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A story of pairs

This is a story about pairs.

e In the first part we shall show how, on some Courant algebroids,
we can characterize

the characteristic pair that defines a Dirac structure
in terms of Terashima's “Poisson functions” which generalize the
“Hamiltonian operators” of Liu—Weinstein—Xu which themselves
generalize the “Poisson bivectors”.

e In the second part, we shall introduce Dirac pairs, defined in
terms of Nijenhuis relations, and we shall show that the notion of
Dirac pairs unifies

- Hamiltonian pairs (bi-Hamiltonian structures),

- PQ-structures, and

- a restricted class of Q2N-structures.

We shall give explicit examples on 4-dimensional flat manifolds.

e The third part, if | had time..., would deal with Nijenhuis
structures in Courant algebroids.
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Part I. Characteristic pairs of Dirac structures

— Briefly recall:
Courant algebroids.
Dirac sub-bundles.
Double of a Lie algebroid,
a Lie bialgebroid,
a proto-bialgebroid.
— Introduce Poisson functions and presymplectic functions.
— Theorem (generalizes LWX [1997])

The graph of a bivector is Dirac iff the bivector is a Poisson function,
The graph of a 2-form is Dirac iff the 2-form is a presymplectic function.
— Introduce characteristic pairs of Dirac structures in the double of

a proto-bialgebroid.

— Theorem (Yin and He [2006], yks [2011], generalizes Liu [2000]).
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Courant algebroids

Let (E,(, )) be a vector bundle, over a manifold M, equiped with
a symmetric fiberwise bilinear form.

Let { , } be the even graded Poisson bracket on the algebra F of
functions on the minimal symplectic realization of E.

A Courant algebroid structure on (E, (, )) is defined by an

element © of degree 3 in F such that | {©,0} = 0.

Consider the following derived brackets:

{{X,0},Y} =[X, Y] defines the Dorfman bracket on T'E,
a Leibniz (Loday) bracket on TE.
Recall that in a Leibniz (Loday) algebra the bracket is not in general
skew-symmetric, it satisfies the Jacobi identity,
[u, [v, w]] = [[u, v], w] + [v, [u, w]].

{{X, 0}, f} = p(X)f defines the anchor p: E — TM
(a vector bundle morphism that induces a Lie algebra morphism
from T'E to ['(TM) equipped with the Lie bracket of vector fields.).
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Dirac sub-bundles of Courant algebroids

Definition

A Dirac sub-bundle of (E,(, ),©) is a Lagrangian (i.e., maximally
isotropic) sub-bundle of E whose space of sections is closed under
the Dorfman bracket.
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The double of a Lie algebroid

Assume that E = A @ A* where A is a vector bundle and ( , ) is
the canonical symmetric fiberwise bilinear form.

Then F is the algebra of functions on the supermanifold T*[2]A[1]
and the even Poisson bracket on F is the big bracket.

A Lie algebroid structure on A is defined by an element u € F,

of bidegree (1,2), such that

Then (E = A& A%, (, )) with © = p is a Courant algebroid,
called the double of A.

A Dirac sub-bundle of E = A® A* is called a Dirac structure in A.

If, in particular, A= TM, E = TM & T*M is called the generalized
tangent bundle of M, and a Dirac sub-bundle of the Courant algebroid
TM & T*M is called a Dirac structure on M.
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Graphs of Poisson bivectors and of presymplectic forms

We consider a bivector 7 as the map, denoted by the same letter,
from A* to A defined by m§ = j¢m for all £ € A*.

e The graph of a bivector 7 € I'(A2A) is a Dirac sub-bundle of

E =A@ A* if and only if 7 is a Poisson bivector ([7, 7] =0,
where [, | is the Schouten—Nijenhuis bracket of multivectors
extending the Lie bracket of sections of A as a graded biderivation).

We consider a 2-form w € I(A?A*) as the map, denoted by the
same letter, w : A — A* defined by wx = —iyw for all x € A.

e The graph of a 2-form w € I(A?A*) is a Dirac sub-bundle of
E =A@ A*if and only if w is a presymplectic form (w is d-closed,
where d is the differential on the sections of A®*(A*) defined by p).
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Proto-bialgebroids

Let A be a vector bundle. A proto-bialgebroid is defined by
elements of F, u of bidegree (1,2), v of bidegree (2,1),
¢ of bidegree (3,0), ¢ of bidegree (0, 3), such that

Where‘@:w—i-,u—i-’y—i-qﬁ.‘

The case of Lie-quasi bialgebroids is that of ¢ = 0.
The case of quasi-Lie bialgebroids is that of ¢ = 0.
The case of Lie bialgebroids is that of ¢ = = 0.
The case of Lie algebroids is that of y = ¢ = = 0.

Then E = A® A*, with the canonical symmetric fiberwise bilinear
form and © =¥ 4+ u + v + ¢, is a Courant algebroid, called the
double of of the proto-bialgebroid.
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Graphs in the double of a Lie bialgebroid

In the case of the double of a Lie bialgebroid,
Liu, Weinstein and Xu [1997] defined “Hamiltonian operators” as
the solutions of the “Maurer—Cartan type equation”,

1
dym + 5[77,7r] =0.
Then they proved:

Theorem
The graph of a bivector is a Dirac sub-bundle if and only if it is a
Hamiltonian operator.

More generally, on a proto-bialgebroid, in order to characterize
graphs of bivectors (resp., 2-forms) as Dirac structures we need to
define Poisson functions (resp., presymplectic functions). They are
defined as the solutions of a “generalized Maurer—Cartan
equation”.
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e A function of bidegree (2,0) is a bivector 7 on V.

e A function of bidegree (0,2) is a 2-form w on V.

Twisted structures

Or = Vr + fix +¥x + @7 and O, = Yy + pw + Yo + Gu with

On =@ — {7a 7T} + %{{Nvﬂ-}aﬂ-} - %{{{waﬂ-}vﬂ-}aﬂ-} ’
T =7 — {:uvﬂ-} + %{{w; 7['},71'}

/1‘71’:“_{1/}777}7
Ve =1 .
¢w:¢>
’Yw:'y_{¢7w}7

Mo = b — {’Y’w}7 +%{{¢7w}7w} )
Yo =19 — {pw} + 3{1, 0} o} - g{{{o.whwhw}
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Definition of Poisson functions and of presymplectic

functions

[Roytenberg 2002] [Terashima 2008]

[yks 2007 (Prog. Math. 287, 2011)]

Consider a proto-bialgebroid defined by (1, p,~, ¢).

(i) A Poisson function is a bivector m such that ¢, =0, i.e.,.

6=+ 3w} - g{{wmhmhm} =0

(ii) A presymplectic function is a 2-form w such that ¢, =0, i.e.,

v {w) + 5 {Inwhol - gll{owhoh ol =0

e Fact In a Lie bialgbroid, a bivector is a Poisson function if and
only if it is a Hamiltonian operator.

Proof dym = {7, 7} and [r, 7] = {{m, pu}, 7} = —{{p, 7w}, n}. O
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Graphs in the double of a proto-bialgebroid

Let A be a proto-bialgebroid defined by (¢, , v, ¢).
The following theorem [Roytenberg] [Terashima] [yks] extends the
theorem of Liu—Weinstein—Xu.

Theorem

(i) The graph of a bivector 7 is a Dirac structure if and only if 7 is
a Poisson function.

(ii) The graph of a 2-form w is a Dirac structure if and only if w is
a presymplectic function.

Summary When 7 : A* — A, and Ais a
Lie algebroid, ‘graphﬂ is Dirac iff 7 is a Poisson bivector,‘

Lie bialgebroid, ‘graphw is Dirac iff 7 is a Hamiltonian operator,‘

proto-bialgebroid, ‘graphw is Dirac iff 7 is a Poisson function. ‘
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Characteristic pairs

e Ted Courant, case of TM & T*M [1990],

e Diatta and Medina, case of g & g* [CRAS 1999],

e Zhang-Ju Liu, case of Lie bialgebroids [Poisson Geometry,
Banach Center Publ., 2000].

For D C A a sub-bundle and 7 a bivector on A, consider
L={(X+m¢¢)|X €D, (e D}

Then L is a Lagrangian sub-bundle of A® A*. The pair (D, ) is
called a characteristic pair of L.

Problem Characterize Dirac structures in terms of characteristic
pairs, i.e., find conditions on D and 7 for L to be a Dirac
sub-bundle.

Answer Liu [2000] for the double of a Lie bialgebroid,

Yanbin Yin and Long-Guang He 2006] for the double of a
proto-bialgebroid, yks [2011] in terms of Poisson functions.
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Poisson functions modD

Let D C A be a sub-bundle of a proto-bialgebroid, (A, u,~, ¢, ),
let D+ be its orthogonal in A* (conormal bundle), and let 7 be a

bivector on A.

Definition

A bivector 7 is a Poisson function modD if ¢, € T(A3D) and
Yr € T(A3(DY)), where 1), = 1) and

br =6 {romh+ Ll hm) - {7 wh ).
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Dirac structures defined by a characteristic pair.

Theorem

Let D C A be a sub-bundle and let m be a bivector on A. Let L be

the Lagrangian sub-bundle of A ® A*,
L={(X+7&E&)|XeD,¢e D).

L is a Dirac structure if and only if

(i) TD is closed under jir,

(i) T(D*) is closed under ~y,, and

(i) w is a Poisson function modD.

Proof Find necessary and sufficient conditions for
{X+7mE+Ep+y+p+9), Y +mm+n},

for X,Y € TD and &, € T(D1) to be equal to Z 4 7¢ + ¢, with

¢ er(D*)and Z€TD.

Case X =1 =0 yields (i). Case £ =Y = 0 yields (ii).

Case £ = = 0 (condition on ¢,) and case X = Y = 0 (condition

on 1) yield the two conditions for (iii). O

Poisson Geometry and Applications, June 2011 On Dirac structures and Dirac pairs



Dual characteristic pairs

There is a dual result for Dirac structures defined by a sub-bundle
and a 2-form Let F be a sub-bundle of A*, and let F* be its
orthogonal in A*.

Definition

A 2-form w is a presymplectic function modF if ¢, € T(A3(F1))
and v, € T(A3F), where ¢, = ¢, and

ww = ¢ - {N7w} + %{{77 w}v w} - %{{{(ba w}v w}v w}'

Theorem
Let w be a bivector on A. Let L be the Lagrangian sub-bundle of
A A%,
L={(X,£+wX)|X e F+ ceF}.
L is a Dirac structure if and only if

[F is closed under ~,,, T(F1) is closed under jui,,, and w is a
presymplectic function modF.
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Part Il. Dirac pairs in the double of a Lie algebroid

Dirac pairs generalize the familiar compatible structures, such as
bi-Hamiltonian structures, etc. defined by Magri in the early 80's.
They were defined by Dorfman in 1987, following her work with
Gelfand [1979][1980].

- Definitions concerning relations in sets and in vector bundles.

- Torsion of a relation, Nijenhuis relations.

- Dirac pairs defined in terms of Nijenhuis relations.

- The aim is to prove that the notion of Dirac pairs unifies
Hamiltonian pairs (bi-Hamiltonian structures),
PQ-structures,

a restricted class of Q2N-structures.

- Examples.

For Dirac structures L and L’ in the double of a Lie algebroid
A @ A* to form a Dirac pair, they must satisfy a compatibility
condition, which is a condition on a relation in A.
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When U, V and W are sets, the composition, R’ x R, of relations
RcUxVand R CcVxWis

R'«R={(u,w)e Ux W|3veV,(uv)eRand(v,w) € R'}.

The transpose of a relation R C U x V is the relation

R={(v,u) e VxU]|(u,v)e€R}
If¢p:U— Vand ¢ : V— W are maps, and if R = graph ¢ and
R’ = graph ¢’, then
R'+ R = graph(¢/ o ).
If ¢ : U— V is invertible,

graph ¢ = graph(¢ ™).
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Relations in vector spaces and vector bundles

Let U and V be vector spaces. The dual of a relation R C U x V
is the relation R* C V* x U* defined by

R* = {(8,a) € V* x U | (o, u) = (B,v),¥(u,v) € R}.

If R = graph ¢, where ¢ is a linear map from U to V, then R* is
the graph of the dual map, ¢*.

Convention When U and V are vector bundles over a manifold M,
and R C U x V is a relation, we denote by the same letter the
relation on sections induced by R.
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Nijenhuis relations in Leibniz algebras

Let N be a relation in a Leibniz algebra (E, [, ]).
Consider the real-valued function defined on a subset of
EXEXEXEXE*"xE*xE*by
T(N)(u1, vi, Uz, va, 0, &, ")
= <av [Vlv V2]> - <O/v [Vlv U2] + [ula V2]> + <O/lv [ulv U2]>v
for all uy,vi,up,vo € E,a, 0, 0" € E* such that
(u1,v1) € N, (u2, »2) € N, (o, ) € N*, (¢, ") € N*.

The function T(N) is called the torsion of the relation N.

Definition
A Nijenhuis relation in E is a subset N of E X E such that its
torsion, T(N), vanishes.
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Nijenhuis relations generalize Nijenhuis tensors

Proposition
Let (E,[, ]|) be a Leibniz algebra. A linear map, N : E — E, is a
Nijenhuis tensor if and only if graph N is a Nijenhuis relation in E.

Proof The graph of N is the relation,
graph N = {(u,Nu) € E x E|u € E},
and its dual is the graph of the dual N* of N,
graph(N*) = {(a, N*«) € E* X E* | € E*}.
Therefore, graph N is a Nijenhuis relation if and only if, for all
u,u € E, a € E*,

{a, [Nuy, Nup])—(N* e, [Nuy, up]+][u, Nuz])—i-((N*)zoz, [u1, w]) =0,
which is equivalent to
(o, [Nuy, Nug] — N([Nuy, u] + [u1, Nup]) + N?[ur, ua]) = 0,

i.e., {(a, TN(u1, up)) = 0, where TN is the Nijenhuis torsion of the
linear map N. O
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In Leibniz algebroids

More generally,

Proposition

If E is a Leibniz algebroid, a vector bundle morphism, N : E — E,
is a Nijenhuis tensor if and only if graph N defines a Nijenhuis
relation in TE.

Remark. The torsion as a relation
For a relation R C U x U, set

R? = {(u,/,u") € Ux Ux U|(u,u') € Rand (¢, ") € R}.

With this notation, the vanishing of T(N) defines a relation,

—

T(N) c (N x N) x (N*)®),
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Hamiltonian pairs

Let (A, i) be a Lie algebroid. Recall that a bivector 7 is a Poisson
structure on A if and only if, for all &1, & € '(A%),

(1, 7&0] = mlér, |

where [, | is the bracket of sections of A* defined by x and T,
(€1, &l = Lrgy &2 — L1 + d(7(61, £2)).

Definition

Poisson structures m and 7’ on A are said to be compatible if

m -+« is a Poisson structure. When Poisson structures w and 7’
are compatible, (7, 7') is said to be a bi-Hamiltonian structure or a
Hamiltonian pair.

Fact Poisson structures 7 and 7’ constitute a Hamiltonian pair if
and only if [, 7] = 0. where [, ] is the Schouten—Nijenhuis
bracket.
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The relation defined by a Hamiltonian pair

For bivectors 7 and 7/, set

N(7, ') = graph 7 * graph 7’.

Theorem
Let  and 7' be bivectors. The torsion of the relation N(m, ')
satisfies the equation

2T(N(m, 7"))(&1,62,6,€',€")

<§7 [7T7 7-‘—](517 52)> + <£H7 [7T/, 77,](51, 52)> - 2<§/7 [ﬂ—ﬂ 7T/](§1, 62)>
for all £1,&2,&,¢',&" € T(A*) such that 7§ = 7'’ and w&’ = n'¢”.

Proof Use [1&1, m&a] = m[€1,&2]x and the skew-symmetry of
m and 7. O
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Hamiltonian pairs and Poisson pairs

Corollary
If (w,7") is a Hamiltonian pair, then N(m,7") is a Nijenhuis
relation.
Let us call Poisson bivectors 7 and 7’ on A such that N(m,7’) is a
Nijenhuis relation a Poisson pair. Then we can state:

‘Any Hamiltonian pair is a Poisson pair.‘

In order to state a converse, let us set
K =7"YIm7')Nna'""(Im7) C A*.
Corollary
(i) If (m,7") is a Poisson pair, then i¢g[m, 7'l =0 for all { € K.
(ii) If, in addition, K = A*, then (m,7') is a Hamiltonian pair.
In particular,
’Any non-degenerate Poisson pair is a Hamiltonian pair.‘

(Non-degenerate means that both bivectors are non-degenerate.)
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Hierarchies of Poisson structures

The preceding results imply the well known proposition
[Fuchssteiner—Fokas, Dorfman, yks—Magri, etc ],

Proposition

(i) Assume that (mw,7') is a Hamiltonian pair, where 7 is
non-degenerate. Then N = ©'7n~! is a Nijenhuis tensor.

(ii) Assume that m and 7' are non-degenerate Poisson structures
and that N = '~ is a Nijenhuis tensor. Then (m,7') is a
Hamiltonian pair. More generally, all (N*m, N‘t) (k,¢ € N) are
Hamiltonian pairs.
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Dirac pairs

Let A be a vector bundle, and let A* be the dual vector bundle.
For relations L C A x A* and L’ C A x A*, we consider the relation
in A,

NL,L’ = Z* L/.

Assume that (A, p) is a Lie algebroid, and that E = A® A* is
equipped with the Dorfman bracket.

Definition

Dirac structures L and L’ in A are said to be a Dirac pair if N, is
a Nijenhuis relation in A.
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Poisson pairs and Dirac pairs

If L = graph7 and L' = graph «’, then

N = graph 7 * graph 7/ = N(m, 7').

Theorem

(i) Bivectors  and ' constitute a Poisson pair if and only if their
graphs constitute a Dirac pair.

(ii) If (w, ") is a Hamiltonian pair, then (graph, graph ') is a
Dirac pair.

(iii) Conversely, if (graphm, graph«’) is a Dirac pair and if m and
n’ are non-degenerate bivectors, then (m,n') is a Hamiltonian pair.
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Presymplectic pairs

Definition

If w and W’ are presymplectic structures whose graphs constitute a
Dirac pair, (w,w’) is called a presymplectic pair. If, in addition, w
and w’ are non-degenerate, (w,w’) is called a symplectic pair.

For L = graphw, L' = graph«/,
N,/ = graphw * graphw'.
Theorem

Symplectic pairs are in one-to-one correspondence with
non-degenerate Poisson pairs.
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Examples from the theory of Monge-Ampere operators

See Kushner—Lychagin—Rubtsov [2007] and
Lychagin—Rubtsov—Chekalov [1993]. See yks—Roubtsov [2010].

Let M = T*R? and let Q be the canonical symplectic form on M.
Here A= TM. In canonical coordinates (q', g%, p1, p2) on M,

Q =dg' Adp; +dg? Adps.

Examples of presymplectic pairs (2, w) are defined by

w=uwy =dq' Adp; — dg® Adpo,
w=wg =dq' Adp, —dg® Adpy,
w=wp =dqg' Adps.

The pair (Q,wg) is a ‘conformal symplectic couple’ as defined by
Geiges (Duke [1996], 4-manifolds), i.e., it is a closed, effective
2-form (2 A w = 0), with Pfaffian equal to 1 (w Aw =Q A Q).
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PQ2-structures

Definition

A bivector 7 and a 2-form w define a PQ)-structure on a Lie
algebroid (A, ) if 7 is a Poisson bivector, and both w and wy are
closed, where N = mow and wy = wo N.

Proposition
Let m be a Poisson bivector and let w be a presymplectic form.
Then (graph 7, graph w) is a Dirac pair if and only if Tow is a
Nijenhuis tensor.
Proof If L = graph m and L' = graph w, then

NL,L’ = graph (7I' o w). 0
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Dirac pairs and P{2-structures

Theorem

(i) If a Poisson structure m and a presymplectic structure w
constitute a PSQ)-structure, their graphs constitute a Dirac pair.
(ii) Conversely, if the graphs of a Poisson structure m and a
presymplectic structure w constitute a Dirac pair, and if 7 is
non-degenerate, then m and w constitute a PQ)-structure.

The proof of (ii) uses the fact that if 7 is a non-degenerte Poisson
bivector, w is closed and N = 7 o w is a Nijenhuis tensor, then

{m, d(wn)} = 0.
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QN-structures

Let N be a (1,1)-tensor and w a 2-form on (A, i) such that

wo N = N*ow. Then wy defined by wy = w o N is a 2-form.
Definition

A 2-form w and a (1,1)-tensor N define an QN-structure on a Lie
algebroid (A, ) if wo N = N* ow, N is a Nijenhuis tensor, and
both w and wy are closed, where wy = w o N.
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In the notation of the previous example, in coordinates on T*R?,
(g, 4%, p1, p2), let Ny = QL owy and Ng = Q! owg, so that

1 0 0 0 0 -1 0 0
0 -1 0 0 1 0 0 0
Ne=1o o0 1 of ®d Ne=1]g o o 1
0 0 0 -1 00 -10

Then (2, Ny) and (2, Ng) are QN-structures on T*R?, with
N2 =1d and N2 = —Id. Thus Ng is a complex structure, and Ny
is a product structure on T*(R?).

0 00O
Let Np = Q1 owp, so that Np = é 8 8 2 . Then (2, Np)
0 00O

is an QN-structure with N,% =0, so that Np is a tangent structure.
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The non-degenerate case

Proposition

Let w be a non-degenerate 2-form and N a (1, 1)-tensor such that
wn = w o N is skew-symmetric. Then (w, N) is an QN-structure if
and only if (graph w, graph wy) is a Dirac pair.

Proof When L = graph w and L' = graph wy,
Ny ={(x,y) € Ax Alwnx = wy}.
Therefore, when w is invertible, N ;» = graph N. O

Example The pairs (graph Q , graph wy), (graph Q , graph wg)
and (graph Q, graph wp) are the Dirac pairs associated with the
QN-structures described in the previous example.
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Weak 2N-structures

In the next theorem (yks [2011]), the 2-form w is not assumed to
be non-degenerate. Cf. also Dorfman [1993].

Let w be a 2-form and N a (1,1)-tensor such that wy = wo N is
skew-symmetric.

We shall call (w, N) a weak QN-structure if w and wy are closed
2-forms, and the torsion of N takes values in the kernel of w.

Weset N=N;;» = {(x,y) € Ax Alwyx = wy} and
NT = {(wx,wnx) € A" x A*| x € A}.

The relation N7 is the restriction of the graph of N* to the image
of w, and a subset of N*.
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Dirac pairs and Q2N-structures

Theorem

(i) If (w, N) is an QN-structure, and if N*™ = N*, then

(graph w, graph wy) is a Dirac pair.

(ii) Conversely, if (graph w, graph wy) is a Dirac pair, then (w, N)
is a weak QU N-structure.

Proof Evaluate dw, dwy and dwp2 on well chosen triples of vectors
[...] O

More generally, all 2-forms w o N2, wo N3, ..., wo NP, ... are
closed. Whence a hierarchy of Dirac pairs.

This property is the basis of the construction of a sequence of
integrals in involution for bi-Hamiltonian systems, and for the
extension of this property to systems associated to a Dirac pair.
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Conclusion

e Generalized geometry appears more and more frequently in the
physics literature. Last February, | heard a lecture at IHP (Institut
Henri Poincaré) in Paris on .. supergravity in terms of “generalized
connections” (by Daniel Waldram). (Cf. the earlier Gabella et al., on
“type |IB supergravity and generalized complex geometry” [2010]).

e Dirac pairs are the basis of Dorfman’s work on integrable
systems. More recently, see Barakat-De Sole-Kac [2009].

e Search for new examples and applications.

e Relate Dirac pairs and the Dirac—Nijenhuis manifolds of
Long-Guang He and Bao-Kang Liu [2006].

e Extend the theory of Dirac pairs to more general doubles

(Lie bialgebroid, proto-bialgebroid).

e Define and study Dirac pairs on Courant algebroids in general.

e Relate Dirac pairs with Dirac-Nijenhuis structures
(Carifiena—Grabowski-Marmo [2004], Clemente-Gallardo—Nunes da
Costa [2004]) and “weak deforming tensors".
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