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I. Introduction.

More than two hundred years before J.C., Archimedes
undestood the basic principles of Statics. The mathematical
formulation of the laws of Dynamics was developed much later,
during the XVI-th, XVII-th and XVIII-th centuries, and reached a
state of maturity at the end of the XIX-th century.
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I. Introduction.

More than two hundred years before J.C., Archimedes
undestood the basic principles of Statics. The mathematical
formulation of the laws of Dynamics was developed much later,
during the XVI-th, XVII-th and XVIII-th centuries, and reached a
state of maturity at the end of the XIX-th century.
New views about Space and Time appeared at the beginning of
the XX-th century, with the Special and General Relativity
theories. Their integration in the mathematical description of the
motion of mechanical systems was surprisingly easy, but at a
price : the introduction of the concept of Field, made essential
by the fact that actions at a distance between material objects
are no more admitted in Relativity theories.
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I. Introduction (2)

In this lecture I will present the main ideas which allowed the
transition from Statics to Dynamics and the development of a
usable mathematical formulation of the motion of mechanical
systems. Newton’s laws, d’Alembert’s Principle, the method of
Virtual Work, the Lagrange differential, Lagrangian and
Hamiltonian formulations of Dynamics will be discussed.
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II. Statics. 1. What is Statics ?

Statics is the study of equilibria of a material system, with
respect to a given reference frame. The material system can be
made of a continuous medium (a fluid or a more general
deformable medium), or of an assembly of several parts, of
which each may act on the other parts either by contact, or by
remote actions (by means of gravitational, electrostatic or
magnetic forces). External objects, which are not parts of the
system, may also act on the system by contact or remote
actions.
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II. Statics. 2. The principles of Statics

The laws of Statics rest on two principles :
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II. Statics. 2. The principles of Statics

The laws of Statics rest on two principles :
the principle of equality of action and reaction : if a part A of

a material system exerts on another part B of the system a
“force” F , the part B exerts on A the opposite “force” −F ;
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II. Statics. 2. The principles of Statics

The laws of Statics rest on two principles :
the principle of equality of action and reaction : if a part A of

a material system exerts on another part B of the system a
“force” F , the part B exerts on A the opposite “force” −F ;

the principle of vanishing of the total “force” : when a system
is in equilibrium, the sum of all “forces” which act on it vanishes.
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II. Statics. 2. The principles of Statics

The laws of Statics rest on two principles :
the principle of equality of action and reaction : if a part A of

a material system exerts on another part B of the system a
“force” F , the part B exerts on A the opposite “force” −F ;

the principle of vanishing of the total “force” : when a system
is in equilibrium, the sum of all “forces” which act on it vanishes.
This principle can be applied to the whole system, and to each
of its parts, since when the system is in equilibrium, each of its
parts also is in equilibrium ; for a continuous medium, it can be
applied to infinitesimal parts of the medium.
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II. Statics. 2. The principles of Statics

The laws of Statics rest on two principles :
the principle of equality of action and reaction : if a part A of

a material system exerts on another part B of the system a
“force” F , the part B exerts on A the opposite “force” −F ;

the principle of vanishing of the total “force” : when a system
is in equilibrium, the sum of all “forces” which act on it vanishes.
This principle can be applied to the whole system, and to each
of its parts, since when the system is in equilibrium, each of its
parts also is in equilibrium ; for a continuous medium, it can be
applied to infinitesimal parts of the medium.
Of course when this principle is applied to some part of a
system, one must take into account all the “forces” which are
exerted on that part, by other parts of the system as well as by
external objects.
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II. Statics. 3. What is a “Force” ?

But what exactly is a “Force” ?
The simplest mathematical representation of a “force” acting on
a material object A set in the physical space E is a vector
attached to a point P of A ; in other words an element

−→
F ∈ TPE .

The point P is the application point of the force. Such a force
tends to displace the application point P , by a translation, in the
direction of the vector

−→
F .
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II. Statics. 3. What is a “Force” ?

But what exactly is a “Force” ?
The simplest mathematical representation of a “force” acting on
a material object A set in the physical space E is a vector
attached to a point P of A ; in other words an element

−→
F ∈ TPE .

The point P is the application point of the force. Such a force
tends to displace the application point P , by a translation, in the
direction of the vector

−→
F .

Another kind of “force” is called couple (or pure moment). It is
the limit of a pair opposite forces mathematically represented by
the vectors

−→
F (ε) and −

−→
F (ε), applied to points P + ε

−→
k and

P − ε
−→
k , the dependence on ε of

−→
F (ε) being such that the total

momentum 2ε
−→
k ×

−→
F (ε) has a finite limit

−→
M when ε → 0. Such a

couple tends to rotate the material element at point Paround an
axis of rotation parallel to

−→
M.
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II. Statics. 4. What is a virtual work in Statics ?

A more general mathematical representation of forces in Statics
uses the concepts of virtual infinitesimal displacement and
virtual infinitesimal work (for a given virtual infinitesimal
displacement).
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II. Statics. 4. What is a virtual work in Statics ?

A more general mathematical representation of forces in Statics
uses the concepts of virtual infinitesimal displacement and
virtual infinitesimal work (for a given virtual infinitesimal
displacement).
A virtual infinitesimal displacement of a material object A set in
the physical space E is a vector field

−→
V defined on A. The

physical meaning of
−→
V is that one tries to apply to each point

P ∈ A an infinitesimal displacement proportional to
−→
V (P ).
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II. Statics. 4. What is a virtual work in Statics ?

A more general mathematical representation of forces in Statics
uses the concepts of virtual infinitesimal displacement and
virtual infinitesimal work (for a given virtual infinitesimal
displacement).
A virtual infinitesimal displacement of a material object A set in
the physical space E is a vector field

−→
V defined on A. The

physical meaning of
−→
V is that one tries to apply to each point

P ∈ A an infinitesimal displacement proportional to
−→
V (P ).

The “forces”applied to the material object A are mathematically
described by a real valued function WA defined on the set of
vector fields on A, verifying

WA(
−→
V ) = 0 when

−→
V = 0 .

WA(
−→
V ) is the virtual infinitesimal work done by the forces

applied to A for the virtual infinitesimal displacement A.
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II. Statics. 4. What is a virtual work in Statics ? (2)

The set of all vector fields on A being very large, one generally
considers only virtual infinitesimal displacements which belong
to a finite-dimensional subset of the set of all vector fields. The
choice of this subset is guided by physical considerations.
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II. Statics. 4. What is a virtual work in Statics ? (2)

The set of all vector fields on A being very large, one generally
considers only virtual infinitesimal displacements which belong
to a finite-dimensional subset of the set of all vector fields. The
choice of this subset is guided by physical considerations.
For example, if A is a rigid body, one often uses vector fields on
A which belong to the Lie algebra of infinitesimal Euclidean
displacements of A.
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II. Statics. 4. What is a virtual work in Statics ? (2)

The set of all vector fields on A being very large, one generally
considers only virtual infinitesimal displacements which belong
to a finite-dimensional subset of the set of all vector fields. The
choice of this subset is guided by physical considerations.
For example, if A is a rigid body, one often uses vector fields on
A which belong to the Lie algebra of infinitesimal Euclidean
displacements of A.
The choice of the function WA is guided by physical
considerations. The simplest choice is a linear function : with
such a choice, the “forces” applied to the material element A
are mathematically described by an element of the dual space
of the space of infinitesimal displacements. Therefore, the
“forces” applied to a rigid body are usually described by an
element (sometimes called torsor) of the dual space of the Lie
algebra of infinitesimal Euclidean displacements.
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II. Statics. 4. What is a virtual work in Statics ? (3)

Remarks
1. Infinitesimal Euclidean displacements are used as
infinitesimal virtual displacements not only for solids, because if
one assumes that the forces internal to the material element A
depend only on the distances between its internal parts, the
virtual infinitesimal work made by these internal forces vanishes
when the infinitesimal virtual displacement preserves distances.
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II. Statics. 4. What is a virtual work in Statics ? (3)

Remarks
1. Infinitesimal Euclidean displacements are used as
infinitesimal virtual displacements not only for solids, because if
one assumes that the forces internal to the material element A
depend only on the distances between its internal parts, the
virtual infinitesimal work made by these internal forces vanishes
when the infinitesimal virtual displacement preserves distances.
2. For material elements with an internal structure (for
example magnetic materials, or liquid crystals) fields on A more
general than vector fields can be used as virtual infinitesimal
displacements (see for example the books by Darryl Holm) [1].
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II. Statics. 4. What is a virtual work in Statics ? (3)

Remarks
1. Infinitesimal Euclidean displacements are used as
infinitesimal virtual displacements not only for solids, because if
one assumes that the forces internal to the material element A
depend only on the distances between its internal parts, the
virtual infinitesimal work made by these internal forces vanishes
when the infinitesimal virtual displacement preserves distances.
2. For material elements with an internal structure (for
example magnetic materials, or liquid crystals) fields on A more
general than vector fields can be used as virtual infinitesimal
displacements (see for example the books by Darryl Holm) [1].
3. Several authors, for example Wlodzimierz Tulczyjev [7],
have used functions more general than linear functions for the
mathematical description of the virtual infinitesimal work of
forces.
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II. Statics. 4. The method of virtual works in Statics

According to the second principle of Statics, when a material
system is in equilibrium the total forces which act on it, and on
each of its part, vanishes.
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II. Statics. 4. The method of virtual works in Statics

According to the second principle of Statics, when a material
system is in equilibrium the total forces which act on it, and on
each of its part, vanishes.

Since WA(
−→
V ) = 0 when

−→
V = 0, when a part A of the material

system is in equilibrium, the virtual infinitesimal work WA(
−→
V ) of

forces exerted on A vanishes for all its possible virtual
infinitesimal displacements

−→
V . Using this property is called the

method of virtual works in Statics.
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II. Statics. 4. The method of virtual works in Statics

According to the second principle of Statics, when a material
system is in equilibrium the total forces which act on it, and on
each of its part, vanishes.

Since WA(
−→
V ) = 0 when

−→
V = 0, when a part A of the material

system is in equilibrium, the virtual infinitesimal work WA(
−→
V ) of

forces exerted on A vanishes for all its possible virtual
infinitesimal displacements

−→
V . Using this property is called the

method of virtual works in Statics.
A suitable choice of the space of virtual infinitesimal
displacements often allows important simplifications : for
example when the virtual infinitesimal displacements used are
infinitesimal Euclidean displacements, the virtual infinitesimal
work of internal forces is zero, so one has to calculate only the
virtual infinitesimal work of external forces, exerted on A by
other parts of the system or by external objects.
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III. Dynamics. 1. Newtonian Dynamics

Dynamics is the study of motions of a material system ;
classical, or Newtonian (i.e. non relativistic) Dynamics rests of
the law, formulated by Isaac Newton in his famous
book Philosophiae naturalis principia mathematica [5], wich
states that when a force

−→
F acts on a material point, the

acceleration −→γ of this material point is proportional to
−→
F ,

the coefficient of proportionality m being the mass of the
material point :

−→
F = m−→γ .
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III. Dynamics. 1. Newtonian Dynamics

Dynamics is the study of motions of a material system ;
classical, or Newtonian (i.e. non relativistic) Dynamics rests of
the law, formulated by Isaac Newton in his famous
book Philosophiae naturalis principia mathematica [5], wich
states that when a force

−→
F acts on a material point, the

acceleration −→γ of this material point is proportional to
−→
F ,

the coefficient of proportionality m being the mass of the
material point :

−→
F = m−→γ .

With this law and the law of gravitational interaction (also
formulated in his book), accoding to which the gravitational
force exerted on a material point M , of mass m, by another
material point M ′ of mass m′ is directed towards M ′ and

proportional to mm′
(
d(M,M ′)

)−2
, Newton was able to explain

the motions of planets in the Solar system (previously
discovered by Johannes Kepler).
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III. Dynamics. 2. D’Alembert’s principle

Let us consider a material system which moves in the physical
space E . Newton’s law states that each elementary part of the
system, of mass m, on which, at time t, the total force exerted
by other parts of the system and by external objects is

−→
F (t), is

accelerated, with an acceleration −→γ (t) satisfying
−→
F (t) = m−→γ (t) .
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III. Dynamics. 2. D’Alembert’s principle

Let us consider a material system which moves in the physical
space E . Newton’s law states that each elementary part of the
system, of mass m, on which, at time t, the total force exerted
by other parts of the system and by external objects is

−→
F (t), is

accelerated, with an acceleration −→γ (t) satisfying
−→
F (t) = m−→γ (t) .

D’Alembert’s principle is a way to reduce this problem in
Dynamics to an equivalent problem in Statics. It says that
−→
F fictitious(t) = −m−→γ (t) is a fictitious force exerted, at time t, on
the elementary mass m when it is accelerated at an
acceleration −→γ (t), and that the motion of this mass element is

such that the total force which acts on it, real
−→
F (t) plus fictitious

−→
F fictitious(t), vanishes identically at each time t :

−→
F (t) +

−→
F fictitious(t) = 0 , with

−→
F fictitious(t) = −m−→γ (t) .
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III. Dynamics. 3. The method of virtual work in Dynamics

Since d’Alembert’s principle allows to reduce any problem in
Dynamics to an equivalent problem in Statics, the method of
virtual works can be used in Dynamics as well as in Statics. The
method often offers a very convenient way for the derivation of
the equations of motion of a mechanical system.
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III. Dynamics. 3. The method of virtual work in Dynamics

Since d’Alembert’s principle allows to reduce any problem in
Dynamics to an equivalent problem in Statics, the method of
virtual works can be used in Dynamics as well as in Statics. The
method often offers a very convenient way for the derivation of
the equations of motion of a mechanical system.
The method consists in writing that the motion of every part A of
the material system is such that at any time, the virtual
infinitesimal work of all the forces (real and fictitious) applied to
A vanishes, for any virtual infinitesimal displacement of A.
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III. Dynamics. 3. The method of virtual work in Dynamics

Since d’Alembert’s principle allows to reduce any problem in
Dynamics to an equivalent problem in Statics, the method of
virtual works can be used in Dynamics as well as in Statics. The
method often offers a very convenient way for the derivation of
the equations of motion of a mechanical system.
The method consists in writing that the motion of every part A of
the material system is such that at any time, the virtual
infinitesimal work of all the forces (real and fictitious) applied to
A vanishes, for any virtual infinitesimal displacement of A.
Of course, the virtual infinitesimal displacements considered
affect only the position of the various parts of A in Space, at a
given fixed time.
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III. Dynamics. 4. Lagrange dynamics.

In his famous book Mécanique analytique [3], Lagrange uses an
n+ 1-dimensional manifold Q̃ as configuration space-time ; a
surjective submersion θ : Q̃ → T maps Q̃ onto the interval T of
possible values of the time. In practice, when an origin and a
unit of time are chosen, T is identified with an interval of the
real line R. Each t ∈ T is called a time, and the n-dimensional
manifold Qt = θ−1(t) is the set of possible configurations of the
system at time t. In local coordinates adapted to the
submersion θ : Q̃ → T

q̃ = (t, q1, . . . , qn) , θ : (t, q1, . . . , qn) 7→ t .
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III. Dynamics. 4. Lagrange dynamics.

In his famous book Mécanique analytique [3], Lagrange uses an
n+ 1-dimensional manifold Q̃ as configuration space-time ; a
surjective submersion θ : Q̃ → T maps Q̃ onto the interval T of
possible values of the time. In practice, when an origin and a
unit of time are chosen, T is identified with an interval of the
real line R. Each t ∈ T is called a time, and the n-dimensional
manifold Qt = θ−1(t) is the set of possible configurations of the
system at time t. In local coordinates adapted to the
submersion θ : Q̃ → T

q̃ = (t, q1, . . . , qn) , θ : (t, q1, . . . , qn) 7→ t .

A motion of the system is a smooth section c : T → Q̃ of the
submersion θ. In local coordinates

t 7→ c(t) =
(
t, q1(t), . . . , qn(t)

)
.
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III. Dynamics. 4. Lagrange dynamics (2).

Assuming that a unit of length has been chosen, the physical
space E is identified with a 3-dimensional affine Euclidean
space. For each material element α of the system, of mass mα

(a positive number, when a unit of mass has been chosen),
there is a smooth map Mα : Q̃ → E , whose image Mα(q̃) is the
position occupied in Space by the material element α when the
time and the configuration of the mechanical system are
mathematically described by the element q̃ ∈ Q̃. Following
Lagrange, we will first consider a particular material element α.
At the end of the calculation we will make the sum over all the
material elements of the system.
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III. Dynamics. 4. Lagrange dynamics (2).

Assuming that a unit of length has been chosen, the physical
space E is identified with a 3-dimensional affine Euclidean
space. For each material element α of the system, of mass mα

(a positive number, when a unit of mass has been chosen),
there is a smooth map Mα : Q̃ → E , whose image Mα(q̃) is the
position occupied in Space by the material element α when the
time and the configuration of the mechanical system are
mathematically described by the element q̃ ∈ Q̃. Following
Lagrange, we will first consider a particular material element α.
At the end of the calculation we will make the sum over all the
material elements of the system.
For a motion t 7→ c(t) of the system, the velocity and the
momentum of the material element α are

−→
V α(t) =

−−→
dMα ◦ c(t)

dt
, −→p α(t) = mα

−→
V α(t) .
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III. Dynamics. 4. Lagrange dynamics (3).

Lagrange writes the fundamental law of dynamics for the
material element α

d−→p α(t)

dt
=

−→
F α

where
−→
F α is the total force exerted on the material element α.
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III. Dynamics. 4. Lagrange dynamics (3).

Lagrange writes the fundamental law of dynamics for the
material element α

d−→p α(t)

dt
=

−→
F α

where
−→
F α is the total force exerted on the material element α.

Remarks When writing this equality, Lagrange, following
Newton, implicitly makes an assumption on the structure of the
physical Space E : the first and the second derivatives of
Mα ◦ c(t) with respect to the time t are elements of different
spaces : Tc(t)E and of T−→

V (t)
(TE), respectively. It is the triviality of

the tangent bundle TE which allows to consider them as
elements of the associated Euclidean vector space

−→
E .
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III. Dynamics. 4. Lagrange dynamics (4).

The force
−→
F α is an element of the cotangent space T ∗

c(t)E ,

identified with
−→
E ∗ by trivialization of the cotangent bundle. The

Euclidean scalar product allows its identification with
−→
E .

By assuming the existence of the submersion θ : Q̃ → T ,
Lagrange, following Newton, assumes that there exists an
absolute time, the same for all parts of the mechanical system.
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III. Dynamics. 4. Lagrange dynamics (4).

The force
−→
F α is an element of the cotangent space T ∗

c(t)E ,

identified with
−→
E ∗ by trivialization of the cotangent bundle. The

Euclidean scalar product allows its identification with
−→
E .

By assuming the existence of the submersion θ : Q̃ → T ,
Lagrange, following Newton, assumes that there exists an
absolute time, the same for all parts of the mechanical system.
Then Lagrange uses the principle of virtual work : he considers
an infinitesimal virtual displacement of the mechanical system
and calculates the infinitesimal virtual work made by the time

derivative
d−→p α(t)

dt
of the momentum −→p α(t) of the material

element α, and by the force
−→
F α exerted on that element. And

he writes the equality of these virtual infinitesimal works.
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III. Dynamics. 4. Lagrange dynamics (5).

Following Lagrange, we will denote by δq the virtual infinitesimal
displacement, although this notation is misleading : it is not a
differential form, but rather a vector field tangent to the
configuration space-time Q̃ along the the curve {c(t); t ∈ T }.
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III. Dynamics. 4. Lagrange dynamics (5).

Following Lagrange, we will denote by δq the virtual infinitesimal
displacement, although this notation is misleading : it is not a
differential form, but rather a vector field tangent to the
configuration space-time Q̃ along the the curve {c(t); t ∈ T }.
Moreover, its projection onto T must vanish : for each t ∈ T , we
must have

Tc(t)θ
(
δq
(
c(t)
))

= 0 .

This condition expresses the fact that at each time t, the virtual
infinitesimal displacement only affects the configuration of the
system, not the time t.
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III. Dynamics. 4. Lagrange dynamics (5).

Following Lagrange, we will denote by δq the virtual infinitesimal
displacement, although this notation is misleading : it is not a
differential form, but rather a vector field tangent to the
configuration space-time Q̃ along the the curve {c(t); t ∈ T }.
Moreover, its projection onto T must vanish : for each t ∈ T , we
must have

Tc(t)θ
(
δq
(
c(t)
))

= 0 .

This condition expresses the fact that at each time t, the virtual
infinitesimal displacement only affects the configuration of the
system, not the time t.

The tangent bundle TE being trivial, we identify it with E ×
−→
E

and we denote by pr2 : TE = E ×
−→
E →

−→
E the second projection.

We set
−→
Z α = pr2 ◦TMα : TQ̃ →

−→
E .
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III. Dynamics. 5. The virtual work of accelerations.

The virtual infinitesimal work of
d−→p α(t)

dt
is

W

(
d−→p α(t)

dt
, δq

)
=

〈
d−→p α(t)

dt
,
−→
Z α ◦ δq ◦ c(t)

〉
.

The pairing
〈
,
〉

on the left-hand side of this formula stands for

the Euclidean scalar product of vectors in
−→
E .
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III. Dynamics. 5. The virtual work of accelerations.

The virtual infinitesimal work of
d−→p α(t)

dt
is

W

(
d−→p α(t)

dt
, δq

)
=

〈
d−→p α(t)

dt
,
−→
Z α ◦ δq ◦ c(t)

〉
.

The pairing
〈
,
〉

on the left-hand side of this formula stands for

the Euclidean scalar product of vectors in
−→
E .

The calculation made by Lagrange aims at expressing this
infinitesimal virtual work as the pairing of the vector
δq
(
c(t)
)
∈ Tc(t)Q̃ with a covector, element of T ∗

c(t)Q̃. He writes

〈
d−→p α(t)

dt
,
−→
Z α ◦ δq ◦ c(t)

〉
=

d

dt

〈−→p α(t),
−→
Z α ◦ δq ◦ c(t)

〉

−

〈
−→p α(t),

d

dt

(−→
Z α ◦ δq ◦ c(t)

)〉
.
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III. Dynamics. 5. The virtual work of accelerations (2).

Important remark The virtual infinitesimal displacement δq
is initially defined as a vector field tangent to Q̃ along the curve
{c(t); t ∈ T }. However, by writing
〈
d−→p α(t)

dt
,
−→
Z α ◦ δq ◦ c(t)

〉
=

d

dt

〈−→p α(t),
−→
Z α ◦ δq ◦ c(t)

〉

−

〈
−→p α(t),

d

dt

(−→
Z α ◦ δq ◦ c(t)

)〉
,

one assumes that δq is a vector field on TQ̃, projectable on Q̃ by
the map Tτ

Q̃
: T (TQ̃) → TQ̃, its projection being the vector field

δq initially defined on Q̃ along the curve {c(t); t ∈ T }. At a given
time t, each term of the right hand side depends on the value of

the derivative
d
(
δq ◦ c(t)

)

dt
, but the right hand side as a whole

only depends on the value of δq ◦ c(t).
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III. Dynamics. 5. The virtual work of accelerations (3).

With the local coordinates (t, q1, . . . , qn, ṫ, q̇1, . . . , q̇) on TQ̃, we
may write

−→
Z α(t, q

1, . . . , qn, ṫ, q̇1, . . . , q̇n) =

n∑

i=1

q̇i
∂
−→
Mα

∂qi
+ ṫ

∂
−→
Mα

∂t

=

n∑

i=1

q̇i
∂
−→
Z α

∂q̇i
+ ṫ

∂
−→
Z α

∂ṫ
,

the second equality following from Euler’s identity, which can be
used since

−→
Z α(t, q

1, . . . , qn, ṫ, q̇1, . . . , q̇n) is a linear function of
(ṫ, q̇1, . . . , q̇n).Thefrefore,

∂
−→
Z α

∂q̇i
=

∂
−→
Mα

∂qi
,
∂
−→
Z α

∂ṫ
=

∂
−→
Mα

∂t
.
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III. Dynamics. 5. The virtual work of accelerations (4).

We may therefore write

〈−→p α(t),
−→
Z α◦δq◦c(t)

〉
= m

n∑

i=1

〈
−→
Z α ◦

dc(t)

dt
,
∂
−→
Z α

∂q̇i
◦
dc(t)

dt

(
δqi ◦ c(t)

)
〉

,

with, in local coordinates,

dc(t)

dt
=

(
t, q1(t), . . . , qn(t), 1,

dq1(t)

dt
. . . ,

dqn(t)

dt

)
.
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III. Dynamics. 5. The virtual work of accelerations (4).

We may therefore write

〈−→p α(t),
−→
Z α◦δq◦c(t)

〉
= m

n∑

i=1

〈
−→
Z α ◦

dc(t)

dt
,
∂
−→
Z α

∂q̇i
◦
dc(t)

dt

(
δqi ◦ c(t)

)
〉

,

with, in local coordinates,

dc(t)

dt
=

(
t, q1(t), . . . , qn(t), 1,

dq1(t)

dt
. . . ,

dqn(t)

dt

)
.

Let Tα : TQ̃ → R be the function

Tα =
mα

2
〈
−→
Z α,

−→
Z α〉 . We have :

〈−→p α(t),
−→
Z α ◦ δq ◦ c(t)

〉
=

n∑

i=1

(
∂Tα
∂q̇i

◦
dc(t)

dt

) (
δqi ◦ c(t)

)
.
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III. Dynamics. 5. The virtual work of accelerations (5).

Taking the derivative with respect to t, we get

d

dt

〈−→p α(t),
−→
Z α ◦ δq ◦ c(t)

〉
=

n∑

i=1

d

dt

(
∂Tα
∂q̇i

◦
dc(t)

dt

) (
δqi ◦ c(t)

)

+

n∑

i=1

(
∂Tα
∂q̇i

◦
dc(t)

dt

)
d

dt

(
δqi ◦ c(t)

)
.
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III. Dynamics. 5. The virtual work of accelerations (5).

Taking the derivative with respect to t, we get

d

dt

〈−→p α(t),
−→
Z α ◦ δq ◦ c(t)

〉
=

n∑

i=1

d

dt

(
∂Tα
∂q̇i

◦
dc(t)

dt

) (
δqi ◦ c(t)

)

+

n∑

i=1

(
∂Tα
∂q̇i

◦
dc(t)

dt

)
d

dt

(
δqi ◦ c(t)

)
.

Similarly, we may write

〈
−→p α(t),

d

dt

(−→
Z α ◦ δq ◦ c(t)

)〉
=

〈
−→p α(t),

n∑

i=1

d

dt

(
∂
−→
Mα

∂qi
(
c(t)
)
δqi
(
c(t)
)
)〉

=

〈
−→p α(t),

n∑

i=1

[
d

dt

(
∂
−→
Mα

∂qi
(
c(t)
)
)
δqi
(
c(t)
)
+

∂
−→
Mα

∂qi
(
c(t)
) d
dt

(
δqi
(
c(t)
))
]〉

.
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III. Dynamics. 5. The virtual work of accelerations (6).

But we have

d

dt

(
∂
−→
Mα

∂qi
(
c(t)
)
)

=
∂

∂qi

(
d
−→
Mα

(
c(t)
)

dt

)
=

∂
−→
Z α

∂qi

(
dc(t)

dt

)
.

Therefore
〈
−→p α(t),

n∑

i=1

d

dt

(
∂
−→
Mα

∂qi
(
c(t)
)
)
δqi
(
c(t)
)
〉

=

〈
m
−→
Z α ◦

dc(t)

dt
,

n∑

i=1

∂
−→
Z α

∂qi
◦
dc(t)

dt
δqi ◦ c(t)

〉

=

n∑

i=1

(
∂Tα
∂qi

◦
dc(t)

dt

)
δqi ◦ c(t) .
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III. Dynamics. 5. The virtual work of accelerations (7).

The last term can be written
〈
−→p α(t),

n∑

i=1

∂
−→
Mα

∂qi
(
c(t)
) d
dt

(
δqi
(
c(t)
))
〉

=

n∑

i=1

[〈
m
−→
Z α ◦

dc(t)

dt
,
∂
−→
Z α

∂q̇i
◦
dc(t)

dt

〉
d

dt

(
δqi
(
c(t)
))
]

=

n∑

i=1

(
∂Tα
∂q̇i

◦
dc(t)

dt

)
d

dt

(
δqi
(
c(t)
))

.
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III. Dynamics. 5. The virtual work of accelerations (7).

The last term can be written
〈
−→p α(t),

n∑

i=1

∂
−→
Mα

∂qi
(
c(t)
) d
dt

(
δqi
(
c(t)
))
〉

=

n∑

i=1

[〈
m
−→
Z α ◦

dc(t)

dt
,
∂
−→
Z α

∂q̇i
◦
dc(t)

dt

〉
d

dt

(
δqi
(
c(t)
))
]

=

n∑

i=1

(
∂Tα
∂q̇i

◦
dc(t)

dt

)
d

dt

(
δqi
(
c(t)
))

.

When we gather all the terms calculated, we see that the terms

which contain
d

dt

(
δqi
(
c(t)
))

cancel. The virtual work of
d−→p α(t)

dt
for the infinitesimal virtual displacement δq is :
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III. Dynamics. 5. The virtual work of accelerations (8).

W

(
d−→p α(t)

dt
, δq

)
=

〈
d−→p α(t)

dt
,
−→
Z α ◦ δq ◦ c(t)

〉

=

n∑

i=1

[(
d

dt

(
∂Tα
∂q̇i

◦
dc(t)

dt

)
−

∂Tα
∂qi

◦
dc(t)

dt

) (
δqi ◦ c(t)

)]
.
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III. Dynamics. 5. The virtual work of accelerations (8).

W

(
d−→p α(t)

dt
, δq

)
=

〈
d−→p α(t)

dt
,
−→
Z α ◦ δq ◦ c(t)

〉

=

n∑

i=1

[(
d

dt

(
∂Tα
∂q̇i

◦
dc(t)

dt

)
−

∂Tα
∂qi

◦
dc(t)

dt

) (
δqi ◦ c(t)

)]
.

This virtual work is expressed as the pairing of the vector
δq ◦ c(t) ∈ Tc(t)Q̃ with a covector, element of T ∗

c(t)Q̃. More exactly,

since δq ◦ c(t) ∈ kerTc(t)θ, that covector is determined only up to
addition of any covector which vanishes on kerTc(t)θ ; in other

words it is an element of the quotient space T ∗
c(t)Q̃/

(
kerTc(t)θ

)
.
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III. Dynamics. 5. the virtual work of accelerations (9).

Following Lagrange, we now sum over all material elements α
of the system. The sum of all the virtual infinitesimal works

Wacc(δq) =
∑

α

W

(
d−→p α(t)

dt
, δq

)

will be called the virtual infinitesimal work of acceleration
quantities of the system, for the virtual infinitesimal
displacement δq. The real valued function (defined on the
subset of TQ̃ made by vectors wose projection on the time axis
T is equal to 1)

T =
∑

α

Tα

is such that T ◦
dc(t)

dt
is the total kinetic energy of the system

when its motion is t 7→ c(t).
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III. Dynamics. 5. The virtual work of accelerations (10).

When the system is made by a finite number of material points,
the sums over all values of α are finite. In other cases these
sums should be replaced by integrals.
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III. Dynamics. 5. The virtual work of accelerations (10).

When the system is made by a finite number of material points,
the sums over all values of α are finite. In other cases these
sums should be replaced by integrals.
Finally Lagrange obtains for the virtual infinitesimal work of
acceleration quantities of the system

Wacc(δq)

=

n∑

i=1

[(
d

dt

(
∂T

∂q̇i
◦
dc(t)

dt

)
−

∂T

∂qi
◦
dc(t)

dt

) (
δqi ◦ c(t)

)]
.

This virtual work is expressed as the pairing of the vector
δq ◦ c(t) ∈ Tc(t)Q̃ with a covector, element of T ∗

c(t)Q̃. More exactly,

since δq ◦ c(t) ∈ kerTc(t)θ, that covector is determined only up to
addition of any covector which vanishes on kerTc(t)θ ; in other

words it is an element of the quotient space T ∗
c(t)Q̃/

(
kerTc(t)θ

)
.
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III. Dynamics. 6. The virtual work of forces.

The virtual work of the force
−→
F α exerted on the material

element α
W(

−→
F α , δq) =

〈−→
F α,

−→
Z α ◦ δq ◦ c(t)

〉

can be expressed in terms of the pull-back Ψα = M∗
α(
−→
F α) of

−→
F α

(considered as a covector, element of T ∗
Mα◦c(t)

E) by the map

Mα : Q̃ → E . We may write

W(
−→
F α , δq) =

〈
Ψα

(
c(t)
)
, δq ◦ c(t)

〉
.
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III. Dynamics. 6. The virtual work of forces.

The virtual work of the force
−→
F α exerted on the material

element α
W(

−→
F α , δq) =

〈−→
F α,

−→
Z α ◦ δq ◦ c(t)

〉

can be expressed in terms of the pull-back Ψα = M∗
α(
−→
F α) of

−→
F α

(considered as a covector, element of T ∗
Mα◦c(t)

E) by the map

Mα : Q̃ → E . We may write

W(
−→
F α , δq) =

〈
Ψα

(
c(t)
)
, δq ◦ c(t)

〉
.

Summing over all the material elements α, we obtain the virtual
work of forces acting on all material elements of the system

Wforces(δq) =
〈
Ψ
(
c(t)
)
, δq ◦ c(t)

〉
, with Ψ =

∑

α

Ψα .
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III. Dynamics. 7. The Lagrange equations

By writing Ψ
(
c(t)
)
, we assumed that the applied forces only

depend on the configuration of the system and on the time ;
under this assumption, Ψ is a differential 1-form on the
configuration space-time Q̃ of the system (defined up to addition
of a form which vanishes on kerTθ ; in other words, Ψ is a
smooth section of the bundle

(
T ∗Q̃/(kerTθ)0

)
→ Q̃). More

generally, if there are forces depending on the velocities of
some parts of the system, Ψ is a semi-basic 1-form on TQ̃.
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III. Dynamics. 7. The Lagrange equations

By writing Ψ
(
c(t)
)
, we assumed that the applied forces only

depend on the configuration of the system and on the time ;
under this assumption, Ψ is a differential 1-form on the
configuration space-time Q̃ of the system (defined up to addition
of a form which vanishes on kerTθ ; in other words, Ψ is a
smooth section of the bundle

(
T ∗Q̃/(kerTθ)0

)
→ Q̃). More

generally, if there are forces depending on the velocities of
some parts of the system, Ψ is a semi-basic 1-form on TQ̃.
The mechanical system’s equations of motion are obtained by
writing that, for any virtual infinitesimal displacement δq,

Wacc(δq) = Wforces(δq) , or in local coordinates,
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III. Dynamics. 7. The Lagrange equations

By writing Ψ
(
c(t)
)
, we assumed that the applied forces only

depend on the configuration of the system and on the time ;
under this assumption, Ψ is a differential 1-form on the
configuration space-time Q̃ of the system (defined up to addition
of a form which vanishes on kerTθ ; in other words, Ψ is a
smooth section of the bundle

(
T ∗Q̃/(kerTθ)0

)
→ Q̃). More

generally, if there are forces depending on the velocities of
some parts of the system, Ψ is a semi-basic 1-form on TQ̃.
The mechanical system’s equations of motion are obtained by
writing that, for any virtual infinitesimal displacement δq,

Wacc(δq) = Wforces(δq) , or in local coordinates,

(
d

dt

(
∂T

∂q̇i
◦
dc(t)

dt

)
−

∂T

∂qi
◦
dc(t)

dt

) (
δqi ◦ c(t)

)
= Ψi ◦ c(t) .
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III. Dynamics. 7. The Lagrange equations (2)
The applied forces are said to be conservative when there
exists a smooth function Φ : Q̃ → R such that

Ψi =
∂Φ

∂qi
.

The equations of motion then take the form

d

dt

(
∂T

∂q̇i
◦
dc(t)

dt

)
−

∂T

∂qi
◦
dc(t)

dt
=

∂Φ

∂qi
◦ c(t) , or
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III. Dynamics. 7. The Lagrange equations (2)
The applied forces are said to be conservative when there
exists a smooth function Φ : Q̃ → R such that

Ψi =
∂Φ

∂qi
.

The equations of motion then take the form

d

dt

(
∂T

∂q̇i
◦
dc(t)

dt

)
−

∂T

∂qi
◦
dc(t)

dt
=

∂Φ

∂qi
◦ c(t) , or

d

dt

(
∂L

∂q̇i
◦
dc(t)

dt

)
−

∂L

∂qi
◦
dc(t)

dt
= 0 , with

L ◦
dc(t)

dt
= T ◦

dc(t)

dt
+ Φ ◦ c(t) .
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III. Dynamics. 7. The Lagrange equations (3)

The real-valued function L, defined on the subset of TQ̃ of
vectors whose projection on the time axis T is equal to 1, is
called the Lagrangian, and the equations

d

dt

(
∂L

∂q̇i
◦
dc(t)

dt

)
−

∂L

∂qi
◦
dc(t)

dt
= 0

are the famous Lagrange equations.
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III. Dynamics. 7. The Lagrange equations (3)

The real-valued function L, defined on the subset of TQ̃ of
vectors whose projection on the time axis T is equal to 1, is
called the Lagrangian, and the equations

d

dt

(
∂L

∂q̇i
◦
dc(t)

dt

)
−

∂L

∂qi
◦
dc(t)

dt
= 0

are the famous Lagrange equations.

In local coordinates (t, q1, . . . , qn, q̇1, . . . , q̇n) they have the well
known expression

d

dt

[
∂L

∂q̇i

(
t, q1(t), . . . , qn(t),

dq1(t)

dt
, . . . ,

dqn(t)

dt

)]

−
∂L

∂qi

(
t, q1(t), . . . , qn(t),

dq1(t)

dt
, . . . ,

dqn(t)

dt

)
= 0 .
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III. Dynamics. 8. The Lagrange differential

In the Lagrange equations of our mechanical system, le
Lagrangian L is the sum of the kinetic energy T (function
defined on the subset T 1Q̃ of TQ̃ of vectors whose projection on
the time axis T is equal to 1) and of a potential Φ (defined on Q̃)
composed with the projection τ

Q̃
: TQ̃ → Q̃.
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III. Dynamics. 8. The Lagrange differential

In the Lagrange equations of our mechanical system, le
Lagrangian L is the sum of the kinetic energy T (function
defined on the subset T 1Q̃ of TQ̃ of vectors whose projection on
the time axis T is equal to 1) and of a potential Φ (defined on Q̃)
composed with the projection τ

Q̃
: TQ̃ → Q̃.

However, Lagrange equations can be written with any smooth
function L defined on T 1Q̃ as Lagrangian. For a given smooth
section c of θ : Q̃ → T and a given time t ∈ T , the left hand side
of the Lagrange equations

d

dt

(
∂L

∂q̇i
◦
dc(t)

dt

)
−

∂L

∂qi
◦
dc(t)

dt

only depends of the 2-jet j2c(t) of the section c at point t, and
takes its values in the quotient space T ∗

c(t)Q̃/(kerTc(t)θ)
0.
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III. Dynamics. 8. The Lagrange differential (2)

Therefore, the Lagrangian L determines a smooth bundle map

∆L : J2
(
Γ(θ)

)
→ T ∗Q̃/(kerTθ)0

called the Lagrange differential of L, defined on the space
J2
(
Γ(θ)

)
of 2-jets of sections of the projection θ : Q̃ → T , with

values in the quotient T ∗Q̃/(kerTθ)0 of the cotangent bundle
T ∗Q̃ by the rank 1 bundle of covectors which vanish on kerTθ.
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III. Dynamics. 8. The Lagrange differential (2)

Therefore, the Lagrangian L determines a smooth bundle map

∆L : J2
(
Γ(θ)

)
→ T ∗Q̃/(kerTθ)0

called the Lagrange differential of L, defined on the space
J2
(
Γ(θ)

)
of 2-jets of sections of the projection θ : Q̃ → T , with

values in the quotient T ∗Q̃/(kerTθ)0 of the cotangent bundle
T ∗Q̃ by the rank 1 bundle of covectors which vanish on kerTθ.

T ∗Q̃/(kerTθ)0 is a Poisson manifold since it is the quotient of
the symplectic manifold (T ∗Q̃, ω

Q̃
) by a foliation whose leaves

are 1-dimensional, hence isotropic. Its symplectic leaves are its
submanifolds on which the time function θ (composed with the
projection onto Q̃) is constant. For each t ∈ T , the symplectic
leaf which projects on t is symplectically diffeomorphic to the
cotangent bundle T ∗Qt, with Qt = θ−1(t). This leaf is the phase
space of the system at time t.
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III. Dynamics. 9. Hamilton’s least action principle

For each smooth section c : [t0, t1] → Q̃ of the projection θ : Q̃,
the action integral

S(c) =

∫ t1

t0

L ◦
dc(t)

dt
dt .

The famous Irish scientist William Rowan Hamilton [2] has
shown that the variation of S(c) for an infinitesimal variation δc of
c which leaves fixed the boundary values c(t0) and c(t1),
vanishes if and only if ∆L

(
j2c(t)

)
= 0 for all t ∈ [t0, t1]. We have

δS(c, δc) =

∫ t1

t0

〈
∆L

(
j2c(t)

)
, δc(t)

〉
dt .
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III. Dynamics. 9. Hamilton’s least action principle

For each smooth section c : [t0, t1] → Q̃ of the projection θ : Q̃,
the action integral

S(c) =

∫ t1

t0

L ◦
dc(t)

dt
dt .

The famous Irish scientist William Rowan Hamilton [2] has
shown that the variation of S(c) for an infinitesimal variation δc of
c which leaves fixed the boundary values c(t0) and c(t1),
vanishes if and only if ∆L

(
j2c(t)

)
= 0 for all t ∈ [t0, t1]. We have

δS(c, δc) =

∫ t1

t0

〈
∆L

(
j2c(t)

)
, δc(t)

〉
dt .

The pairing 〈 , 〉 in the right hand side is the pairing of the
equivalence class of covectors ∆L

(
j2c(t)

)
∈ T ∗

c(t)Q̃/(kerTc(t)θ)
0

with the vector δc(t) ∈ kerTc(t)θ ⊂ Tc(t)Q̃.
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III. Dynamics. 10. The homogeneous Lagrangian

We recall that the Lagrangian L is defined on the codimension 1
submanifold T 1Q̃ of TQ̃ of vectors whose projection on the time
axis T is equal to 1. The action integral

S(c) =

∫ t1

t0

L ◦
dc(t)

dt
dt

is defined for smooth sections c of θ : Q̃ → T , i.e. for curves in Q̃
parametrized by the time. It is easy to extend the definition of
the Lagarangian to an open dense subset of TQ̃ in such a way
that the action integral still has a meaning for geometric smooth
curves in Q̃, independent of their parametrization. With
(t, q1 . . . , qn, ṫ, q̇1, . . . , q̇n) as local coordinates on TQ̃, let

L̂(t, q1 . . . , qn, ṫ, q̇1, . . . , q̇n) = ṫL

(
t, q1 . . . , qn, 1,

q̇1

ṫ
, . . . ,

q̇n

ṫ

)
.
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III. Dynamics. 10. The homogeneous Lagrangian (2)

The function L̂, defined on the open dense subset of TQ̃ on
which the local coordinate ṫ is not zero, is homogenous of
degree 1 on the fibres. Let ĉ : [s0, s1] → Q̃ be a smooth
parametrized curve such that s 7→ θ ◦ ĉ(s) is a diffeomorphism of
the open interval ]s0, s1[ onto an open interval of the time axis T .
In other words, we assume that for any s ∈]s0, s1[,

d

ds

(
θ ◦ ĉ(s)

)
6= 0 .

Such a curve will be said to be admissible.
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III. Dynamics. 10. The homogeneous Lagrangian (2)

The function L̂, defined on the open dense subset of TQ̃ on
which the local coordinate ṫ is not zero, is homogenous of
degree 1 on the fibres. Let ĉ : [s0, s1] → Q̃ be a smooth
parametrized curve such that s 7→ θ ◦ ĉ(s) is a diffeomorphism of
the open interval ]s0, s1[ onto an open interval of the time axis T .
In other words, we assume that for any s ∈]s0, s1[,

d

ds

(
θ ◦ ĉ(s)

)
6= 0 .

Such a curve will be said to be admissible.
We define a modified action integral

Ŝ(ĉ)

∫ s1

s0

L̂

(
dĉ(s)

ds

)
ds .
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III. Dynamics. 10. The homogeneous Lagrangian (3)

Since L̂ is homogeneous of degree 1, Ŝ(ĉ) only depends on the
geometric curve ĉ

([
s0, s1]), not on its parametrization. When

[s0, s1] is an interval of T and ĉ a section of θ, Ŝ(ĉ) = S(ĉ).
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III. Dynamics. 10. The homogeneous Lagrangian (3)

Since L̂ is homogeneous of degree 1, Ŝ(ĉ) only depends on the
geometric curve ĉ

([
s0, s1]), not on its parametrization. When

[s0, s1] is an interval of T and ĉ a section of θ, Ŝ(ĉ) = S(ĉ).

The vertical differential dV L̂ of the homogeneous Lagrangian L̂

is a 1-form defined on the open dense subset of TQ̂ on which L̂
is defined. It is called the Hilbert’s 1-form in the book [4] by
P. Malliavin. In local coordinates

̟ = dV L̂ =
∂L̂

∂ṫ
dt+

n∑

i=1

∂L̂

∂q̇i
dqi .

It is such that for any admissible parametrized curve
ĉ : [s0, s1] → Q̃,

Ŝ(ĉ) =

∫ (
dĉ(s)

ds

)∗

̟ .
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III. Dynamics. 11. The energy function

The 1-form σ = i∗
T 1Q̃

̟ induced by ̟ on the codimension 1

submanifold T 1Q̃ is expressed, with the local coordinates
(t, q1, . . . , qn, q̇1, . . . , q̇n), as

σ = i∗
T 1Q̃

̟ =

n∑

i=1

∂L(t, q, q̇)

dq̇i
dqi − E(t, q, q̇) dt ,

where E(t, q, q̇) is the energy function, given by

E(t, q, q̇) =

n∑

i=1

q̇i
∂L(t, q, q̇)

∂q̇i
− L(t, q, q̇) .
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III. Dynamics. 11. The energy function

The 1-form σ = i∗
T 1Q̃

̟ induced by ̟ on the codimension 1

submanifold T 1Q̃ is expressed, with the local coordinates
(t, q1, . . . , qn, q̇1, . . . , q̇n), as

σ = i∗
T 1Q̃

̟ =

n∑

i=1

∂L(t, q, q̇)

dq̇i
dqi − E(t, q, q̇) dt ,

where E(t, q, q̇) is the energy function, given by

E(t, q, q̇) =

n∑

i=1

q̇i
∂L(t, q, q̇)

∂q̇i
− L(t, q, q̇) .

For any smooth section c : [t0, t1] → Q̃ of θ

S(c) =

∫ (
dc(s)

ds

)∗

σ .
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III. Dynamics. 12. Intrinsic form of the Lagrange equations

By using the fact that an admissible parametrized curve
ĉ : [s0, s1] → Q̃ satisfies the principle of virtual work if and only if
the modified action Ŝ(ĉ) is stationary for all infinitesimal
variations of ĉ with fixed endpoints, we see that such a curve
satisfies that principle if and only if, for each s ∈]s0, s1[,

i

(
d2ĉ(s)

ds2

)
d̟ = 0 .
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III. Dynamics. 12. Intrinsic form of the Lagrange equations

By using the fact that an admissible parametrized curve
ĉ : [s0, s1] → Q̃ satisfies the principle of virtual work if and only if
the modified action Ŝ(ĉ) is stationary for all infinitesimal
variations of ĉ with fixed endpoints, we see that such a curve
satisfies that principle if and only if, for each s ∈]s0, s1[,

i

(
d2ĉ(s)

ds2

)
d̟ = 0 .

Similarly, a smooth section c : [t0, t1] → Q̃ satisfies the principle
of virtual work if and only if, for each t ∈]t0, t1[,

i

(
d2c(t)

dt2

)
dσ = 0 .

This equation is the intrisic form of the Lagrange equations.
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III. Dynamics. 13. The Legendre maps

The Legendre map can be defined either with the orignial
Lagarangian L, or with the homogeneous Lagrangian L̂. We will
denote these two Legendre maps LL and L

L̂
, respectively.

Poisson geometry and Applications, Figurera da Foz, 13th to 16th June 2011. From Statics to Dynamics – p. 44/65



III. Dynamics. 13. The Legendre maps

The Legendre map can be defined either with the orignial
Lagarangian L, or with the homogeneous Lagrangian L̂. We will
denote these two Legendre maps LL and L

L̂
, respectively.

Let us first consider L
L̂
: TQ̃ → T ∗Q̃. In local coordinates

(t, qi, ṫ, q̇i) on TQ̃ and (t, qi, pt, pi) on T ∗Q̃, 1 ≤ i ≤ n, it is the map

L
L̂
: (t, qi, ṫ, q̇i) 7→

(
t, qi, pt =

∂L̂(t, qi, ṫ, q̇i)

∂ṫ
, pi =

∂L̂(t, qi, ṫ, q̇i)

∂q̇i

)
.

Using the definition of L̂ in terms of L, we have

∂L̂(t, qi, ṫ, q̇i)

∂ṫ
= −E

(
t, qi,

q̇i

ṫ

)
,

∂L̂(t, qi, ṫ, q̇i)

∂q̇i
=

∂L

∂q̇i

(
t, qi,

q̇i

ṫ

)
,

where E is the energy function
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III. Dynamics. 13. The Legendre maps (2)

Therefore, expressed in terms of L and E,

L
L̂
: (t, qi, ṫ, q̇i) 7→

(
t, qi, pt = −E

(
t, qi,

q̇i

ṫ

)
, pi =

∂L

∂q̇i

(
t, qi,

q̇i

ṫ

))
.
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III. Dynamics. 13. The Legendre maps (2)

Therefore, expressed in terms of L and E,

L
L̂
: (t, qi, ṫ, q̇i) 7→

(
t, qi, pt = −E

(
t, qi,

q̇i

ṫ

)
, pi =

∂L

∂q̇i

(
t, qi,

q̇i

ṫ

))
.

The Legendre map L
L̂

cannot be a local diffeomorphism : its
rank is at most equal to 2n+ 1, since its values only depend on

the ratios
q̇i

ṫ
.
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III. Dynamics. 13. The Legendre maps (2)

Therefore, expressed in terms of L and E,

L
L̂
: (t, qi, ṫ, q̇i) 7→

(
t, qi, pt = −E

(
t, qi,

q̇i

ṫ

)
, pi =

∂L

∂q̇i

(
t, qi,

q̇i

ṫ

))
.

The Legendre map L
L̂

cannot be a local diffeomorphism : its
rank is at most equal to 2n+ 1, since its values only depend on

the ratios
q̇i

ṫ
.

The Lagrangian L is said to be regular if the Legendre map L
L̂

is everywhere of rank 2n+ 1 ; its restriction to the submanifold
T 1Q̃ of TQ̃ is then a local diffeomorphism of T 1Q̃ on its image.
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III. Dynamics. 13. The Legendre maps (2)

Therefore, expressed in terms of L and E,

L
L̂
: (t, qi, ṫ, q̇i) 7→

(
t, qi, pt = −E

(
t, qi,

q̇i

ṫ

)
, pi =

∂L

∂q̇i

(
t, qi,

q̇i

ṫ

))
.

The Legendre map L
L̂

cannot be a local diffeomorphism : its
rank is at most equal to 2n+ 1, since its values only depend on

the ratios
q̇i

ṫ
.

The Lagrangian L is said to be regular if the Legendre map L
L̂

is everywhere of rank 2n+ 1 ; its restriction to the submanifold
T 1Q̃ of TQ̃ is then a local diffeomorphism of T 1Q̃ on its image.
The Lagrangian L is said to be hyperregular if L

L̂
, restricted to

T 1Q̃, is a global diffeomorphism of T 1Q̃ onto its image.
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III. Dynamics. 13. The Legendre maps (3)

Hilbert’s 1-form ̟ was defined above as the vertical differential
dV L̂ of the homogeneous Lagrangian. One may check that it
can be defined also as the pull-back of the Liouville 1-form η

Q̃
of

T ∗Q̃ by the Legendre map L
L̂

:

̟ = dV L̂ = L∗

L̂
(η

Q̃
) .

Poisson geometry and Applications, Figurera da Foz, 13th to 16th June 2011. From Statics to Dynamics – p. 46/65



III. Dynamics. 13. The Legendre maps (3)

Hilbert’s 1-form ̟ was defined above as the vertical differential
dV L̂ of the homogeneous Lagrangian. One may check that it
can be defined also as the pull-back of the Liouville 1-form η

Q̃
of

T ∗Q̃ by the Legendre map L
L̂

:

̟ = dV L̂ = L∗

L̂
(η

Q̃
) .

We recall that σ is the 1-form induced by ̟ on the submanifold
T 1Q̃. When L is regular, L

L̂
restricted to T 1Q̃ is a local

diffeomorphism of T 1Q̃ on its image, which therefore is an
immersed submanifold (maybe with self intersections) of T ∗Q̃,
coisotropic since its codimension is 1. Therefore dσ is of rank
2n, and there exists on T 1Q̃ a unique vector field XL contained
in ker dσ whose projection on T is equal to 1. Integral curves of
this vector field are motions of the mechanical system.
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III. Dynamics. 13. The Legendre maps (4)

Still when L is regular, the manifold of motions of the
mechanical system is the quotient of the presymplectic manifold
(T 1Q̃, dσ) by its characteristic foliation determined by ker dσ.
J. M. Souriau [6] has shown that it has indeed the structure of a
smooth symplectic manifold (maybe non-Hausdorff).
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III. Dynamics. 13. The Legendre maps (4)

Still when L is regular, the manifold of motions of the
mechanical system is the quotient of the presymplectic manifold
(T 1Q̃, dσ) by its characteristic foliation determined by ker dσ.
J. M. Souriau [6] has shown that it has indeed the structure of a
smooth symplectic manifold (maybe non-Hausdorff).
The Legendre map LL defined with the original Lagrangian L,
expressed in local coordinates (t, qi, q̇i) on T 1Q̃ (submanifold of
TQ̃ on which ṫ = 1) is

LL : (t, qi, q̇i) 7→

(
t, qi, pi =

∂L(t, qi, q̇i)

∂q̇i

)
.

It is defined on T 1Q̃, and takes its values in the quotient bundle
T ∗Q̃/(kerTθ)0. Its use is interesting when a trivialization of the
time-configuration manifold Q̃ into a product T ×Q of the time
axis and an n-dimensional configuration manifold Q is chosen.
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III. Dynamics. 13. The Legendre maps (5)

We now assume that Q̃ = T ×Q, where T is the time axis and
Q a configuration manifold. The map θ : Q̃ → T is the first
projection. The codimension 1 submanifold T 1Q̃ can be
identified with T × TQ, and the quotient manifold T ∗Q̃/(kerTθ)0

with T × T ∗Q. The Legendre map determined by the
Lagrangian L can therefore be considered as a map
LL : T × TQ → T × T ∗Q,

LL : (t, qi, q̇i) 7→

(
t, qi, pi =

∂L(t, q, q̇)

∂q̇i

)
, 1 ≤ i ≤ n,.
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III. Dynamics. 13. The Legendre maps (5)

We now assume that Q̃ = T ×Q, where T is the time axis and
Q a configuration manifold. The map θ : Q̃ → T is the first
projection. The codimension 1 submanifold T 1Q̃ can be
identified with T × TQ, and the quotient manifold T ∗Q̃/(kerTθ)0

with T × T ∗Q. The Legendre map determined by the
Lagrangian L can therefore be considered as a map
LL : T × TQ → T × T ∗Q,

LL : (t, qi, q̇i) 7→

(
t, qi, pi =

∂L(t, q, q̇)

∂q̇i

)
, 1 ≤ i ≤ n,.

The cotangent bundle T ∗Q̃ can be identified with T ∗T × T ∗Q,
and the Legendre map determined by the homogeneous
Lagrangian L̂, restricted to T 1Q̃ = T × TQ, is

L
L̂

∣∣
T 1Q̃

: (t, qi, q̇i) 7→

(
t, qi, pt = −E(t, qi, q̇i), pi =

∂L(t, q, q̇)

∂q̇i

)
.
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III. Dynamics. 13. The Legendre maps (6)

Therefore
L
L̂

∣∣
T 1Q̃

= LL − E dt .
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III. Dynamics. 13. The Legendre maps (6)

Therefore
L
L̂

∣∣
T 1Q̃

= LL − E dt .

Regularity and hyperregularity of the Lagrangian L, defined
above in terms of properties of L

L̂
, may be seen also by

properties of LL : the Lagrangian L is regular if the Legendre
map LL is a local diffeomorphism and hyperregular if LL is a
global diffeomorphism.

Poisson geometry and Applications, Figurera da Foz, 13th to 16th June 2011. From Statics to Dynamics – p. 49/65



III. Dynamics. 14. The Hamiltonian formalism

We still assume that Q̃ = T ×Q and, in addition, that the
Lagrangian L is hyperregular. We have seen that the motions of
the mechanical system are integral curves of a vector field XL,
defined on T 1Q̃ = T × TQ, such that

i(XL)dσ = 0 , T θ(XL) = 1 ,

(the meaning of 1 in the right hand side is the constant vector
field of unit length on T ).
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III. Dynamics. 14. The Hamiltonian formalism

We still assume that Q̃ = T ×Q and, in addition, that the
Lagrangian L is hyperregular. We have seen that the motions of
the mechanical system are integral curves of a vector field XL,
defined on T 1Q̃ = T × TQ, such that

i(XL)dσ = 0 , T θ(XL) = 1 ,

(the meaning of 1 in the right hand side is the constant vector
field of unit length on T ).

The image W = L
L̂
(TQ̃) of the Legendre map L

L̂
is a

codimension-1 submanifold of T ∗Q̃, on which we can define the
vector field

YL = (L
L̂
)∗(XL) ,

direct image of the vector field XL by the diffeomorphism
L
L̂

∣∣
T 1Q̃

: T 1Q̃ → W .
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III. Dynamics. 14. The Hamiltonian formalism (2)

The vector field YL is determined by the conditions

i(YL)d(i
∗
Wη

Q̃
) = 0 , TπT (YL) = 1 ,

where i∗W η
Q̃

is the form induced on W by the Liouville 1-form of

T ∗Q̃, and πT : W → T the natural projection on the time axis T .

Poisson geometry and Applications, Figurera da Foz, 13th to 16th June 2011. From Statics to Dynamics – p. 51/65



III. Dynamics. 14. The Hamiltonian formalism (2)

The vector field YL is determined by the conditions

i(YL)d(i
∗
Wη

Q̃
) = 0 , TπT (YL) = 1 ,

where i∗W η
Q̃

is the form induced on W by the Liouville 1-form of

T ∗Q̃, and πT : W → T the natural projection on the time axis T .
The Hamiltonian is the function

H = E ◦ L−1
L : T × T ∗Q → R .
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III. Dynamics. 14. The Hamiltonian formalism (2)

The vector field YL is determined by the conditions

i(YL)d(i
∗
Wη

Q̃
) = 0 , TπT (YL) = 1 ,

where i∗W η
Q̃

is the form induced on W by the Liouville 1-form of

T ∗Q̃, and πT : W → T the natural projection on the time axis T .
The Hamiltonian is the function

H = E ◦ L−1
L : T × T ∗Q → R .

The map

(t, qi, pi) 7→ (t, qi, pt = H(t, qi, pi)) , 1 ≤ i ≤ n ,

allows us to identify T × T ∗Q with the submanifold W of T ∗Q̃.
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III. Dynamics. 14. The Hamiltonian formalism (3)

Using this identification of T × T ∗Q with W , the form induced on
W by the Liouville 1-form of T ∗Q̃ becomes the form on T × T ∗Q

ηQ −H dt ,

where ηQ is the Liouville 1-form on T ∗Q
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III. Dynamics. 14. The Hamiltonian formalism (3)

Using this identification of T × T ∗Q with W , the form induced on
W by the Liouville 1-form of T ∗Q̃ becomes the form on T × T ∗Q

ηQ −H dt ,

where ηQ is the Liouville 1-form on T ∗Q

The vector field YL, now considered as defined on T × T ∗Q, is
therefore determined by

i(YL)(dηQ − dH ∧ dt) = 0 , TπT (YL) = 1 .
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III. Dynamics. 14. The Hamiltonian formalism (3)

Using this identification of T × T ∗Q with W , the form induced on
W by the Liouville 1-form of T ∗Q̃ becomes the form on T × T ∗Q

ηQ −H dt ,

where ηQ is the Liouville 1-form on T ∗Q

The vector field YL, now considered as defined on T × T ∗Q, is
therefore determined by

i(YL)(dηQ − dH ∧ dt) = 0 , TπT (YL) = 1 .

The second equality above allows us to write

YL = XH +
∂

∂t
,

where XH is a time-dependent vector field on T ∗Q.
Poisson geometry and Applications, Figurera da Foz, 13th to 16th June 2011. From Statics to Dynamics – p. 52/65



III. Dynamics. 14. The Hamiltonian formalism (4)

The first equality determining YL leads to

i(XH)dηQ = −(dH −
∂H

∂t
dt) , i(XH)dH = 0 .

The first equation shows that for each fixed time t, the value XHt

of the time-dependent vector field XH is the Hamiltonian vector
field on T ∗Q whose Hamiltonian is Ht : T

∗Q → R. The second
equation is automatically satisfied when the first equation is
satisfied.
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III. Dynamics. 14. The Hamiltonian formalism (4)

The first equality determining YL leads to

i(XH)dηQ = −(dH −
∂H

∂t
dt) , i(XH)dH = 0 .

The first equation shows that for each fixed time t, the value XHt

of the time-dependent vector field XH is the Hamiltonian vector
field on T ∗Q whose Hamiltonian is Ht : T

∗Q → R. The second
equation is automatically satisfied when the first equation is
satisfied.
This is the Hamiltonian formalism, equivalent to the Lagrangian
formalism when the Lagrangian L is hyperregular.
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IV. Relativistc Dynamics. 1. A new setting

In Classical Dynamics, Time is set apart from Space : the theory
fundamentally depends on the concepts of time ordering and
simultaneity of events which occur at different places in Space.
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IV. Relativistc Dynamics. 1. A new setting

In Classical Dynamics, Time is set apart from Space : the theory
fundamentally depends on the concepts of time ordering and
simultaneity of events which occur at different places in Space.
In Relativistic Physics, Time and Space are merged into a
single, structured Space-Time ; the concepts of time ordering
and simultaneity are no more universally valid.
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IV. Relativistc Dynamics. 1. A new setting

In Classical Dynamics, Time is set apart from Space : the theory
fundamentally depends on the concepts of time ordering and
simultaneity of events which occur at different places in Space.
In Relativistic Physics, Time and Space are merged into a
single, structured Space-Time ; the concepts of time ordering
and simultaneity are no more universally valid.
Instantaneous action at a distance of a material objet A on
another material object B is no more admitted : the new concept
of field must be taken into account. Actions of a material object
A on another, distant material object B only occur when fields
are created (or modified) by A ; the newly created (of modified)
fields propagate until they reach B, and then act on it.
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IV. Relativistc Dynamics. 1. A new setting

In Classical Dynamics, Time is set apart from Space : the theory
fundamentally depends on the concepts of time ordering and
simultaneity of events which occur at different places in Space.
In Relativistic Physics, Time and Space are merged into a
single, structured Space-Time ; the concepts of time ordering
and simultaneity are no more universally valid.
Instantaneous action at a distance of a material objet A on
another material object B is no more admitted : the new concept
of field must be taken into account. Actions of a material object
A on another, distant material object B only occur when fields
are created (or modified) by A ; the newly created (of modified)
fields propagate until they reach B, and then act on it.
A complete theory of Relativistic Dynamics in Space-Time
should consider both material objects and fields and describe
their mutual interactions.
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IV. Relativistc Dynamics. 2. Point-like particle in a given field

However, Newton’s law, d’Alembert’s principle and the method
of virtual works still can be used for the motion of a point-like
particle in Space-Time : we only have to use the inertial
reference frame in which the particle is at rest, at the event at
which these laws are expressed.
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IV. Relativistc Dynamics. 2. Point-like particle in a given field

However, Newton’s law, d’Alembert’s principle and the method
of virtual works still can be used for the motion of a point-like
particle in Space-Time : we only have to use the inertial
reference frame in which the particle is at rest, at the event at
which these laws are expressed.
For example, let M be the Minkowski space-time (it is an affine,
pseudo-Euclidean 4-dimensional space, the associated vector
space

−→
M being endowed with a pseudo-Euclidean scalar

product ( | ) with signature (+,−,−,−)). The world line of a
point particle M moving in M is a time-like curve C, assumed to
be smooth. We will parametrize C by the proper time of the
particle : it is the arc length s along C, measured from an origin

event M0 = M(0). The unit vector
−−−−→
dM(s)

ds
tangent to C at the

event M(s) determines the inertial reference frame in which the
particle is at rest at the event M(s).
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IV. Relativistic Dynamics. 2. Point-like particle in a given field (2)

Newton’s law is (
−→
F (s) being the force)

−→
F (s) = m

−−−−→
d2M(s)

ds2
, with

(
−→
F (s)

∣∣∣
−−−−→
dM(s)

ds

)
= 0 .
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IV. Relativistic Dynamics. 2. Point-like particle in a given field (2)

Newton’s law is (
−→
F (s) being the force)

−→
F (s) = m

−−−−→
d2M(s)

ds2
, with

(
−→
F (s)

∣∣∣
−−−−→
dM(s)

ds

)
= 0 .

A virtual infinitesimal displacement of the particle at the event
M(s) is a vector −→w tangent to M at the event M(s), space-like
with respect to the reference frame in which the particle is at

rest at the event M(s), i.e. orthogonal to
−−−−→
dM(s)

ds
. The

corresponding infinitesimal virtual work of the acceleration
quantity of the particle is (the minus sign compensates the
definite-negativeness of the scalar product of spacelike vectors)

−

(
m

−−−−→
d2M(s)

ds2

∣∣∣ −→w
)

.
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IV. Relativistic Dynamics. 2. Point-like particle in a given field (3)

For an observer at rest with respect to an inertial reference
frame, in which the coordinates are (t, x, y, z), the motion of the
particle is described by the parametrized curve t 7→ M ◦ s(t).
The square v2 of the velocity of the paticle with respect to the
observer is

v2 =

(
dx(t)

dt

)2

+

(
dy(t)

dt

)2

+

(
dz(t)

dt

)2

.
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IV. Relativistic Dynamics. 2. Point-like particle in a given field (3)

For an observer at rest with respect to an inertial reference
frame, in which the coordinates are (t, x, y, z), the motion of the
particle is described by the parametrized curve t 7→ M ◦ s(t).
The square v2 of the velocity of the paticle with respect to the
observer is

v2 =

(
dx(t)

dt

)2

+

(
dy(t)

dt

)2

+

(
dz(t)

dt

)2

.

We set
v2 = c2 tanh2 η .

Using c2ds2 = c2dt2 − dx2 − dy2 − dz2, we see that

ds

dt
=

1

cosh η
=

√
1−

v2

c2
.
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IV. Relativistic Dynamics. 2. Point-like particle in a given field (4)

In terms of the coordinates in the observer’s frame, Newton’s
law is

−→
F (t)

cosh
(
η(t)

) =
d

dt


m cosh

(
η(t)

)
−−−−−−−−→
d
(
M ◦ s(t)

)

dt


 .
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IV. Relativistic Dynamics. 2. Point-like particle in a given field (4)

In terms of the coordinates in the observer’s frame, Newton’s
law is

−→
F (t)

cosh
(
η(t)

) =
d

dt


m cosh

(
η(t)

)
−−−−−−−−→
d
(
M ◦ s(t)

)

dt


 .

Let us choose the coordinate system in the reference frame of
the observer so that for a given value t0 of t,

dx(t)

dt

∣∣∣
t=t0

= v ,
dy(t)

dt

∣∣∣
t=t0

= 0 ,
dz(t)

dt

∣∣∣
t=t0

= 0 .
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IV. Relativistic Dynamics. 2. Point-like particle in a given field (4)

In terms of the coordinates in the observer’s frame, Newton’s
law is

−→
F (t)

cosh
(
η(t)

) =
d

dt


m cosh

(
η(t)

)
−−−−−−−−→
d
(
M ◦ s(t)

)

dt


 .

Let us choose the coordinate system in the reference frame of
the observer so that for a given value t0 of t,

dx(t)

dt

∣∣∣
t=t0

= v ,
dy(t)

dt

∣∣∣
t=t0

= 0 ,
dz(t)

dt

∣∣∣
t=t0

= 0 .

The time component of Newton’s equation is

F0(t0)

cosh
(
η(t0)

) =
d

dt

(
m cosh

(
η(t)

)) ∣∣∣
t=t0

.
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IV. Relativistic Dynamics. 2. Point-like particle in a given field (5)

The three space components of Newton’s equation are

Fx(t0)

cosh
(
η(t0)

) =
d

dt

(
m cosh

(
η(t)

)dx(t)
dt

) ∣∣∣
t=t0

,

Fy(t0)

cosh
(
η(t0)

) =
d

dt

(
m
dy(t)

dt

) ∣∣∣
t=t0

,

Fz(t0)

cosh
(
η(t0)

) =
d

dt

(
m
dz(t)

dt

) ∣∣∣
t=t0

.
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IV. Relativistic Dynamics. 2. Point-like particle in a given field (5)

The three space components of Newton’s equation are

Fx(t0)

cosh
(
η(t0)

) =
d

dt

(
m cosh

(
η(t)

)dx(t)
dt

) ∣∣∣
t=t0

,

Fy(t0)

cosh
(
η(t0)

) =
d

dt

(
m
dy(t)

dt

) ∣∣∣
t=t0

,

Fz(t0)

cosh
(
η(t0)

) =
d

dt

(
m
dz(t)

dt

) ∣∣∣
t=t0

.

By analogy with the usual Newton’s law, physicits interpret
these formulae in terms of an apparent mass of the particle in
the observer’s reference frame. This apparent mass is
m cosh

(
η(t)) for longitudinal forces (acting in the direction of the

velocity v), and m for transverse forces.
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IV. Relativistic Dynamics. 3. The Lagrangian of a free particle

Since in the Minkowski Space-Time M there is no privileged
time, the action integral for a point-like particle should be
invariant by any admissible change of parametrization of the
particle’s world line. The Lagrangin should therefore be a
homogeneous function of degree 1 on the tangent bundle TM.
For a free particle, the action integral should be expressed in
geometric, invariant terms. The most obvious expression is

Ŝ(ĉ) = k

∫ s1

s0

√√√√
(−−−−→
dM(s)

ds

∣∣∣
−−−−→
dM(s)

ds

)
ds .
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IV. Relativistic Dynamics. 3. The Lagrangian of a free particle

Since in the Minkowski Space-Time M there is no privileged
time, the action integral for a point-like particle should be
invariant by any admissible change of parametrization of the
particle’s world line. The Lagrangin should therefore be a
homogeneous function of degree 1 on the tangent bundle TM.
For a free particle, the action integral should be expressed in
geometric, invariant terms. The most obvious expression is

Ŝ(ĉ) = k

∫ s1

s0

√√√√
(−−−−→
dM(s)

ds

∣∣∣
−−−−→
dM(s)

ds

)
ds .

The constant k can be determined by looking at the classical
limit :

k = −mc .
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IV. Relativistic Dynamics. 3. The Lagrangian of a free particle
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IV. Relativistic Dynamics. 3. The Lagrangian of a free particle

When the world line of the particle is parametrized by the time t
relative to some inertial frame, the action integral becomes

Ŝ(ĉ) = −mc

∫ t1

t0

√
c2 −

(
v(t)
)2

dt .
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IV. Relativistic Dynamics. 3. The Lagrangian of a free particle

When the world line of the particle is parametrized by the time t
relative to some inertial frame, the action integral becomes

Ŝ(ĉ) = −mc

∫ t1

t0

√
c2 −

(
v(t)
)2

dt .

When the relative velocity v of the particlein the considered
reference frame is small, this action integral becomes
approximately

∫ t1

t0

m

(
−c2 +

(
v(t)
)2

2

)
dt .

We recognize the opposite of the rest energy mc2 of the particle,
which plays no part in the search of extremals, plus its kinetic

energy
m
(
v(t)
)2

2
relative to the considered reference frame.
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Thanks

I address my warmest thanks to the organizers of the
Conference “Poisson geomtry and Applications”, specially to
Mrs Joana Nunes da Costa, for their kind invitation. I am
particularly happy to see again the beautiful city of Figuera da
Foz.
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I address my warmest thanks to the organizers of the
Conference “Poisson geomtry and Applications”, specially to
Mrs Joana Nunes da Costa, for their kind invitation. I am
particularly happy to see again the beautiful city of Figuera da
Foz.

And all my thanks to the participants for their interest in my talk !
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