibration φ : M → B, every (local) coisotropic section σ : B → M
determines a (local) Poisson map:

G → M, g 7→ g · σ(s(g)).

Proof. An exercise in coisotropic calculus!

Corollary (Arnol’d-Liouville Theorem)

Every Lagrangian fibration is locally isomorphic to (T ∗Tn, ωcan)→ Rn.
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Groupoid actions and canonical forms

Groupoid actions and global canonical forms

Obstructions to triviality of a Lagrangian fibration φ : M → B:

1 Vanishing of Hamiltonian monodromy: The holonomy of the
cover Λ→ B must be trivial (obstruction for the Tn-fibration to be
a principal Tn-bundle).

2 Vanishing of the Lagrangian Chern class: the class
c(φ) ∈ Ȟ(B; ΓLagr(T ∗B/Λ)) must be trivial (obstruction to
existence of a global Lagrangian section).

⇒ (H. Duistermaat, 1983) obstructions to existence of global
action-angle variables
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Groupoid actions and canonical forms

Groupoid actions and global canonical forms

We would like to implement this program for non-commutative
integrable systems (relax the commutativity condition on the first
integrals);

We would like to study singularities of integrable systems (relax
the independence condition on the first integrals).
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Non-commutative integrable systems

Non-commutative integrable systems: definition

Definition
A non-commutative integrable system of rank r on a Poisson manifold
(Mm, π) is a hamiltonian system Xh admitting a family of first integrals
{f1, . . . , fs}, r + s = m, satisfying:

1 involution: {fi , fj} = 0 for all 1 ≤ i ≤ r and 1 ≤ j ≤ s;

2 independence: df1 ∧ · · · ∧ dfs 6= 0.

We shall also assume the non-degeneracy condition:

the hamiltonian vector fields Xf1 , . . . ,Xfr are independent.

Note: When r = s we obtain a classical integrable system on a symplectic
manifold.
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Non-commutative integrable systems

Non-commutative integrable systems: examples

- Non-commutative integrable systems are integrable by quadratures.

- Examples of non-commutative integrable systems include:

Natural mechanical systems such as the Kepler system and the
Euler-Poinsot rigid body.

Classes of systems invariant under a hamiltonian group action
(collective motions)

- Non-commutative integrable systems are examples of
superintegrable systems (motion occurs in lower dimension tori).
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Non-commutative integrable systems

Non-commutative integrable systems: example
(“normal form”)

Let M = T ∗Tr × Rs−r with Poisson structure:

ω =
r∑

i=1

∂

∂si ∧
∂

∂θi +
s−r∑

j,k=1

ϕjk (z)
∂

∂z j ∧
∂

∂zk

Any h = h(s1, . . . , sr ) defines an integrable system with first
integrals the action variables (s1, . . . , sr ).

The angle variables (θ1, . . . , θr ) evolve linearly in time.
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Non-commutative integrable systems

Non-commutative integrable systems: existence of
normal form

Local normal form: by the work of Laurent-Gengoux, Miranda
and Vanhaecke, under connecteness and compactness
assumptions, every non-commutative integrable system is
locally of this form (Arnold-Liouville Theorem).

What are the obstructions to the existence of global action-angle
variables?
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Non-commutative integrable systems

Non-commutative integrable systems: existence of
normal form

Local normal form: by the work of Laurent-Gengoux, Miranda
and Vanhaecke, under connecteness and compactness
assumptions, every non-commutative integrable system is
locally of this form (Arnold-Liouville Theorem).

What are the obstructions to the existence of global action-angle
variables?

Note: In a fundamental paper, Dazord and Delzant have study in
detail the case where M is symplectic.
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Isotropic fibrations & groupoid actions

Non-commutative integrable systems & fibrations

To every non-commutative integrable system there is associated
two Poisson fibrations:

(M, πM)
φ //

ψ %%KKKKKKKKKK
(Rs, πB)

q

��

x � φ//
�

ψ &&LLLLLLLLLLLL (f1(x), . . . , fs(x))

(Rr ,0) (f1(x), . . . , fr (x))

The fibers of these fibrations are isotropic/coisotropic since they
satisfy:

Ker dφ = π]M(Ker dψ)0.

Note: The choice of commuting functions f1, . . . , fr may vary, so the
large fibration is not fixed.
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Isotropic fibrations & groupoid actions

Definition of abstract non-commutative integrable
systems

Definition

A fibration φ : (Mm, πM)→ (Bs, πB) is called a non-degenerate
isotropic fibration or an abstract non-commutative integrable system
of rank r := m − s if there is a r -distribuition D ⊂ TB such that:

π](φ∗(D0)) = Ker dφ.

Notes:

When (M, πM) is symplectic, the distribuition D is uniquely
defined and the definition corresponds to Delzant and Dazord
notion of symplectically complete isotropic fibrations.

In the Poisson case, there can be several choices of D. Notice
that we always have Imπ]B ⊂ D (equivalently, D0 ⊂ Kerπ]B).
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Canonical form for a non-commutative integrable system

Abstract non-commutative integrable systems &
groupoids

Given an abstract non-commutative integrable system φ : M → B we
obtain a

A Lie algebroid action of D0 ⊂ T ∗B on φ : M → B:

α 7→ π]M(φ∗α).

A groupoid action of G(D0) = (D0,+) on φ : M → B.
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Canonical form for a non-commutative integrable system

Abstract non-commutative integrable systems &
groupoids

Given an abstract non-commutative integrable system φ : M → B we
obtain a

A Lie algebroid action of D0 ⊂ T ∗B on φ : M → B:

α 7→ π]M(φ∗α).

A groupoid action of G(D0) = (D0,+) on φ : M → B.

Proposition

For an abstract non-commutative integrable system φ : M → B with
compact connected fibers, the kernel of the action D0 ⇒ B on the
fibration φ : M → B is a full rank, lattice Λ ⊂ D0.
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Canonical form for a non-commutative integrable system

Canonical forms of the fibration

We conclude that an abstract non-commutative integrable system
φ : M → B with compact connected fibers

is locally isomorphic to D0/Λ→ B (hence it is a Tr -fibration);

is globally isomorphic to D0/Λ→ B, provided the Chern class
vanishes (i.e., if it has a global section).

is a principal Tr -bundle if the monodromy of Λ is trivial.
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Canonical form for a non-commutative integrable system

Canonical forms of the fibration

We conclude that an abstract non-commutative integrable system
φ : M → B with compact connected fibers

is locally isomorphic to D0/Λ→ B (hence it is a Tr -fibration);

is globally isomorphic to D0/Λ→ B, provided the Chern class
vanishes (i.e., if it has a global section).

is a principal Tr -bundle if the monodromy of Λ is trivial.

. . . but the Poisson geometry is more complicated because D0 ⇒ M
is not a Poisson groupoid.
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Canonical form for a non-commutative integrable system

Canonical form for the Poisson structure

Proposition

Fix a (local) coisotropic section σ : B → M of the abstract
non-commutative integrable system φ : M → B. Then:

1 The Dirac structure L := σ∗Lgraph(πM ) takes the form:

L = graph(πB)⊕ hor,

where hor is an integrable distribuition such that TB = D ⊕ hor.

2 The map D0 3 α 7→ α · σ(p(α)) ∈ M gives a local Poisson
diffeomorphism if we equip D0 with the Poisson structure whose
graph is eωp∗L. Moreover, Λ becomes coisotropic.
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Canonical form for a non-commutative integrable system

Canonical form for the Poisson structure: global
obstructions

⇒ Local normal form (Arnol’d-Liouville theorem for non-commutative
integrable systems).

⇒ Obstructions to existence of global action-angle variables:

1 trivial monodromy of Λ;

2 trivial (ordinary) Chern class c ∈ H2(B,Λ);

3 existence of a global coisotropic section σ : B → M;

(e.g., the Poisson stucture πB must admit an extension to a special
Dirac structure as before).
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Canonical form for a non-commutative integrable system

Work in progress

give examples where all possible combinations of the
obstructions above exist;

determine if existence of global isotropic section can be
expressed in cohomological terms;

understand if existence of certain type of singularities imply
vanishing of (some of) the obstructions

. . .
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