

Abstract. An AV-bundle $\mu: A \rightarrow V$ is just an \mathbb{R} -principal bundle. If A is a symplectic AV-bundles play an important role in the geometric formulation of non-autonomous Hamiltonian systems. Given a symplectic AV-bundle $\mu: A \rightarrow V$ with a compatibility properties hold, we obtain a reduced symplectic AV-bundle $\mu_{\nu}: A_{\nu} \rightarrow V_{\nu}$. We show also that any G-invariant Hamiltonian section of μ_{ν} . Mardsen-Weinstein reduction theory for symplectic, cosymplectic and Poisson manifolds is used.

AV-bundle reduction Theorem Symplectic AV-bundles and non-autonomous 2. Hamiltonian systems

An AV-bundle [3] is just a \mathbb{R} -principal bundle $\mu : A \to V$. We will denote by

$$\psi : \mathbb{R} \times A \to A, \qquad (t, a) \mapsto \psi_t(a),$$

the associated principal action of the Lie group $(\mathbb{R}, +)$ on the manifold A and by $Z_{\mu} \in \mathfrak{X}(A)$ the infinitesimal generator of ψ .

Definition 1 We will say that $\mu : (A, \Omega) \to V$ is a symplectic AV-bundle, if $\mu : A \to V$ is an AV-bundle, (A, Ω) is a symplectic manifold and the associated principal action is symplectic. **Example 1** Let $\pi : M \to \mathbb{R}$ be a surjective submersion. If Ω_M is the canonical symplectic form on T^*M and $V^*\pi$ is the dual bundle of the vertical bundle of π , then the projection $\mu_{\pi}: (T^*M, \Omega_M) \to V^*\pi$ is a symplectic AV-bundle (the standard symplectic AV-bundle).

Proposition 1 ([4]) Let $\mu : (A, \Omega) \to V$ be a symplectic AV-bundle. Then there exists a unique Poisson structure $\{\cdot, \cdot\}_V$ on V such that μ is a Poisson map, i.e.

$$\{f \circ \mu, f' \circ \mu\}_A = \{f, f'\}_V \circ \mu, \quad \text{for any } f, f' \in C^{\infty}(V),$$

where $\{\cdot, \cdot\}_A$ is the Poisson bracket on A induced by Ω .

Definition 2 A *non-autonomous Hamiltonian system* (A, μ, Ω, h) is a symplectic AV-bundle $\mu: (A, \Omega) \to V$ endowed with a section $h: V \to A$ of μ , i.e. a smooth map such that $\mu \circ h = id_V$. The section $h: V \rightarrow A$ is called the *Hamiltonian section of the system*.

There is a one-to-one correspondence between the sets:

$$\{h: V \to A \mid h \text{ section of } \mu\} \leftrightarrow \{F_h \in C^{\infty}(A) \mid Z_{\mu}(F) = 1\}$$

defined by the following relation

$$a = \psi(F_h(a), h(\mu(a))),$$
 for any $a \in A$.

Theorem 1 ([4]) Let (A, μ, Ω, h) be a non-autonomous Hamiltonian system with infinitesimal generator Z_{μ} . If $\omega_h \in \Omega^2(V)$ and $\eta_h \in \Omega^1(V)$ are the forms defined as

$$\omega_h = h^* \Omega, \qquad \eta_h = -h^* (i_{Z_\mu} \Omega),$$

then (V, ω_h, η_h) is a cosymplectic manifold. The Reeb vector field $\mathcal{R}_h \in \mathfrak{X}(V)$ is just the μ projection of the Hamiltonan vector field \mathcal{H}_{F_h} of F_h .

Moreover, the Poisson bracket on V induced by (ω_h, η_h) is just the Poisson bracket $\{\cdot, \cdot\}_V$. Let (A, μ, Ω, h) be a non-autonomous Hamiltonian system. Then, we can choose Darboux coordinates (t, p, q^i, p_i) on A such that the local expression of $\mu : A \to V$ is

$$\mu(t, p, q^i, p_i) = (t, q^i, p_i).$$

Thus, if the local espression of $h: V \to A$ is

$$h(t, q^{i}, p_{i}) = (t, -H(t, q^{j}, p_{j}), q^{i}, p_{i}),$$

then, given a curve γ on V

 γ is an integral $\gamma(t) = (t, q^{i}(t), p_{i}(t))$ is a solution \iff curve of R_h of the Hamilton equations for H.

We will say that the vector field \mathcal{R}_h describes the *dynamics* of the non-autonomous Hamiltonian system.

Acknowledgments: This work has been partially supported by MICINN (Spain) grants MTM2009-08166-E. I.L. wishes to thank the Universidad de La Laguna, Spain) for its hospitality.

Symplectic AV-bundle reduction

Ignazio Lacirasella¹

joint work with J.C. Marrero², E. Padrón²

Università degli Studi Aldo Moro di Bari, Italy ² Universidad de La Laguna, Spain

Definition 3 An action $\phi: G \times A \to A$ is said to be a *canonical action* on the symplectic AVbundle $\mu : (A, \Omega) \rightarrow V$ if the following conditions hold:

i) ϕ is a symplectic action;

ii) the actions ψ and ϕ commute, that is $\phi_g \circ \psi_t = \psi_t \circ \phi_g$, for any $g \in G, t \in \mathbb{R}$; *iii)* the 1-form $\theta_{\mu} = i_{Z_{\mu}}\Omega$ is basic with respect to ϕ , i.e. $\theta_{\mu}(\xi_A) = 0$ for any $\xi \in \mathfrak{g}$, where ξ_A is the infinitesimal generator of ϕ defined by ξ .

By passing to the quotient, we have

If ϕ is a canonical action and	,	$\phi^V : G \times V - V$
$J: A \rightarrow \mathfrak{g}^*$ is an equivariant	\Longrightarrow	$J^V:V o \mathfrak{g}^*$
momentum map		

Suppose that ϕ^V is free and proper and denote by G_{ν} the isotropy group of an element $\nu \in \mathfrak{g}^*$ with respect to the coadjoint action of G. Denote by A_{ν} and V_{ν} the quotient manifolds given by

$$A_{\nu} = J^{-1}(\nu)/G_{\nu}, \qquad V_{\nu} = (.$$

By passing again to the quotient, we may obtain

$\mu: J^{-1}(\nu) \to (J^V)^{-1}(\nu)$ is G_{ν} -invariant with principal action	\implies	$\mu_{ u}$
$\psi: \mathbb{R} \times J^{-1}(\nu) \to J^{-1}(\nu)$		

	(A,Ω) —	$\xrightarrow{\mu} (V, \{\cdot, \cdot\})$
Marsden-Weinstein reduction [5]	$(A_{ u},\Omega_{ u})-$	$\xrightarrow{\mu_{\nu}} (V_{\nu}, \{\cdot, \cdot\}_{\nu})$

Theorem 2 ([4]) Let $\mu : (A, \Omega) \to V$ be a symplectic AV-bundle equipped with a canonical action $\phi : G \times A \to A$ and an equivariant momentum map $J : A \to \mathfrak{g}^*$. Suppose that the induced action $\phi^V : G \times V \to V$ is free and proper. Then, for any $\nu \in \mathfrak{g}^*$, $\mu_{\nu} : (A_{\nu}, \Omega_{\nu}) \to V_{\nu}$ is a symplectic AV-bundle with \mathbb{R} -principal action $\psi_{\nu} : \mathbb{R} \times A_{\nu} \to A_{\nu}$. Moreover, the restriction of the infinitesimal generator Z_{μ} of μ to $J^{-1}(\nu)$ is tangent to $J^{-1}(\nu)$ and π_{ν} -projectable. Its π_{ν} -projection is the infinitesimal generator $Z_{\mu_{\nu}}$ of μ_{ν} . In addition, the reduced Poisson bracket $\{\cdot, \cdot\}_{\nu}$ on V_{ν} is just the one induced by the symplectic

AV-bundle $\mu_{\nu}: A_{\nu} \to V_{\nu}$.

Hamiltonian reduction Theorem

Let $\phi: G \times A \to A$ be a canonical action on the total space A of a non-autonomous Hamiltonian system. Denote by $\phi^V : G \times V \to V$ the corresponding action on V. **Definition 4** The Hamiltonian section h is said to be G-invariant if h is equivariant with respect to the actions ϕ and ϕ^V , that is

$$h \circ \phi_g^V = \phi_g \circ h,$$
 for any

 \implies

We have that

 ϕ a canonical action $J: M \to \mathfrak{g}^*$ a momentum map $h: V \to A$ a G-invariant Hamiltonian section

3.

 $\rightarrow V$ a Poisson action on $(V, \{\cdot, \cdot\}_V)$, ^{*} an equivariant momentum map (with respect to ϕ^V)

 $(J^V)^{-1}(\nu)/G_{\nu}.$

 $: A_{\nu} \rightarrow V_{\nu}$ a surjective submersion and $\psi_{\nu}: \mathbb{R} \times A_{\nu} \to A_{\nu}$ a principal action

 $\mathbf{iy} \ g \in G.$

 $\phi^V: G \times V \to V$ a cosymplectic action on (V, ω_h, η_h) , $R_h(J_{\mathcal{E}}) = 0$ for any $\xi \in \mathfrak{g}$

Moreover, if ϕ^V is free and proper and $\nu \in \mathfrak{g}^*$, we have

 ϕ a canonical action, $h: V \to A$ a *G*-invariant Hamiltonian section

Theorem 3 ([4]) Let (A, μ, Ω, h) be a non-autonomous Hamiltonian system and $\phi : G \times A \to A$ be a canonical action such that the induced action on V is free and proper. Suppose that $J: A \to \mathfrak{g}^*$ is an equivariant momentum map. If h is G-invariant, then, for any $\nu \in \mathfrak{g}^*$, the cosymplectic structure on V_{ν} induced by the non-autonomous Hamiltonian system $(A_{\nu}, \mu_{\nu}, \Omega_{\nu}, h_{\nu})$ is just the reduced cosymplectic structure obtained from (M, ω_h, η_h) .

Moreover, the dynamics $\mathcal{R}_{h_{u}}$ of the reduced non-autonomous Hamiltonian system is just the projection of the dynamics R_h of (A, μ, Ω, h) .

Conclusions and future work

We extend the classical procedure of reduction of symplectic manifolds, due to Marsden and Weinstein (see [5]), to the non-autonomous framework. If we have a non-autonomous Hamiltonian system with a symmetry, represented by a symplectic AV-bundle with a canonical action and an invariant Hamiltonian section, we obtain a reduced non-autonomous Hamiltonian system.

In particular, we can apply this procedure to the standard symplectic AV-bundle $\mu_{\pi}: T^*M \rightarrow T^*M$ $V^*\pi$, obtained from a fibration $\pi: M \to \mathbb{R}$. It would be interesting to discuss when the reduced AV-bundle obtained from a standard AV-bundle is again standard. For this purpose, a suitable generalization of the cotangent bundle reduction could be used (see [4]).

References

- *J. Phys.*, A 25, no. 1, Pages 175-188, 1992
- structures, *J. Geom. Phys.* 52, no. 4, 2004, Pages 398-446.
- *matical Phys.* 5, no. 1, 1974, Pages 121-130.
- Pages 161-169.

Universidad de La Laguna

 $\rightarrow (V, \omega_h, \eta_h)$ $(A_{\nu}, \Omega_{\nu}) \xrightarrow{\mu_{\nu}} (V_{\nu}, (\omega_h)_{\nu}, (\eta_h)_{\nu})$

Cosymplectic reduction [1]

 $h_{\nu}: V_{\nu} \to A_{\nu}$ a Hamiltonian section of the reduced symplectic AV-bundle $\mu_{\nu}: (A_{\nu}, \Omega_{\nu}) \to V_{\nu}$

[1] C. Albert, Le theoreme de reduction de Marsden-Weinstein en geometrie cosymplectique et de contact, Journal of Geometry and Physics, Vol. 6, 1989, Pages 627-649.

[2] F. Cantrijn, M. de León, E.A. Lacomba, Gradient vector fields on cosymplectic manifolds,

[3] K. Grabowska, J. Grabowski, P. Urbański, AV-differential geometry: Poisson and Jacobi

[4] I. Lacirasella, J.C. Marrero, E. Padrón, Symplectic AV-bundle reduction, work in progress.

[5] J. Marsden, A. Weinstein, Reduction of symplectic manifolds with symmetry, Rep. Mathe-

[6] J. Marsden, T. Ratiu, Reduction of Poisson manifolds, Lett. Math. Phys. 11 no. 2, 1986,