Implicit difference equations

D. Iglesias Ponte

Poisson Geometry and its applications June 2011

arXiv:1011.3724

D. Iglesias Ponte - University of La Laguna

- Implicit differential equations. Integrability
- Lie groupoids
- Implicit difference equations. Extracting the integrable part
- Application: Discrete Lagrangian mechanics

Definition

- An *implicit first-order differential equation* on a manifold *Q* is a submanifold *D* ⊂ *TQ*.
- A curve γ : I → Q is called a *solution* of an implicit differential equation D ⊂ TQ if γ̇(s) ∈ D for any s ∈ I.
- *D* is said to be *explicit* if it is the image of a differentiable vector field $X : U \rightarrow TQ$ ($U \subset Q$ open submanifold).

- An implicit differential equation is said to be *integrable at* $v \in D$ if there is a solution $\gamma : I \to Q$ such that $\dot{\gamma}(0) = v$.
- It is *integrable in a subset* $S \subset D$ if it is integrable at each $v \in S$.
- It is *integrable* if it is integrable at each $v \in D$.

$$Q = \mathbb{R}^{2}$$

$$D = \{(x, y, \dot{x}, \dot{y}) \in TQ | y = 0, \dot{x} = 0, \dot{y} > 0\}$$
has no solutions
$$D = \{(x, y, \dot{x}, \dot{y}) \in TQ | x^{2} + y^{2} + (\dot{x} - 1)^{2} + \dot{y}^{2} = 1\}$$
is not integrable in the set
$$\{(x, y, \dot{x}, \dot{y}) \in TQ | x^{2} + y^{2} = 1, x \neq 0, \dot{x} = 1, \dot{y} = 0$$

- An implicit differential equation is said to be *integrable at* $v \in D$ if there is a solution $\gamma : I \to Q$ such that $\dot{\gamma}(0) = v$.
- It is *integrable in a subset* $S \subset D$ if it is integrable at each $v \in S$.
- It is *integrable* if it is integrable at each $v \in D$.

$$Q = \mathbb{R}^{2}$$

$$D = \{(x, y, \dot{x}, \dot{y}) \in TQ | y = 0, \dot{x} = 0, \dot{y} > 0\}$$
has no solutions
$$D = \{(x, y, \dot{x}, \dot{y}) \in TQ | x^{2} + y^{2} + (\dot{x} - 1)^{2} + \dot{y}^{2} = 1\}$$
is not integrable in the set
$$\{(x, y, \dot{x}, \dot{y}) \in TQ | x^{2} + y^{2} = 1, x \neq 0, \dot{x} = 1, \dot{y} = 0\}$$

Integrability algorithm for implicit differential equations

 $D \subset TQ$ implicit differential equation

$$\begin{split} D^0 &= D, \quad C^0 = \tau_Q(D), \\ D^k &= D^{k-1} \cap TC^{k-1}, \quad C^k = \tau_Q(D^k), \end{split}$$

 $\tau_Q : TQ \rightarrow Q$ is the canonical projection.

$$D^k \subseteq D^{k-1}$$
, $C^{k-1} \subseteq C^k$, for any k

Assume that there exists k_f such that $D^{k_f} = D^{k_f-1}$.

Theorem

 $D^{k_f} \subseteq D$ is the (possibly empty) integrable part of D

Integrability algorithm for implicit differential equations

 $D \subset TQ$ implicit differential equation

$$\begin{split} D^0 &= D, \quad C^0 = \tau_Q(D), \\ D^k &= D^{k-1} \cap TC^{k-1}, \quad C^k = \tau_Q(D^k), \end{split}$$

 $\tau_Q : TQ \rightarrow Q$ is the canonical projection.

$$D^k \subseteq D^{k-1}$$
, $C^{k-1} \subseteq C^k$, for any k

Assume that there exists k_f such that $D^{k_f} = D^{k_f-1}$.

Theorem

 $D^{k_f} \subseteq D$ is the (possibly empty) integrable part of D

Integrability algorithm for implicit differential equations

 $D \subset TQ$ implicit differential equation

$$\begin{split} D^0 &= D, \quad C^0 = \tau_Q(D), \\ D^k &= D^{k-1} \cap TC^{k-1}, \quad C^k = \tau_Q(D^k), \end{split}$$

 $\tau_Q : TQ \rightarrow Q$ is the canonical projection.

$$D^k \subseteq D^{k-1}$$
, $C^{k-1} \subseteq C^k$, for any k

Assume that there exists k_f such that $D^{k_f} = D^{k_f-1}$.

Theorem

 $D^{k_f} \subseteq D$ is the (possibly empty) integrable part of D

Relation with Lagrangian mechanics

$L: TP \rightarrow \mathbb{R}$ Lagrangian function

$S_L = A_P(dL(TP)) \subseteq T(T^*P)$ implicit differential equation

First step of integrability algorithm will give us the solution of the Euler-Lagrange equations.

$$S_{L} = \left\{ (q^{i}, \frac{\partial L}{\partial v^{i}}; v^{i}, \frac{\partial L}{\partial q^{i}}) \right\},$$

$$(S_{L})^{1} = \left\{ \left(q^{i}, \frac{\partial L}{\partial v^{i}}; v^{i}, \frac{\partial L}{\partial q^{i}} \right) \middle| \dot{q}^{i} = v^{i}, \quad \frac{d}{dt} \left(\frac{\partial L}{\partial v^{i}} \right) = \frac{\partial L}{\partial q^{i}} \right\}.$$

Relation with Lagrangian mechanics

 $L: TP \rightarrow \mathbb{R}$ Lagrangian function

 $S_L = A_P(dL(TP)) \subseteq T(T^*P)$ implicit differential equation

First step of integrability algorithm will give us the solution of the Euler-Lagrange equations.

$$S_{L} = \left\{ (q^{i}, \frac{\partial L}{\partial v^{i}}; v^{i}, \frac{\partial L}{\partial q^{i}}) \right\},$$

$$(S_{L})^{1} = \left\{ \left(q^{i}, \frac{\partial L}{\partial v^{i}}; v^{i}, \frac{\partial L}{\partial q^{i}} \right) \middle| \dot{q}^{i} = v^{i}, \quad \frac{d}{dt} \left(\frac{\partial L}{\partial v^{i}} \right) = \frac{\partial L}{\partial q^{i}} \right\}.$$

 $\tau : E \to Q$ Lie algebroid with anchor map $\rho : E \to TQ$ and $S \subset E$ be a submanifold of *E* (not necessarily a vector subbundle)

$$S_0 = S$$

$$S_1 = S_0 \cap \rho^{-1} (T\tau(S_0))$$

$$\vdots$$

$$S_{k+1} = S_k \cap \rho^{-1} (T\tau(S_k))$$

$$\vdots$$

In our case, $S_k = \rho^{-1}(TQ_k)$ (equivalently, $Q_k = \tau(S_k)$).

Lie groupoids

 $\mathcal{G} \rightrightarrows M$

• $\mathbf{s} : \mathcal{G} \to M$ and $\mathbf{t} : \mathcal{G} \to M$ source and target map

$$\mathcal{G}_2 = \{(g, h) \in \mathcal{G} \times \mathcal{G} \mid \mathbf{s}(g) = \mathbf{t}(h)\}$$

- $m: \mathcal{G}_2 \to \mathcal{G}$ multiplication
 - $\mathbf{s}(gh) = \mathbf{s}(h)$ and $\mathbf{t}(gh) = \mathbf{t}(g)$, for any $(g, h) \in \mathcal{G}_2$,
 - g(hk) = (gh)k, for any $g, h, k \in G$
- $\epsilon : M \to \mathcal{G}$ identity section
 - $g\epsilon(\mathbf{s}(g)) = g$ and $\epsilon(\mathbf{t}(g))g = g$, for any $g \in \mathcal{G}$.
- $\iota : \mathcal{G} \to \mathcal{G}$ inversion

-
$$gg^{-1} = \epsilon(\mathbf{t}(g))$$
 and $g^{-1}g = \epsilon(\mathbf{s}(g))$, for any $g \in \mathcal{G}$.

Examples of Lie groupoids

1.- Lie groups (Lie groupoid over a single point)

2.- Banal groupoid $M \times M \rightrightarrows M$ Lie groupoid

$\mathbf{s}: M \times M \to M$; $(x, y) \mapsto y$
$\mathbf{t}: M \times M \to M$; $(x, y) \mapsto x$
$m: (M \times M)_2 \to M \times M$; $((x, y), (y, z)) \mapsto (x, z)$

1.- Lie groups (Lie groupoid over a single point)

2.- *Banal groupoid* M smooth manifold $\Rightarrow M \times M \rightrightarrows M$ Lie groupoid

$\mathbf{s}: M \times M \to M$;	$(x, y) \mapsto y$
$\mathbf{t}: M \times M \to M$;	$(x, y) \mapsto x$
$m: (M \times M)_2 \to M \times M$;	$((x, y), (y, z)) \mapsto (x, z)$

Lie algebroid associated with Lie groupoid G

 $\mathcal{G} \rightrightarrows M$ Lie groupoid $\Rightarrow \tau : A\mathcal{G} \rightarrow M$ Lie algebroid

$$(A\mathcal{G})_{x} := \operatorname{Ker} \mathbf{d}_{\epsilon(x)} \mathbf{t}$$
$$\operatorname{Sec}(\tau) \cong \mathfrak{X}^{L}(\mathcal{G})$$
$$X \in \operatorname{Sec}(\tau) \Longrightarrow \overleftarrow{X}(g) = (\mathbf{d}_{\epsilon(\mathbf{s}(g))} l_{g})(X(\mathbf{s}(g))),$$

 $(\llbracket \cdot, \cdot \rrbracket, \rho)$ Lie algebroid on $A\mathcal{G} \to M$

$$\begin{cases} \overleftarrow{[X_1, X_2]]} = [\overleftarrow{X}_1, \overleftarrow{X}_2] \\ \rho(X)(x) = d_{\epsilon(x)} \mathbf{s}(X_x) \end{cases}$$

Lie algebroid associated with Lie groupoid G

 $\mathcal{G} \rightrightarrows M$ Lie groupoid $\Rightarrow \tau : A\mathcal{G} \rightarrow M$ Lie algebroid

$$(A\mathcal{G})_{x} := \operatorname{Ker} \mathbf{d}_{\epsilon(x)} \mathbf{t}$$
$$\operatorname{Sec}(\tau) \cong \mathfrak{X}^{L}(\mathcal{G})$$
$$X \in \operatorname{Sec}(\tau) \Rightarrow \overleftarrow{X}(g) = (\mathbf{d}_{\epsilon(\mathbf{s}(g))} l_{g})(X(\mathbf{s}(g))),$$

 $(\llbracket \cdot, \cdot \rrbracket, \rho)$ Lie algebroid on $A\mathcal{G} \to M$

$$\begin{cases} \overleftarrow{[X_1, X_2]]} = [\overleftarrow{X}_1, \overleftarrow{X}_2] \\ \rho(X)(x) = d_{\epsilon(x)} \mathbf{s}(X_x) \end{cases}$$

Cotangent groupoid $\mathcal{G} \rightrightarrows M$ Lie groupoid $\Rightarrow T^*\mathcal{G} \rightrightarrows A^*\mathcal{G}$ Lie groupoid

$$\begin{split} \tilde{\mathbf{s}}(\mu_g)(X) &= \mu_g((\mathbf{d}_{\epsilon(\mathbf{s}(g))}l_g)(X)), \text{ for } \mu_g \in T_g^*\mathcal{G} \text{ and } X \in A_{\mathbf{s}(g)}\mathcal{G}, \\ \tilde{\mathbf{t}}(\nu_h)(Y) &= \nu_h((\mathbf{d}_{\epsilon(\mathbf{t}(h))}r_h)(Y - (\mathbf{d}_{\epsilon(\mathbf{t}(h))}(\epsilon \circ \mathbf{s}))(Y))), \\ & \text{ for } \nu_h \in T_h^*\mathcal{G} \text{ and } Y \in A_{\mathbf{t}(h)}\mathcal{G}, \\ (\mu_g \oplus_{T^*\mathcal{G}} \nu_h)(\mathbf{d}_{(g,h)}m(X_g, Y_h)) &= \mu_g(X_g) + \nu_h(Y_h), \\ & \text{ for } (X_g, Y_h) \in T_{(g,h)}\mathcal{G}_2, \end{split}$$

Remark

 $\tilde{\mathbf{t}}: T^*\mathcal{G} \to A^*\mathcal{G}$ Poisson map and $\tilde{\mathbf{s}}: T^*\mathcal{G} \to A^*\mathcal{G}$ anti-Poisson

Definition

- An *implicit difference equation* is a submanifold *E* of *G*.
- An *admissible sequence* on \mathcal{G} is a mapping $\gamma : I \cap \mathbb{Z} \longrightarrow \mathcal{G}$ such that $\mathbf{s}(\gamma(i)) = \mathbf{t}(\gamma(i+1))$ for all $i, i+1 \in I \cap \mathbb{Z}$. Here I is an interval on \mathbb{R} .
- A *solution* of an implicit difference equation $E \subset G$ is an admissible sequence : $I \cap \mathbb{Z} \longrightarrow G$ such that $\gamma(i) \in E$, for all $i \in I \cap \mathbb{Z}$.

$E \subset G$ is said to be

- 1) *forward integrable at* $g \in E$ if there is a solution $\gamma : \mathbb{Z}^+ \longrightarrow E \subseteq \mathcal{G}$ with $\gamma(0) = g$.
- 2) *backward integrable at* $g \in E$ if there is a solution $\gamma : \mathbb{Z}^- \longrightarrow E \subseteq \mathcal{G}$ with $\gamma(0) = g$.
- 3) *integrable at* $g \in E$ if if there is a solution $\gamma : \mathbb{Z} \longrightarrow E \subseteq \mathcal{G}$ with $\gamma(0) = g$.

If these conditions hold for all *g*, we say that *E* is forward integrable, backward integrable or integrable, respectively.

Definition

Let E be a submanifold of G. Then,

- 1) *E* is forward integrable if and only if for each $g \in E$ exists at least an $h \in E$ such that $\mathbf{s}(g) = \mathbf{t}(h)$.
- 2) *E* backward integrable if and only if for each $g \in E$ exists at least an $h' \in E$ such that $\mathbf{s}(h') = \mathbf{t}(g)$.

The sets

$$\begin{split} \tilde{E}_f &= \{g \in E \mid E \text{ is forward integrable at } g\}, \\ \tilde{E}_b &= \{g \in E \mid E \text{ is backward integrable at } g\}, \\ \tilde{E}_{fb} &= \{g \in E \mid E \text{ is integrable at } g\}, \end{split}$$

are called the *forward integrable, backward integrable* and *integrable parts* of *E*, respectively.

Example: Bisections on groupoids

 $\mathcal{G} \rightrightarrows M$ Lie groupoid $\sigma: M \rightarrow \mathcal{G}$ bisection

 $\mathbf{t} \circ \sigma = \mathrm{Id}, \quad \mathbf{s} \circ \sigma \operatorname{diffeomorphism}$

 $E_{\sigma} = \sigma(M) \subset \mathcal{G}$ implicit difference equation $g = \sigma(x) \in E_{\sigma}$

 $\gamma(i) = \sigma((\mathbf{s} \circ \sigma)^i(x)), \quad \text{for } i \in \mathbb{Z},$

is a solution with $\gamma(0) = g$. Thus, E_{σ} is integrable.

Example: Bisections on groupoids

 $\mathcal{G} \rightrightarrows M$ Lie groupoid $\sigma: M \rightarrow \mathcal{G}$ bisection

 $\mathbf{t} \circ \sigma = \mathrm{Id}, \quad \mathbf{s} \circ \sigma$ diffeomorphism $E_{\sigma} = \sigma(M) \subset \mathcal{G}$ implicit difference equation $g = \sigma(x) \in E_{\sigma}$

$$\gamma(i) = \sigma((\mathbf{s} \circ \sigma)^i(x)), \quad \text{for } i \in \mathbb{Z},$$

is a solution with $\gamma(0) = g$. Thus, E_{σ} is integrable.

Algorithm for extracting the forward integrable part

 $E \subset \mathcal{G}$ implicit difference equation

$$C_{f}^{0} = \mathbf{t}(E), \quad C_{f}^{1} = \mathbf{t}(E \cap \mathbf{s}^{-1}(C_{f}^{0})), \dots, C_{f}^{k} = \mathbf{t}(E \cap \mathbf{s}^{-1}(C_{f}^{k-1})), \dots$$
$$E_{f}^{0} = E, \quad E_{f}^{1} = E \cap \mathbf{t}^{-1}(C_{f}^{0}), \dots, E_{f}^{k} = E \cap \mathbf{t}^{-1}(C_{f}^{k-1}), \dots$$
$$\mathbf{s}(E_{f}^{k}) = C_{f}^{k}, \quad C_{f}^{k} \subseteq C_{f}^{k-1}, \quad E_{f}^{k} \subseteq E_{f}^{k-1}$$

Assume that there exists k_f such that

$$C_f^{k_f} = C_f^{k_f + 1} = \bar{C}_f$$

Then

$$E_f^{k_f+1} = E_f^{k_f+2} = \bar{E}_f$$

Theorem

The forward integrable part of E is \bar{E}_{f} *.*

Algorithm for extracting the forward integrable part

 $E \subset \mathcal{G}$ implicit difference equation

$$C_{f}^{0} = \mathbf{t}(E), \quad C_{f}^{1} = \mathbf{t}(E \cap \mathbf{s}^{-1}(C_{f}^{0})), \dots, C_{f}^{k} = \mathbf{t}(E \cap \mathbf{s}^{-1}(C_{f}^{k-1})), \dots$$
$$E_{f}^{0} = E, \quad E_{f}^{1} = E \cap \mathbf{t}^{-1}(C_{f}^{0}), \dots, E_{f}^{k} = E \cap \mathbf{t}^{-1}(C_{f}^{k-1}), \dots$$
$$\mathbf{s}(E_{f}^{k}) = C_{f}^{k}, \quad C_{f}^{k} \subseteq C_{f}^{k-1}, \quad E_{f}^{k} \subseteq E_{f}^{k-1}$$

Assume that there exists k_f such that

$$C_f^{k_f} = C_f^{k_f + 1} = \bar{C}_f$$

Then

$$E_f^{k_f+1} = E_f^{k_f+2} = \bar{E}_f$$

Theorem

The forward integrable part of E is \bar{E}_{f} *.*

Algorithm for extracting the forward integrable part

 $E \subset \mathcal{G}$ implicit difference equation

$$C_{f}^{0} = \mathbf{t}(E), \quad C_{f}^{1} = \mathbf{t}(E \cap \mathbf{s}^{-1}(C_{f}^{0})), \dots, C_{f}^{k} = \mathbf{t}(E \cap \mathbf{s}^{-1}(C_{f}^{k-1})), \dots$$
$$E_{f}^{0} = E, \quad E_{f}^{1} = E \cap \mathbf{t}^{-1}(C_{f}^{0}), \dots, E_{f}^{k} = E \cap \mathbf{t}^{-1}(C_{f}^{k-1}), \dots$$
$$\mathbf{s}(E_{f}^{k}) = C_{f}^{k}, \quad C_{f}^{k} \subseteq C_{f}^{k-1}, \quad E_{f}^{k} \subseteq E_{f}^{k-1}$$

Assume that there exists k_f such that

$$C_f^{k_f} = C_f^{k_f + 1} = \bar{C}_f$$

Then

$$E_f^{k_f+1} = E_f^{k_f+2} = \bar{E}_f$$

Theorem

The forward integrable part of E is \bar{E}_f *.*

Application: Implicit systems defined by Discrete Lagrangian functions

Discrete Lagrangian $L: \mathcal{G} \to \mathbb{R}$.

Discrete action sum: $SL(\gamma) = \sum_{i=1}^{N} L(\gamma(i)), \qquad \gamma \text{ admissible sequence}$

Discrete Euler-Lagrange equations

$$d\left[L \circ l_{g_k} + L \circ r_{g_{k+1}} \circ i\right] (\epsilon(x_k))_{|A_{x_k}\mathcal{G}} = 0, \quad g_k = \gamma(k), \ \mathbf{s}(g_k) = x_k$$

Example: $Q \times Q$

$$D_2L(q_0, q_1) + D_1L(q_1, q_2) = 0$$

Application: Implicit systems defined by Discrete Lagrangian functions

Discrete Lagrangian $L: \mathcal{G} \to \mathbb{R}$.

Discrete action sum:

$$SL(\gamma) = \sum_{i=1}^{N} L(\gamma(i)), \qquad \gamma \text{ admissible sequence}$$

Discrete Euler-Lagrange equations

$$d\left[L \circ l_{g_k} + L \circ r_{g_{k+1}} \circ i\right] (\epsilon(x_k))_{|A_{x_k}\mathcal{G}} = 0, \quad g_k = \gamma(k), \ \mathbf{s}(g_k) = x_k$$

Example: $Q \times Q$

$$D_2L(q_0, q_1) + D_1L(q_1, q_2) = 0$$

Application: Implicit systems defined by Discrete Lagrangian functions

Discrete Lagrangian $L: \mathcal{G} \to \mathbb{R}$.

Discrete action sum:

$$SL(\gamma) = \sum_{i=1}^{N} L(\gamma(i)), \qquad \gamma \text{ admissible sequence}$$

Discrete Euler-Lagrange equations

$$d\left[L \circ l_{g_k} + L \circ r_{g_{k+1}} \circ i\right] (\epsilon(x_k))_{|A_{x_k}\mathcal{G}} = 0, \quad g_k = \gamma(k), \ \mathbf{s}(g_k) = x_k$$

Example: $Q \times Q$

$$D_2L(q_0,q_1) + D_1L(q_1,q_2) = 0$$

Discrete Lagrangian evolution operator for L (discrete flow): $\Upsilon: \mathcal{G} \to \mathcal{G}$ smooth map such that:

- $\mathbf{s}(g) = \mathbf{t}(\Upsilon(g))$, for all $g \in \mathcal{G}$, (Υ is a second order operator).
- $(g, \Upsilon(g))$ is a solution of the discrete Euler-Lagrange equations, for all $g \in \mathcal{G}$.

Discrete Legendre transformations: $\mathbb{F}^{-}L: \mathcal{G} \to A^{*}\mathcal{G}$ and $\mathbb{F}^{+}L: \mathcal{G} \to A^{*}\mathcal{G}$ $(\mathbb{F}^{-}L)(g) = \tilde{\mathbf{t}}(dL(g))$ $(\mathbb{F}^{+}L)(g) = \tilde{\mathbf{c}}(dL(g))$

A discrete Lagrangian $L: \mathcal{G} \to \mathbb{R}$ is said to be *regular* if and only if the Legendre transformation \mathbb{F}^-L is a local diffeomorphism.

Discrete Lagrangian evolution operator for L (discrete flow): $\Upsilon: \mathcal{G} \to \mathcal{G}$ smooth map such that:

- $\mathbf{s}(g) = \mathbf{t}(\Upsilon(g))$, for all $g \in \mathcal{G}$, (Υ is a second order operator).
- $(g, \Upsilon(g))$ is a solution of the discrete Euler-Lagrange equations, for all $g \in \mathcal{G}$.

Discrete Legendre transformations: $\mathbb{F}^{-}L: \mathcal{G} \to A^{*}\mathcal{G}$ and $\mathbb{F}^{+}L: \mathcal{G} \to A^{*}\mathcal{G}$ $(\mathbb{F}^{-}L)(g) = \tilde{\mathbf{t}}(dL(g)),$

 $(\mathbb{F}^+L)(g) = \tilde{\mathbf{s}}(\mathrm{d}L(g))$

A discrete Lagrangian $L: \mathcal{G} \to \mathbb{R}$ is said to be *regular* if and only if the Legendre transformation \mathbb{F}^{-L} is a local diffeomorphism.

If \mathbb{F}^+L and \mathbb{F}^-L are global diffeomorphisms (that is, *L* is *hyperregular*) then $\Upsilon_L = (\mathbb{F}^-L)^{-1} \circ \mathbb{F}^+L$.

If $L: \mathcal{G} \to \mathbb{R}$ is a hyperregular Lagrangian function, the *discrete Hamiltonian evolution operator*, $\tilde{\Upsilon}_L: A^*\mathcal{G} \to A^*\mathcal{G}$ is given by

$$\tilde{\Upsilon}_L = \mathbb{F}^{\pm}L \circ \Upsilon_L \circ (\mathbb{F}^{\pm}L)^{-1} = \mathbb{F}^{+}L \circ (\mathbb{F}^{-}L)^{-1}.$$

Proposition

Let $L: \mathcal{G} \to \mathbb{R}$ be a discrete Lagrangian. The first step, $(S_L)_{f'}^1$ to obtain the forward integrable part of $S_L = dL(\mathcal{G}) \subset T^*G$ are the points $dL(g) \in S_L$ such that there exists an element *h* satisfying that (g, h) is a solution of the Discrete Euler-Lagrange equations

$$(S_L)_f^1 = \{(g,h) \in \mathcal{G}_2 | (g,h) \text{ is a solution of the DEL eqns.} \}$$

As a consequence, if \tilde{s} (resp. \tilde{t}) is the target (resp. source) map of the groupoid $T^*\mathcal{G}$

 $(S_L)_f^1 = \{(g,h) \in \mathcal{G}_2 \mid \tilde{\mathbf{s}}(dL(g)) = \tilde{\mathbf{t}}(dL(h))\}$

Proposition

Let $L: \mathcal{G} \to \mathbb{R}$ be a discrete Lagrangian. The first step, $(S_L)_{f'}^1$ to obtain the forward integrable part of $S_L = dL(\mathcal{G}) \subset T^*G$ are the points $dL(g) \in S_L$ such that there exists an element *h* satisfying that (g, h) is a solution of the Discrete Euler-Lagrange equations

$$(S_L)_f^1 = \{(g,h) \in \mathcal{G}_2 | (g,h) \text{ is a solution of the DEL eqns.} \}$$

As a consequence, if \tilde{s} (resp. \tilde{t}) is the target (resp. source) map of the groupoid $T^*\mathcal{G}$

$$(S_L)_f^1 = \{(g,h) \in \mathcal{G}_2 \mid \tilde{\mathbf{s}}(dL(g)) = \tilde{\mathbf{t}}(dL(h))\}$$

$L: \mathcal{G} \to \mathbb{R}$ hyperregular discrete Lagrangian function. $g \in \mathcal{G}$

 $\Upsilon_{T^*(\mathcal{G})} \colon \mathbb{Z} \to S_L = dL(\mathcal{G}) \subseteq T^*(\mathcal{G}) \text{ defined by}$ $\Upsilon_{T^*(\mathcal{G})}(i) = dL(\Upsilon_L^i(g)), \quad \text{for } i \in \mathbb{Z},$

is a solution of S_L and $\Upsilon_{T^*(\mathcal{G})}(0) = dL(g)$.

Corollary

Let $L: \mathcal{G} \to \mathbb{R}$ be a discrete hyperregular Lagrangian function. Then, the implicit difference equation $S_L = dL(\mathcal{G})$ is integrable.

$L: \mathcal{G} \to \mathbb{R}$ hyperregular discrete Lagrangian function. $g \in \mathcal{G}$

 $\Upsilon_{T^*(\mathcal{G})} \colon \mathbb{Z} \to S_L = dL(\mathcal{G}) \subseteq T^*(\mathcal{G}) \text{ defined by}$

$$\Upsilon_{T^*(\mathcal{G})}(i) = dL(\Upsilon_L^i(g)), \text{ for } i \in \mathbb{Z},$$

is a solution of S_L and $\Upsilon_{T^*(\mathcal{G})}(0) = dL(g)$.

Corollary

Let $L: \mathcal{G} \to \mathbb{R}$ be a discrete hyperregular Lagrangian function. Then, the implicit difference equation $S_L = dL(\mathcal{G})$ is integrable.

 S_L Lagrangian submanifold of $T^*(\mathcal{G})$ $(\tilde{\mathbf{t}}, \tilde{\mathbf{s}}) : T^*(\mathcal{G}) \to A^*\mathcal{G} \times \overline{A^*\mathcal{G}}$ is a Poisson map

 $(\tilde{\mathbf{t}}, \tilde{\mathbf{s}})(S_L)$ is a coisotropic submanifold of $A^*\mathcal{G} \times \overline{A^*\mathcal{G}}$.

Proposition

Let $L : \mathcal{G} \to \mathbb{R}$ be a discrete hyperregular Lagrangian. Then, the discrete Hamiltonian evolution operation $\tilde{\Upsilon}_L$ preserves the Poisson structure on $A^*\mathcal{G}$.

Example: a discrete Singular Lagrangian

$$L_d^h: \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}, \quad L_d^h(x_1, y_1, x_2, y_2) = \frac{1}{2} \left(\frac{x_2 - x_1}{h}\right)^2 + \frac{1}{2} x_1^2 y_1$$

Then
$$S_{L_d^h} \subset T^*(\mathbb{R}^2 \times \mathbb{R}^2)$$
 defined by

$$S_{L_d^h} = \left\{ (x_1, y_1, x_2, y_2; -\frac{x_2 - x_1}{h^2} + x_1 y_1, \frac{1}{2} x_1^2, \frac{x_2 - x_1}{h^2}, 0) \right\}$$

The algorithm produces the integrable part

$$\begin{pmatrix} S_{L_d^h} \end{pmatrix}_f^2 = \{(0, y_1, 0, 0; 0, y_2, 0, 0) \mid (y_1, y_2) \in \mathbb{R}^2 \} \\ C_f^3 = \tilde{\mathbf{t}}(\left(S_{L_d^h}\right)_f^2) = \{(0, y; 0, 0) \mid y \in \mathbb{R}) \}$$

~

Implicit systems defined by discrete nonholonomic Lagrangian systems

 $(L, \mathcal{M}_c, \mathcal{D}_c)$ discrete nonholonomic Lagrangian system

$$\begin{cases} L: \mathcal{G} \to \mathbb{R} \\ i_{\mathcal{M}_c}: \mathcal{M}_c \to \mathcal{G} \\ i_{\mathcal{D}_c}: \mathcal{D}_c \to A\mathcal{G} \end{cases}$$

 $S_{(L,\mathcal{M}_c)} = \mathrm{d}L(\mathcal{M}_c) \subseteq T^*\mathcal{G}$, that is,

$$S_{(L,\mathcal{M}_c)} = \{ \mathrm{d}L(i_{\mathcal{M}_c}(g)) \mid g \in \mathcal{M}_c \}.$$

Apply the forward integrability algorithm to $S_{(L,\mathcal{M}_c)}$ in $T^*\mathcal{G}$, but changing the maps $\tilde{\mathbf{s}}$ and $\tilde{\mathbf{t}}$ for the new maps $\tilde{\mathbf{s}}_{\mathcal{D}_c}$ and $\tilde{\mathbf{t}}_{\mathcal{D}_c}$,

$$\begin{aligned} \tilde{\mathbf{s}}_{\mathcal{D}_c} &= i^*_{\mathcal{D}_c} \circ \tilde{\mathbf{s}} : T^* \mathcal{G} \to \mathcal{D}^*_c \\ \tilde{\mathbf{t}}_{\mathcal{D}_c} &= i^*_{\mathcal{D}_c} \circ \tilde{\mathbf{t}} : T^* \mathcal{G} \to \mathcal{D}^*_c. \end{aligned}$$

Proposition

Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid and $(L, \mathcal{M}_c, \mathcal{D}_c)$ be a discrete nonholonomic Lagrangian system on \mathcal{G} . The first step, $(S_{(L,\mathcal{M}_c)})_{f'}^1$ to obtain the forward integrable part of $S_{(L,\mathcal{M}_c)} = dL(\mathcal{M}_c)$ for the maps $\tilde{\mathbf{s}}_{\mathcal{D}_c}, \tilde{\mathbf{t}}_{\mathcal{D}_c} : T^*\mathcal{G} \rightarrow \mathcal{D}_c^*$ are the points $dL(g) \in S_{(L,\mathcal{M}_c)}$ such that there exists an element $h \in \mathcal{M}_c$, satisfying $(g,h) \in \mathcal{G}_2$ and, in addition, (g,h) is a solution of the discrete non-holonomic Euler-Lagrange equations, that is,

$$d\left[L\circ l_g+L\circ r_h\circ i\right](\epsilon(x))_{\mid (\mathcal{D}_c)_x}=0,$$

where $x = \mathbf{s}(g) = \mathbf{t}(h)$. In other words,

$$(S_L)_f^1 = \{(g,h) \in \mathcal{G}_2 \cap (\mathcal{M}_c \times \mathcal{M}_c) | \\ (g,h) \text{ is a solution of the D. NH E-L. eqns.} \} \\ = \{(g,h) \in \mathcal{G}_2 \cap (\mathcal{M}_c \times \mathcal{M}_c) | \tilde{\mathbf{s}}_{\mathcal{D}_c}(dL(g)) = \tilde{\mathbf{t}}_{\mathcal{D}_c}(dL(h)) \}$$