Intersection cohomology of coisotropic submanifolds

Gregory Ginot, Camille Laurent-Gengoux, Florian Schätz, Mathieu Stiénon, Ping Xu Work in progress.

< 🗐 🕨

Koszul complex

Let $A \rightarrow M$ be a vector bundle.

Proposition

- ($\Gamma(\wedge A), \wedge$) is an algebra w.r.t. wedge product \wedge .
- (Γ(∧•A*), i) is an module over this algebra, w.r.t. the contraction operator i.

Choose now a section $x \in \Gamma(A^*)$, and call by m_x (resp i_x) the operators

$$\Gamma(\wedge^{\bullet} A^*) \to \Gamma(\wedge^{\bullet+1} A^*) (\text{resp. } \Gamma(\wedge^{\bullet} A) \to \Gamma(\wedge^{\bullet-1} A))$$

of multiplication by x (resp. contraction by x). Both operators square to zero, hence define a cohomology $H^*(x)$ and an homology $H_*(x)$, said to be attached to x.

Proposition

- The homology $H_*(x)$ is an algebra.
 - The cohomology $H^*(x)$ is a module over the algebra $H_*(x)$.

The differential of Lie algebroid

Definition

Let $A \rightarrow M$ be a vector bundle. A *pré-Lie algebroid structure* on A is a graded derivation of degree +1:

$$D: \Gamma(\wedge^{\bullet}A^*) \to \Gamma(\wedge^{\bullet+1}A^*).$$

It is said to be a *Lie algebroid* when it squares to 0.

The *Lie derivative* w.r.t. $P \in \Gamma(\wedge^k A)$ is the operator defined by:

$$\mathcal{L}_{P} := [\imath_{P}, D],$$

The *bracket* of $P \in \Gamma(\wedge^k A)$, $Q \in \Gamma(\wedge^l A)$ is the unique element $R := [P, Q]_D \in \Gamma(\wedge^{k+l-1}A)$ s.t.

$$\begin{cases} [\mathcal{L}_P, \mathcal{L}_Q] = \mathcal{L}_R, \\ [\mathcal{L}_P, \imath_Q] = \imath_R. \end{cases}$$

< 回 > < 三 > < 三 >

The differential of Lie algebroid

A *Gerstenhaber algebra* is a graded vector space E, endowed with a graded commutative product, an a graded Lie algebra structure on \overline{E} , with are compatible in the sense that:

 $[P, QR] = [P, Q]R + (-1)^{qr}[P, R]Q.$

A *Gerstenhaber algebra module* is a graded vector space which is a module for both the commutative product and the Lie bracket + compatibility relations.

When there is no Jacobi identity, we speak of *pré-Gerstenhaber* algebra, *pré-Gerstenhaber module*.

Example : Lie algebra of multivector fields, and exterior forms.

Proposition

Let $A \to M$ be a vector bundle. For every (pré)-algebroid structure D, the triple ($\Gamma(\bigwedge^{\bullet} A), \land, [.,.]_D$) is a (pré)-Gerstenhaber algebra, and $\Gamma(\bigwedge^{\bullet} A^*)$ is a module over this (pré)-Gerstenhaber algebra.

The differential of Lie algebroid

A *Gerstenhaber algebra* is a graded vector space E, endowed with a graded commutative product, an a graded Lie algebra structure on \overline{E} , with are compatible in the sense that:

 $[P, QR] = [P, Q]R + (-1)^{qr}[P, R]Q.$

A *Gerstenhaber algebra module* is a graded vector space which is a module for both the commutative product and the Lie bracket + compatibility relations.

When there is no Jacobi identity, we speak of *pré-Gerstenhaber* algebra, *pré-Gerstenhaber module*.

Example : Lie algebra of multivector fields, and exterior forms.

Proposition

Let $A \to M$ be a vector bundle. For every (pré)-algebroid structure D, the triple ($\Gamma(\bigwedge^{\bullet} A), \land, [.,.]_D$) is a (pré)-Gerstenhaber algebra, and $\Gamma(\bigwedge^{\bullet} A^*)$ is a module over this (pré)-Gerstenhaber algebra.

Question 1. Let a vector bundle $A \rightarrow M$. Given:

- a section $x \in \Gamma(A^*)$
- a (pré)-Lie algebroid D,

do the (pré)-Gerstenhaber algebra ($\Gamma(\bigwedge^{\bullet} A), \land, [.,.]_D$), and its module $\Gamma(\bigwedge^{\bullet} A^*)$ go to the quotient with respect to m_x, \imath_x and define (pré)-Gerstenhaber algebra structures and modules on $H_*(x), H^*(x)$ respectively ???

Proposition

The answer is **yes** if and only if D(x) = 0.

Question 2. But then, could it be that *D* be a pré-Lie algebroid but still the induced structure is a Gerstenhaber algebra ???

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Let $A \rightarrow M$ be a vector bundle. Given:

- a section $x \in \Gamma(A^*)$
- a pré-Lie algebroid D,

such that

$$\clubsuit D(x) = 0$$

• $D^2 = C \circ m_x - m_x \circ C$ for some operator *C* (i.e. homotopic to zero),

then the homologies $H_*(x)$ and co-homologies $H^*(x)$ attached to x admits induced Gerstenhaber algebra structures and modules respectively.

(And there is no "pré" anymore in the conclusion !)

< ロ > < 同 > < 回 > < 回 >

Coisotropic submanifolds

Let (X, π) be a Poisson manifold. A submanifold $M \subset X$ is said to be *coisotropic* if one of the equivalent conditions is satisfied:

$$1 \pi^{\#}(T_m M^{\perp}) \subset T_m M$$

- the ideal of functions vanishing on *M* is closed under Poisson bracket,
- in a local adapted system of coordinates $(x_1, \ldots, x_n, y_1, \ldots, y_d)$, the Poisson structure is of the form

$$\pi = \sum_{i,j} \mathbf{a}_{i,j} \frac{\partial}{\partial \mathbf{y}_i} \wedge \frac{\partial}{\partial \mathbf{y}_j} + \sum_{i,k} \mathbf{b}_{i,k} \frac{\partial}{\partial \mathbf{y}_i} \wedge \frac{\partial}{\partial \mathbf{x}_k} + \sum_{k,l} \mathbf{c}_{k,l} \frac{\partial}{\partial \mathbf{x}_k} \wedge \frac{\partial}{\partial \mathbf{x}_l},$$

where $c_{k,l}$ is identically zero on M.

Facts

- (X, π) Poisson $\Rightarrow T^*X$ Lie algebroid, \Rightarrow the operator $[\pi, \cdot]$ is a derivation squaring to 0 of $\Gamma(\wedge TX)$.
- ② $M \subset X$ coisotropic ⇒ TM^{\perp} Lie sub-algebroid, ⇒ induces a derivation squaring to 0 of $\Gamma(\wedge^{\bullet}TX/TM)$.

L_{∞} -algebras

Definition

An L_{∞} -algebra is a graded vector space endowed with a co-derivation \mathcal{D} of degree +1 squaring zero on $S^{\bullet}(\overline{E})$ (considered as a co-algebra w.r.t. de-concatenation).

Meaning. A co-derivation is entirely determined by its components $[\cdots]_n : S^n \overline{E} \to \overline{E}$ which are skew-symmetric maps mapping $E_{i_1} \times \cdots \times E_{i_n}$ to $E_{i_1+\cdots+i_n-n+2}$.

Example. Lie algebras, complexes and Differential Graded Lie Algebras (DGLA).

Definition

A Maurer-Cartan element is an element $x \in E_1$ such that $\mathcal{D}(e^x) = 0$, or, equivalently:

$$\sum_{n\in\mathbb{N}}\frac{[x,\ldots,x]_n}{n!}=0.$$

L_{∞} -algebras - bis

Definition

An L_{∞} -algebra structure on a graded vector space $\sum_{n} E_{n}$ is a sequence of operations:

$$[E_{i_1},\ldots,E_{i_n}]\mapsto E_{i_1+\cdots+i_n-n+2},$$

which are skew-symmetric in each variables, and satisfy some (generalized) Jacobi identity:

$$\sum_{i+j=n}\sum_{\sigma\in\text{Schuffles}(i,i+j-1)}\varepsilon(\sigma)[[x_{\sigma(1)},\ldots,x_{\sigma(i)}]_i,x_{\sigma(i+1)},\ldots,x_{\sigma(i+j-1)}]_j$$

Example of D.G.L.A. The Jacobi identity amounts to

1
$$D^2 = 0$$

- 2 D is a derivation of $[\cdot, \cdot]$,
- (and $[\cdot, \cdot]$ satisfies the Jacobi identity.

Important Example: Given

- a Poisson manifold (X, π) ,
- a coisotropic submanifold M,
- global transverse coordinates (*i.e.* a diffeomorphism between a neighborhood of the zero section in *TX*/*TM* and a neighborhood of *M* in *X*, *i.e.* a normal bundle and linear coordinates on it),

there is an induced L_{∞} structure on $\Gamma(\wedge^{\bullet} TX/TM)$, constructed as follows:

$$[P_1,\ldots,P_n]_n := p(\left[\left[\pi,\widehat{P_1}\right],\ldots,\widehat{P_n}\right])$$

where $\widehat{P_1}, \ldots, \widehat{P_n}$ are the unique multivector vector fields invariant by translation along the fibers that extend P_1, \ldots, P_n , and p is the operator that takes the projection on $\Gamma(\wedge^{\bullet}TX/TM)$ of a multivector field on X.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition

Assume that the Poisson structure is analytic. A section $x \in \Gamma(TX/TM)$ is Maurer-Cartan if and only if the time-1 flow of \hat{x} maps *M* to a coisotropic submanifold.

Said differently, Maurer-Cartan equation encodes deformations of coisotropic submanifolds. For non-analytic submanifolds, the result is only true formally.

Example: Given two coisotropic submanifolds *M*, *N* of the same dimension of (X, π) , there exists adapted coordinates $(y_1, \ldots, y_n, x_1, \ldots, x_d)$ for *M* such that *N* is given by $x_i := X_i(y_1, \ldots, y_n)$. Then

$$\mathbf{x} := \sum_{n} \mathbf{X}_{i} \frac{\partial}{\partial \mathbf{x}_{i}}$$

is a Maurer-Cartan element w.r.t. the L_{∞} -structure (when it is seen as a section of $\Gamma(TX/TM)$).

In short. Given two coisotropic submanifolds M, N of the same dimension in an analytic Poisson manifolds (X, π) , there exists, near any intersection point,

- a L_{∞} -structure $([\cdots]_n)_{n \in \mathbb{N}_*}$ on the graded algebra $\Gamma(\wedge TX/TM)$,
- a Maurer-Cartan element.

Question 1. Is it canonical ? No, but other choices would lead to "equivalent" data. (We leave it aside).

Question 2. What else ? The L_{∞} structure is indeed a P_{∞} structure, i.e. the brackets $([\cdots]_n)_{n \in \mathbb{N}^*}$ are graded derivations in each argument, when $\Gamma(\wedge^{\bullet}TX/TM)$ is equipped with the wedge product.

3

The fact that the L_{∞} -structure is indeed a P_{∞} structure matters (because on P_{∞} structures, there is a notion of derivation of degree +1):

Proposition

Let x be a Maurer-Cartan element of a P_{∞} structure, then the operator

$$\delta(\mathbf{y}) := \sum_{n \ge 1} \frac{1}{n!} [\mathbf{x}, \dots, \mathbf{x}, \mathbf{y}]_n$$

(assumed to be converging) is a derivation of degree +1 and it satisfies the condition \clubsuit , i.e D(x) = 0.

Question. Can we manage to have also condition \blacklozenge ? Is $D^2 = 0$??? No. Is D^2 homotopic to zero ???

Well-known fact : Given a Maurer-Cartan element, the operator:

$$D_x: y\mapsto \sum_{n\geq 1} \frac{1}{(n-1)!} [x,\ldots,x,y]_n$$

From P_{∞} to Gerstehanber

Theorem

Let x be a Maurer-Cartan element of a P_{∞} structure, then the operator

$$\delta(\mathbf{y}) := \sum_{n \ge 1} \frac{1}{n!} [\mathbf{x}, \dots, \mathbf{x}, \mathbf{y}]_n$$

(assumed to be converging) is a derivation of degree +1 and it satisfies the condition \clubsuit , i.e D(x) = 0. If, moreover, the P_{∞} -structure is quantizable (by deformation) in an A_{∞} -structure whose term in ε is skew-symmetric, then the condition \blacklozenge is also satisfied.

Indeed, it suffices that the Hochshield cohomology of the underlying algebra is concentrated in skew-symmetric part.

Example: The P_{∞} -structure associated to a coisotropic submanifold satisfies all these assumptions [Cattaneo-Felder].

A (10) A (10)

Conclusion

General idea:

- **1** X Poisson + *M* coisotropic $\rightsquigarrow P_{\infty}$ -structure on $\Gamma(\wedge TX/TM)$.
- 2 *N* coisotropic \rightsquigarrow Maurer-Cartan element $x \in \Gamma(TX/TM)$.
- Solution Previous theorem \rightsquigarrow Gerstenhaber algebra structure on $H_*(x)$ and Gerstenhaber module on $H^*(x)$.

More precisely:

Corollary

Let (X, π) be an analytic Poisson manifold. Let M, N be a coisotropic submanifolds, and x the a Maurer-Cartan element on the P_{∞} structure on $\Gamma(\wedge^{\bullet}TX/TM)$, constructed with the help of some well-chosen coordinates on a neighborhood U of a point in $M \cap N$. Let $x \in \Gamma(TX/TM)$ be the Maurer-Cartan solution corresponding to it, then then the homologies $H_*(x)$ and co-homologies $H^*(x)$ attached to xadmits induced Gerstenhaber algebra structures and modules respectively..

Conclusion

Black box. These structures do not depend on the several choices made in the construction, and can be glued together in a global object.

Let us admit it. Now, what does $H^*(x)$ and $H_*(x)$ really compute ?

Proposition

Given two submanifolds M, N on X, and a coordinate neighborhood \mathcal{U} adapted to M, in which N is the graph of some map, that we can see as a section $x \in \Gamma_{\mathcal{U}\cap M}(TX/TM)$. Then $H_*(x) = \operatorname{Tor}_{\mathcal{U}}(M, N)$ and $H^*(x) = \operatorname{Ext}_{\mathcal{U}}(M, N)$, i.e $\operatorname{Tor}_{\mathcal{F}(\mathcal{U})}(\mathcal{F}(M \cap \mathcal{U}), \mathcal{F}(N \cap \mathcal{U}))$ and $\operatorname{Ext}_{\mathcal{F}(\mathcal{U})}(\mathcal{F}(M \cap \mathcal{U}), \mathcal{F}(N \cap \mathcal{U}))$ respectively.

Question. Baranovski-Ginzburg (following Behrend-Fanteschi) have constructed a Gerstenhaber algebra structure on the sheafified *Tor* and *Ext* of coisotropic submanifolds of an algebraic Poisson manifold. Does our construction matches ? **Yes** in the symplectic case.

・ 同 ト ・ ヨ ト ・ ヨ ト ・