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Abstract

��� Give a variational formalism for Hamiltonian sys-
tems on Lie algebroids.

��� Describe conservation of momentum in terms of
connections.

��� Explore reduction theory in this setting.

Work in progress.
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Several reasons for formulating Mechanics on Lie algebroids

The inclusive nature of the Lie algebroid framework: under the same formal-

ism one can consider standard mechanical systems, systems on Lie algebras,

systems on semidirect products, systems with symmetries.

The reduction of a mechanical system on a Lie algebroid is a mechanical

system on a Lie algebroid, and this reduction procedure is done via morphisms

of Lie algebroids.

Well adapted: the geometry of the underlying Lie algebroid determines some

dynamical properties as well as the geometric structures associated to it

(e.g. Symplectic structure). Provides a natural way to use quasi-velocities

in Mechanics.
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Lie Algebroids

A Lie algebroid structure on a vector bundle τ : E → M is given by

��� a Lie algebra structure (Sec(E), [ , ]) on the set of sections of E,

σ, η ∈ Sec(E) ⇒ [σ, η] ∈ Sec(E)

��� a morphism of vector bundles ρ : E → TM over the identity, such that

[σ, f η] = f [σ, η] + (ρ(σ)f ) η,

where ρ(σ)(m) = ρ(σ(m)). The map ρ is said to be the anchor.

As a consequence of the Jacobi identity

ρ([σ, η]) = [ρ(σ), ρ(η)]

3



Examples

� Tangent bundle.

E = TM,

ρ = id,
[ , ] = bracket of vector fields.

� Tangent bundle and parameters.

E = TM × Λ→ M × Λ,

ρ : TM × Λ→ TM × TΛ, ρ : (v , λ) 7→ (v , 0λ),

[ , ] = bracket of vector fields (with parameters).
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� Integrable subbundle.

E ⊂ TM, integrable distribution

ρ = i , canonical inclusion

[ , ] = restriction of the bracket to vector fields in E.

� Lie algebra.

E = g→ M = {e}, Lie algebra (fiber bundle over a point)

ρ = 0, trivial map (since TM = {0e})
[ , ] = the bracket in the Lie algebra.
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� Atiyah algebroid.

Let π : Q→ M a principal G-bundle.

E = TQ/G → M = Q/G, (Sections are equivariant vector fields)

ρ([v ]) = Tπ(v) induced projection map

[ , ] = bracket of equivariant vector fields (is equivariant).

� Transformation Lie algebroid.

Let Φ: g→ X(M) be an action of a Lie algebra g on M.

E = M × g→ M,

ρ(m, ξ) = Φ(ξ)(m) value of the fundamental vector field

[ , ] = induced by the bracket on g.
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� Lie algebroid associated to a Poisson structure.

Let (M,π) a Poisson manifold;

π : T ∗M × T ∗M → R
{f , g} = π(df , dg)

E = T ∗M → M

ρ : T ∗M → TM; ρ(α) = π( , α)

[ , ] is the Koszul bracket

[α, β] = Lρ(α)β − Lρ(β)α− d
(
π(α, β)

)
.

They are determined by the relations

ρ(df ) = Xf ,

[df , dg] = d{f , g}
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Structure functions

A local coordinate system (x i) in the base manifold M and a local basis of sections

(eα) of E, determine a local coordinate system (x i , yα) on E,

yα(a) = 〈 eα , a 〉.

The anchor and the bracket are locally determined by the local functions ρiα(x) and

Cαβγ(x) on M given by

ρ(eα) = ρiα
∂

∂x i

[eα, eβ] = Cγαβ eγ ,

called the structure functions.
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The functions ρiα and Cαβγ satisfy some relations due to the compatibility condition

and the Jacobi identity which are called the structure equations:

� [ρ(eα), ρ(eβ)] = ρ([eα, eβ])

ρjα
∂ρiβ
∂x j
− ρjβ

∂ρiα
∂x j

= ρiγC
γ
αβ

� [eα, [eβ, eγ ]] + [eβ, [eγ , eα]] + [eγ , [eα, eβ]] = 0

∑
cyclic(α,β,γ)

[
ρiα
∂Cνβγ
∂x i

+ CµβγC
ν
αµ

]
= 0.
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Exterior calculus

Let of τ : E → M be a Lie algebroid and consider the exterior algebra ΛE∗ → M

of its dual.

If we think of a Lie algebroid as an alternative tangent bundle, we should think of

a section of ΛE∗ as an alternative differential form.

Sections of ΛpE∗ are called E-differential forms or just E-forms. As usual, a 0-form

is just a function on the base.

A Lie algebroid structure on E is equivalent to the existence of a differential operator

d taking k-forms into (k + 1)-forms and satisfying

��� d is a graded derivation of degree 1

d(θ ∧ ω) = dθ ∧ ω + (−1)degree(θ)θ ∧ dω.

��� d ◦ d = 0.
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Exterior differential

On 0-forms

df (σ) = ρ(σ)f

On p-forms (p > 0)

dω(σ1, . . . , σp+1) =

=

p+1∑
i=1

(−1)i+1ρ(σi)ω(σ1, . . . , σ̂i , . . . , σp+1)

−
∑
i<j

(−1)i+jω([σi , σj ], σ1, . . . , σ̂i , . . . , σ̂j , . . . , σp+1).
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Poisson bracket

The dual E∗ of a Lie algebroid carries a canonical Poisson structure. In terms of

linear and basic functions, the Poisson bracket is defined by

{σ̂, η̂} = [̂σ, η]

{σ̂, g̃} = ρ(σ)g

{f̃ , g̃} = 0

for f , g functions on M and σ, η sections of E.

Basic and linear functions are defined by

f̃ (µ) = f (m)

σ̂(µ) = 〈µ , σ(m) 〉
for µ ∈ E∗m.

In coordinates

{x i , x j} = 0 {µα, x j} = ρiα {µα, µβ} = Cγαβµγ .
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Mechanics on Lie algebroids

Lie algebroid E → M.

L ∈ C∞(E) or H ∈ C∞(E∗)

��� E = TM → M Standard classical Mechanics

��� E = D ⊂ TM → M (integrable) System with holonomic constraints

��� E = TQ/G → M = Q/G System with symmetry (eg. Classical particle on a

Yang-Mills field)

��� E = g→ {e} System on a Lie algebra (eg. Rigid body)

��� E = M × g→ M System on a semidirect product (eg. Heavy top)
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Hamilton equations

E∗ is a poisson manifold, so that, given H ∈ C∞(E∗) we have a dynamical system

Ḟ = {F,H}.

In coordinates, Hamilton equations are

dx i

dt
= ρiα

∂H

∂µα
dµα
dt

= −
(
µγC

γ
αβ

∂H

∂µβ
+ ρiα

∂H

∂x i

)
.
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Lagrange’s equations

(Weinstein 1996)

Given a function L ∈ C∞(E), we define a dynamical system on E by means of a

system of differential equations, which in local coordinates reads

d

dt

(
∂L

∂yα

)
+
∂L

∂yγ
Cγαβy

β = ρiα
∂L

∂x i

ẋ i = ρiαy
α.

The equation ẋ i = ρiαy
α is the local expression of the admissibility condition: A

curve a : R→ E is said to be admissible or an E-path if

ρ ◦ a =
d

dt
(τ ◦ a).
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Variational description



Formal variational description

Consider the action functional

S(a) =

∫ t1

t0

L(a(t)) dt

defined on curves on E with fixed base endpoints, which are moreover constrained

to be E-paths.

But we also have to constraint the variations to be of the form

δx i = ρiασ
α δyα = σ̇α + Cαβγa

βσγ

for some curve σ(t) such that τ(a(t)) = τ(σ(t)) and σ(t0) = σ(t1) = 0.

Variation vector fields are of the form

Ξa(σ) = ρiασ
α ∂

∂x i
+ [σ̇α + Cαβγa

βσγ ]
∂

∂yα
.
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E-Homotopy

(Crainic and Fernandes 2003)

Let I = [0, 1] and J = [t0, t1], and (s, t) coordinates in R2.

Two E-paths a0 and a1 are said to be E-homotopic if there exists a morphism of

Lie algebroids Φ: T I × TJ → E such that

Φ

(
∂

∂t

∣∣∣
(0,t)

)
= a0(t) Φ

(
∂

∂s

∣∣∣
(s,t0)

)
= 0

Φ

(
∂

∂t

∣∣∣
(1,t)

)
= a1(t) Φ

(
∂

∂s

∣∣∣
(s,t1)

)
= 0.

In other words

Φ = as(t)dt + bs(t)ds

with bs(t0) = 0 and bs(t1) = 0. The curves as are the deformation of a0, and the

’vector’ bs controls the variation. We have that

d

ds
as(t)

∣∣∣
s=0

= Ξa(σ)

18



Homotopy foliation

The set of E-paths

A(J, E) =

{
a : J → E

∣∣∣∣ ρ ◦ a =
d

dt
(τ ◦ a)

}
is a Banach submanifold of the Banach manifold of C1-paths whose base path is

C2. Every E-homotopy class is a smooth Banach manifold and the partition into

equivalence classes is a smooth foliation. The distribution tangent to that foliation

is given by a ∈ A(J, E) 7→ Fa where

Fa = {Ξa(σ) ∈ TaA(J, E) | σ(t0) = 0 and σ(t1) = 0 } .

and the codimension of F is equal to dim(E). The E-homotopy equivalence relation

is regular if and only if the Lie algebroid is integrable (i.e. it is the Lie algebroid of

a Lie groupoid).
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Variational description

The E-path space with the appropriate differential structure is

P(J, E) = A(J, E)F .

Fix m0, m1 ∈ M and consider the set of E-paths with such base endpoints

P(J, E)m1
m0

= { a ∈ P(J, E) | τ(a(t0)) = m0 and τ(a(t1)) = m1 } .

It is a Banach submanifold of P(J, E).

Let L ∈ C∞(E) be a Lagrangian function on the Lie algebroid E and fix two
points m0, m1 ∈ M. Consider the action functional S : P(J, E) → R given
by S(a) =

∫ t1

t0
L(a(t))dt. The critical points of S on the Banach manifold

P(J, E)m1
m0

are precisely those elements of that space which satisfy Lagrange’s
equations.

Theorem
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Morphisms and reduction

Given a morphism of Lie algebroids Φ: E → E′ the induced map Φ̂ : P(J, E) →
P(J, E′) given by Φ̂(a) = Φ ◦ a is smooth and T Φ̂(Ξa(σ)) = ΞΦ◦a(Φ ◦ σ).

��� If Φ is fiberwise surjective then Φ̂ is a submersion.

��� If Φ is fiberwise injective then Φ̂ is a immersion.

Consider two Lagrangians L ∈ C∞(E), L′ ∈ C∞(E′) and Φ: E → E′ a morphism

of Lie algebroids such that L′ ◦Φ = L.

Then, the action functionals S on P(J, E) and S′ on P(J, E′) are related by Φ̂,

that is

S′ ◦ Φ̂ = S.
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Reduction

Let Φ: E → E′ be a fiberwise surjective morphism of Lie algebroids. Consider
a Lagrangian L on E and a Lagrangian L′ on E′ such that L = L′ ◦ Φ. If a
is a solution of Lagrange’s equations for L then a′ = Φ ◦ a is a solution of
Lagrange’s equations for L′.

Theorem

From S′ ◦ Φ̂ = S we get

〈 dS(a) , v 〉 = 〈 dS′(Φ̂(a)) , TaΦ̂(v) 〉 = 〈 dS′(a′) , TaΦ̂(v) 〉.

Since TaΦ(v) surjective, if dS(a) = 0 then dS′(a′) = 0.

Proof

22



Reconstruction

Let Φ: E → E′ be a morphism of Lie algebroids. Consider a Lagrangian L
on E and a Lagrangian L′ on E′ such that L = L′ ◦ Φ. If a is an E-path and
a′ = Φ◦a is a solution of Lagrange’s equations for L′ then a itself is a solution
of Lagrange’s equations for L.

Theorem

We have
〈 dS(a) , v 〉 = 〈 dS′(a′) , TaΦ̂(v) 〉.

If dS′(a′) = 0 then dS(a) = 0.

Proof
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Reduction by stages

Let Φ1 : E → E′ and Φ2 : E′ → E′′ be fiberwise surjective morphisms of
Lie algebroids. Let L, L′ and L′′ be Lagrangian functions on E, E′ and E′′,
respectively, such that L′ ◦ Φ1 = L and L′′ ◦ Φ2 = L′. Then the result of
reducing first by Φ1 and later by Φ2 coincides with the reduction by Φ =

Φ2 ◦Φ1.

Theorem
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Examples.

� Group actions.

G Lie group acting free and properly on a manifold Q, so that the quotient map

π : Q→ M is a principal bundle.

E = TQ the standard Lie algebroid

E′ = TQ/G → M Atiyah algebroid

Φ: E → E′, Φ(v) = [v ] the quotient map

Φ is a fiberwise bijective Lie algebroid morphism.

Every G-invariant Lagrangian on TQ defines uniquely a Lagrangian L′ on E′ such

that L′ ◦Φ = L.

Thus, the Euler-Lagrange equations on TQ reduce to the Lagrange-Poincaré equa-

tions on TQ/G.
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� Actions of Lie algebras (e.g. semidirect products).

Let G be a Lie group acting from the right on a manifold M.

E = TG ×M → G ×M where M is a parameter manifold

E′ = g×M → M transformation Lie algebroid

Φ(vg, m) = (g−1vg, mg) is a fiberwise surjective morphism of Lie algebroids.

Consider a Lagrangian L on TG depending on the elements of M as parameters

which is invariant by the joint action L(g−1ġ, mg) = L(ġ, m), and the reduced

Lagrangian L′ on E′ by L′(ξ,m) = L(ξG(e), m), so that L′ ◦Φ = L.

Euler-Lagrange equations on the group, with parameters, reduce to Euler-Poincaré

equations with advected parameters.
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� Abelian Routh reduction.

A Lagrangian L ∈ C∞(TQ) with cyclic coordinates θ and denote by q the other

coordinates The Lagrangian L on TQ projects to a Lagrangian L′ on TQ/G with

the same coordinate expression. The solutions for L obviously project to solutions

for L′.

The momentum µ = ∂L
∂θ̇

(q, q̇, θ̇) is conserved and we can find θ̇ = Θ(q, q̇, µ). The

Routhian R(q, q̇, µ) = L(q, q̇,Θ(q, q̇, µ) − µθ̇ when restricted to a level set of

the momentum µ = c defines a function L′′ on T (Q/G) which is just L′′(q, q̇) =

R(q, q̇, c).

Thus L′′(q, q̇) = L(q, q̇,Θ(q, q̇, c)) − d
dt (cθ), i.e. L and L′′ differ on a total

derivative. Lagrange equations reduce to T (Q/G).
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Hamilton’s phase space variational principle



Hamilton’s phase space principle: standard case

� Standard case.

Consider curves µ(t) = (qi(t), pi(t)) ∈ T ∗M and the functional

SH(µ) =

∫ t1

t0

[
pi(t)q̇

i(t)−H(qi(t), pi(t))
]
dt.

Solutions of Hamilton’s differential equations are critical points of SH on the set of

curves with fixed base endpoints (but free values of p).

Alternatively, we can ’rephrase’ the above as follows: look for critical points

(µ(t), v(t)) ∈ T ∗M ⊕ TM of the functional

S(µ, v) =

∫ t1

t0

[
〈µ(t) , v(t) 〉 −H(µ(t))

]
dt,

with the restriction: v(t) = q̇(t) = d
dt τM(v(t)) (i.e. v is an admissible curve).
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Hamilton’s phase space principle: general case

Look for curves (µ(t), a(t)) ∈ E∗ ⊕ E which are critical points of the functional

S(µ, a) =

∫ t1

t0

[
〈µ(t) , a(t) 〉 −H(µ(t))

]
dt,

where the curve a must be admissible with fixed base endpoints: τ(a(t0)) = m0

and τ(a(t1)) = m1.

Problem: E∗ ⊕ E is not a Lie algebroid.

Solution: Take (a(t), µ̇(t)) instead of (a(t), µ(t)). It takes value in the space

T EE∗ = { (a, v) ∈ E × TE∗ | Tπ(v) = ρ(a), and τ(a) = π(τE∗(v)) }

which is a Lie algebroid over E∗.

Admissible curves on T EE∗ are precisely those of the form (a(t), µ̇(t)) and two

curves (a, µ̇), (a′, µ̇′) are T EE∗-homotopic if and only if µ, µ′ are homotopic (in

the standard sense) and a, a′ are E-homotopic.
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Therefore we consider the manifold P(J, T EE∗)m1
m0
. Vector tangent to it are of the

form

ρiασ
α ∂

∂x i
+
(
σ̇α + Cαβγa

βσγ
) ∂

∂yα
+ ζα

∂

∂µα
+ ζ̇α

∂

∂µ̇α
.

with σ(t0) = 0, σ(t1) = 0.

In a more classical notation

δx i = ρiασ
α

δyα = σ̇α + Cαβγa
βσγ

δµα = ζα

(and δµ̇α = ζ̇α, when needed).

Critical points of S on P(J, T EE∗)m1
m0
:

〈 dS(µ, a) , v 〉 =

∫ t1

t0

[
aαζα + µα

(
σ̇α + Cαβγa

βσγ
)
−
∂H

∂x i
ρiασ

α −
∂H

∂µα
ζα

]
dt.
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Integrating by parts and taking into account that σ(t0) = 0, σ(t1) = 0 we get

〈 dS(µ, a) , v 〉 =

∫ t1

t0

[(
aα −

∂H

∂µα

)
ζα +

(
−µ̇α + µγC

γ
βαa

β −
∂H

∂x i
ρiα

)
σα
]
dt.

Since σ and ζ are arbitrary

aα =
∂H

∂µα
µ̇α + µγC

γ
αβa

β = −ρiα
∂H

∂x i
.

We deduce that the curve (µ(t), a(t)) is the solution of the differential equations

ẋ i = ρiα
∂H

∂µα
µ̇α + µγC

γ
αβ

∂H

∂µβ
= −ρiα

∂H

∂x i
.
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Reduction and reconstruction

� Similar to the Lagrangian case.

� Can be easily generalized to optimal control theory.
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Prolongation

Given a Lie algebroid τ : E → M and a submersion ν : P → M we construct the

E-tangent to P (the prolongation of P with respect to E). It is the vector bundle

τEP : T EP → P where the fiber over p ∈ P is

T Ep P = { (b, V ) ∈ Em × TpP | Tν(V ) = ρ(b) }

Redundant notation: (p, b, V ) for the element (b, V ) ∈ T Ep P .

The bundle T EP can be endowed with a structure of Lie algebroid.

The anchor ρ1 : T EP → TP is just the projection onto the third factor ρ1(p, b, V ) =

V . The bracket is given in terms of projectable sections (σ,X), (η, Y )

[(σ,X), (η, Y )] = ([σ, η], [X, Y ]).

The projection onto the second factor T ν(p, b, V ) = b is a morphism of Lie alge-

broids.
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Local basis

Local coordinates (x i , uA) on P and a local basis {eα} of sections of E, define a

local basis {Xα,VA} of sections of T EP by

Xα(p) =
(
p, eα(π(p)), ρiα

∂

∂x i

∣∣∣
p

)
and VA(p) =

(
p, 0,

∂

∂uA

∣∣∣
p

)
.

The Lie brackets of the elements of the basis are

[Xα,Xβ] = Cγαβ Xγ , [Xα,VB] = 0 and [VA,VB] = 0,

and the exterior differential is determined by

dx i = ρiαXα, duA = VA,

dX γ = −
1

2
CγαβX

α ∧ X β, dVA = 0,

where {Xα,VA} is the dual basis corresponding to {Xα,VA}.
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Prolongation of maps

If Ψ: P → P ′ is a bundle map over ϕ : M → M ′ and Φ: E → E′ is an admissible

map over the same map ϕ then we can define a map T ΦΨ: T EP → T E′P ′ by
means of

T ΦΨ(p, b, v) = (Ψ(p),Φ(b), TpΨ(v)).

Let Φ be an admissible map. Then, T ΦΨ is a morphism of Lie algebroids if
and only if Φ is a morphism of Lie algebroids.

Theorem
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The E-tangent to E

In particular, for P = E we have the E-tangent to E

T Ea E = { (b, v) ∈ Em × TaE | Tτ(v) = ρ(b) } .

The rank of this bundle is even: Rank(T EE) = 2 Rank(E) and has the following

canonical structures:

��� The vertical endomorphism S : T EE → T EE

S(a, b, v) = (a, 0, bV

a),

��� The Liouville section which is the vertical section corresponding to the Liou-

ville dilation vector field:

∆(a) = (a, 0, aV

a).
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Geometric Lagrangian Mechanics

Form the Lagrangian L we define the section θL of (T EE)∗, by θL = dL ◦ S, that
is

〈 θL , (a, b, V ) 〉 =
d

ds
L(a + sb)

∣∣∣
s=0
.

Define the 2-form ωL by

ωL = −dθL,

and the energy

EL = d∆L− L.

and the Hamiltonian section ΓL

iΓωL = dEL

When the Lagrangian is regular, ωL is symplectic and the integral curves of the

Hamiltonian vector field ρ1(Γ ) are admissible curves.
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Local expressions

� Liouville section and vertical endomorphism

∆ = yαVα and S = Vα ⊗Xα

� Cartan forms

θL =
∂L

∂yα
Xα

ωL =
∂2L

∂yα∂yβ
Xα ∧ Vβ +

1

2

(
∂2L

∂x i∂yα
ρiβ −

∂2L

∂x i∂yβ
ρiα +

∂L

∂yγ
Cγαβ

)
Xα ∧ X β,

� Energy

EL =
∂L

∂yα
yα − L.
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Symplectic Hamiltonian formalism

Consider the prolongation T EE∗ of the dual bundle π : E∗ → M:

T EE∗ = { (µ, a,W ) ∈ E∗ × E × TE∗ | µ = τE∗(W ) ρ(a) = Tπ(W ) } .

There is a canonical symplectic structure ω = −dθ, where the 1-form θ is defined

by

〈 θµ , (µ, a,W ) 〉 = 〈µ , a 〉.

In coordinates

θ = µαXα,

and

ω = Xα ∧ Pα +
1

2
µγC

γ
αβX

α ∧ X β.
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The Hamiltonian dynamics is given by the vector field ρ(ΓH) associated to the

section ΓH solution of the symplectic equation

iΓHω = dH.

In coordinates, Hamilton equations are

dx i

dt
= ρiα

∂H

∂µα

dµα
dt

= −
(
µγC

γ
αβ

∂H

∂µβ
+ ρiα

∂H

∂x i

)
.

The canonical Poisson bracket on E∗ can be re-obtained by means of

ω(dF, dG) = {F,G}

for F,G ∈ C∞(E∗).
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Momentum conservation



Momentum in local coordinates

Assume E regular, i.e. the rank of ρ is constant.

Take an adapted basis {ea, eA} where {eA} is a basis of sections of K = Ker(ρ),

and hence we have the dual basis {ea, eA} and linear coordinates (x i , µa, µA) for

E∗.

The anchor is given by

ρ(eb) = ρib
∂

∂x i
, ρ(eB) = 0,

and the brackets of the sections in the basis {ea, eA} are

[eA, eB] = CDABeD

[ea , eB] = CDaBeD

[ea , eb ] = Ccabec + CDabeD.

(1)
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In this class of coordinates, Hamilton differential equations are

dx i

dt
= ρia

∂H

∂µa
dµa
dt

= −ρia
∂H

∂x i
− µγCγaβ

∂H

∂µβ
dµA
dt

= −µBCBAβ
∂H

∂µβ
.

� Question: What is the intrinsic meaning of the last group of equations?

dµA
dt

= −µBCBAβyβ with yβ =
∂H

∂µβ
.

� Solution: Evolution of momenta, obviously.
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The momentum equation

General case: E Lie algebroid, not necessarily regular.

Consider an ideal of E: a subalgebroid i : K ↪→ E

σ ∈ Sec(E) and η ∈ Sec(K) ⇒ [ξ, η] ∈ Sec(K).

It follows that K is a bundle of Lie algebras, i.e., ρ|K = 0.

Let i : K → E be the canonical inclusion of an idealK into E. Themomentum
map J, with respect to K, is the dual map J = i∗ : E∗ → K∗.

Definition

Explicitly, the momentum map J : E∗ → K∗ is the bundle map over the identity in

M, given by

〈 J(µ) , k 〉 = 〈µ , k 〉, µ ∈ E∗, k ∈ K.
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The momentum equation

There exists a canonical linear E-connection on the vector bundle K → M:

∇ξη = [ξ, η], ξ ∈ Sec(E), η ∈ Sec(K).

It is flat connection (i.e. a representation):

∇ξ1∇ξ2 −∇ξ2∇ξ1 = ∇[ξ1,ξ2].

For any Hamiltonian function H ∈ C∞(E∗), the momentum map satisfies the
momentum equation:

∇ΓHJ = 0.

Theorem
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Reduction

Since ∇ is a representation, it defines an orbit foliation of K∗. From ∇ΓHJ = 0, we

have that the inverse image by J of an orbit is invariant under the dynamics.

In particular the zero section is one of such orbits,

J−1(0) = {µ ∈ E∗ | J(µ) = 0 }' K◦.

The dual bundle to K◦ is canonically identified with the quotient vector bundle

E/K, and this last inherits a Lie algebroid structure from E, because K is an ideal

in E.

We consider the quotient Lie algebroid F = E/K → M and identify J−1(0) = F ∗.

We denote by p : E → F = E/K the quotient projection and by j its adjoint map

j = p∗ : F ∗ → E∗, which is but the canonical inclussion of J−1(0) into E∗.
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Canonical symplectic forms ωE in T EE∗ and ωF on T FF ∗

Hamiltonian functions H ∈ C∞(E∗) and H̄ = H ◦ j ∈ C∞(F ∗),

Hamiltonian sections ΓH ∈ Sec(T EE∗) and ΓH̄ ∈ Sec(T FF ∗).

To relate this objects we consider the maps P = T p id : T EF ∗ → T FF ∗ and

I = T idj : T EF ∗ → T EE∗ given by

P (ν, a, w) = (ν, p(a), w) and I(ν, a, w) = (i(ν), a, T j(w)),

which are morphisms of Lie algebroids

T EF ∗

P
��

I // T EE∗

T FF ∗
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T EF ∗

P
��

I // T EE∗

T FF ∗

��� P ?ωF = I?ωE .

��� P ?(dH̄) = I?(dH)

��� There exists Γ̃H section of T EF such that I ◦ Γ̃H = ΓH ◦ j , and ΓH̄ =

P ◦ Γ̃H.

Theorem
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Summarizing

We can describe Lagrangian and Hamiltonian systems on Lie algebroids by

means of a variational formalism.

Very appropriate for reduction.

Momentum maps defined by ideals (but there are other alternatives).

Momentum map is covariantly constant, with respect to a flat connection.

Reduction at zero momentum value.

� To do: Reduction by stages.
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Thank you!



Splittings

The quotient vector bundle has an induced Lie algebroid structure, so that we have

0 −→ K
i−→ E

p−→ F −→ 0

Take a spitting s : F → E and identify E with F ⊕K by

(a, k) ' s(a) + i(k),

with the bracket

[(σ1, η1), (σ2, η2)]F⊕K =
(

[σ1, σ2]F , [η1, η2]K +∇s(σ1)η2 −∇s(σ2)η1 + Ω(σ1, σ2)
)
,

Induces a splitting T EE = T FF × T KK.
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Canonical forms

Let Ω̂ be the map whose value at the point (ν, µ) ∈ F ∗ ⊕ K∗ is the bilinear
form Ω̂(ν,µ) : T Fν F × T Fν F → R given by

Ω̂(ν,µ)

(
(b1, V1), (b2, V2)

)
= 〈µ ,Ων(b1, b2) 〉.

Then we have

ωE(ϕ1, ϕ2) = ωF (ζ1, ζ2) + ωK(γ1, γ2) + Ω̂(ζ1, ζ2)

where ϕ1, ϕ2 are sections of T EE∗ such that Φ ◦ϕi = (ζi , γi) ◦φ for i = 1, 2.

Theorem
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It follows that the Hamilton equations are

iΓ FH
(ωF − Ω̂) = dFH and iΓKH

ωK = dKH

where Φ ◦ ΓH = (Γ FH , Γ
K
H ) ◦ φ and dFH and dKH are the components of dH, that

is Φ?(dFH, dKH) = dEH.
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