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Abstract. An AV -bundle µ : A → V is just an R-principal bundle. If A is a symplectic manifold and the principal action is symplectic, µ is said to be symplectic. Symplectic AV -bundles play an important role in the geometric formulation
of non-autonomous Hamiltonian systems. Given a symplectic AV -bundle µ : A → V with a compatible symplectic action of a Lie group G on A, such that some regularity and compatibility properties hold, we obtain a reduced symplectic
AV -bundle µν : Aν → Vν. We show also that any G-invariant Hamiltonian section induces a reduced Hamiltonian section of µν. Mardsen-Weinstein reduction theory for symplectic, cosymplectic and Poisson manifolds is used.

1. Symplectic AV-bundles and non-autonomous
Hamiltonian systems

An AV -bundle [3] is just a R-principal bundle µ : A→ V . We will denote by

ψ : R× A→ A, (t, a) 7→ ψt(a),

the associated principal action of the Lie group (R,+) on the manifold A and by Zµ ∈ X(A) the
infinitesimal generator of ψ.

Definition 1 We will say that µ : (A,Ω) → V is a symplectic AV -bundle, if µ : A → V is an
AV -bundle, (A,Ω) is a symplectic manifold and the associated principal action is symplectic.

Example 1 Let π : M → R be a surjective submersion. If ΩM is the canonical symplec-
tic form on T ∗M and V ∗π is the dual bundle of the vertical bundle of π, then the projection
µπ : (T ∗M,ΩM )→ V ∗π is a symplectic AV -bundle (the standard symplectic AV -bundle).

Proposition 1 ([4]) Let µ : (A,Ω)→ V be a symplectic AV -bundle. Then there exists a unique
Poisson structure {·, ·}V on V such that µ is a Poisson map, i.e.{

f ◦ µ, f ′ ◦ µ
}
A =

{
f, f ′

}
V ◦ µ, for any f, f ′ ∈ C∞(V ),

where {·, ·}A is the Poisson bracket on A induced by Ω.

Definition 2 A non-autonomous Hamiltonian system (A, µ,Ω, h) is a symplectic AV -bundle
µ : (A,Ω)→ V endowed with a section h : V → A of µ, i.e. a smooth map such that µ ◦h = idV .
The section h : V → A is called the Hamiltonian section of the system.

There is a one-to-one correspondence between the sets:

{h : V → A|h section of µ} ↔ {Fh ∈ C∞(A)|Zµ(F ) = 1}

defined by the following relation

a = ψ (Fh(a), h(µ(a))) , for any a ∈ A.

Theorem 1 ([4]) Let (A, µ,Ω, h) be a non-autonomous Hamiltonian system with infinitesimal
generator Zµ. If ωh ∈ Ω2(V ) and ηh ∈ Ω1(V ) are the forms defined as

ωh = h∗Ω, ηh = −h∗(iZµΩ),

then (V, ωh, ηh) is a cosymplectic manifold. The Reeb vector field Rh ∈ X(V ) is just the µ-
projection of the Hamiltonan vector field HFh of Fh.
Moreover, the Poisson bracket on V induced by (ωh, ηh) is just the Poisson bracket {·, ·}V .

Let (A, µ,Ω, h) be a non-autonomous Hamiltonian system. Then, we can choose Darboux co-
ordinates (t, p, qi, pi) on A such that the local expression of µ : A→ V is

µ(t, p, qi, pi) = (t, qi, pi).

Thus, if the local espression of h : V → A is

h(t, qi, pi) = (t,−H(t, qj, pj), q
i, pi),

then, given a curve γ on V

γ is an integral
curve of Rh

⇐⇒ γ(t) = (t, qi(t), pi(t)) is a solution
of the Hamilton equations for H.

We will say that the vector fieldRh describes the dynamics of the non-autonomous Hamiltonian
system.

2. AV-bundle reduction Theorem
Definition 3 An action φ : G × A → A is said to be a canonical action on the symplectic AV -
bundle µ : (A,Ω)→ V if the following conditions hold:

i) φ is a symplectic action;

ii) the actions ψ and φ commute, that is φg ◦ ψt = ψt ◦ φg, for any g ∈ G, t ∈ R;

iii) the 1-form θµ = iZµΩ is basic with respect to φ, i.e. θµ(ξA) = 0 for any ξ ∈ g, where ξA is the
infinitesimal generator of φ defined by ξ.

By passing to the quotient, we have

If φ is a canonical action and
J : A→ g∗ is an equivariant

momentum map
=⇒

φV : G× V → V a Poisson action on (V, {·, ·}V ),
JV : V → g∗ an equivariant momentum map

(with respect to φV )

Suppose that φV is free and proper and denote by Gν the isotropy group of an element ν ∈ g∗

with respect to the coadjoint action of G. Denote by Aν and Vν the quotient manifolds given by

Aν = J−1(ν)/Gν, Vν = (JV )−1(ν)/Gν.

By passing again to the quotient, we may obtain

µ : J−1(ν)→ (JV )−1(ν) is Gν-invariant
with principal action

ψ : R× J−1(ν)→ J−1(ν)

=⇒ µν : Aν → Vν a surjective submersion and
ψν : R× Aν → Aν a principal action

(A,Ω)
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(Aν,Ων)
µν // (Vν, {·, ·}ν)

Theorem 2 ([4]) Let µ : (A,Ω) → V be a symplectic AV -bundle equipped with a canonical
action φ : G × A → A and an equivariant momentum map J : A → g∗. Suppose that the
induced action φV : G × V → V is free and proper. Then, for any ν ∈ g∗, µν : (Aν,Ων) → Vν
is a symplectic AV -bundle with R-principal action ψν : R × Aν → Aν. Moreover, the restriction
of the infinitesimal generator Zµ of µ to J−1(ν) is tangent to J−1(ν) and πν-projectable. Its
πν-projection is the infinitesimal generator Zµν of µν.
In addition, the reduced Poisson bracket {·, ·}ν on Vν is just the one induced by the symplectic
AV -bundle µν : Aν → Vν.

3. Hamiltonian reduction Theorem
Let φ : G×A→ A be a canonical action on the total space A of a non-autonomous Hamiltonian
system. Denote by φV : G× V → V the corresponding action on V .

Definition 4 The Hamiltonian section h is said to be G-invariant if h is equivariant with respect
to the actions φ and φV , that is

h ◦ φVg = φg ◦ h, for any g ∈ G.

We have that

φ a canonical action
J : M → g∗ a momentum map

h : V → A a G-invariant Hamiltonian section
=⇒

φV : G× V → V a cosymplectic action
on (V, ωh, ηh),

Rh(Jξ) = 0 for any ξ ∈ g

(A,Ω)
µ

//

Marsden-Weinstein
reduction [5]
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(Aν,Ων)
µν // (Vν, (ωh)ν, (ηh)ν)

Moreover, if φV is free and proper and ν ∈ g∗, we have

φ a canonical action,
h : V → A a G-invariant

Hamiltonian section
=⇒

hν : Vν → Aν a Hamiltonian section
of the reduced symplectic AV -bundle

µν : (Aν,Ων)→ Vν

Theorem 3 ([4]) Let (A, µ,Ω, h) be a non-autonomous Hamiltonian system and φ : G× A → A

be a canonical action such that the induced action on V is free and proper. Suppose that
J : A→ g∗ is an equivariant momentum map. If h isG-invariant, then, for any ν ∈ g∗, the cosym-
plectic structure on Vν induced by the non-autonomous Hamiltonian system (Aν, µν,Ων, hν) is
just the reduced cosymplectic structure obtained from (M,ωh, ηh).

Moreover, the dynamics Rhν of the reduced non-autonomous Hamiltonian system is just the
projection of the dynamics Rh of (A, µ,Ω, h).

Conclusions and future work

We extend the classical procedure of reduction of symplectic manifolds, due to Marsden and
Weinstein (see [5]), to the non-autonomous framework. If we have a non-autonomous Hamilto-
nian system with a symmetry, represented by a symplectic AV -bundle with a canonical action
and an invariant Hamiltonian section, we obtain a reduced non-autonomous Hamiltonian sys-
tem.

In particular, we can apply this procedure to the standard symplectic AV -bundle µπ : T ∗M →
V ∗π, obtained from a fibration π : M → R. It would be interesting to discuss when the reduced
AV -bundle obtained from a standard AV -bundle is again standard. For this purpose, a suitable
generalization of the cotangent bundle reduction could be used (see [4]).
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