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Abstract

[0 Give a variational formalism for Hamiltonian sys-
tems on Lie algebroids.

[ Describe conservation of momentum in terms of
connections.

[0 Explore reduction theory in this setting.

@ Work in progress.



Several reasons for formulating Mechanics on Lie algebroids

@ The inclusive nature of the Lie algebroid framework: under the same formal-
ism one can consider standard mechanical systems, systems on Lie algebras,

systems on semidirect products, systems with symmetries.

@ The reduction of a mechanical system on a Lie algebroid is a mechanical
system on a Lie algebroid, and this reduction procedure is done via morphisms
of Lie algebroids.

@ Well adapted: the geometry of the underlying Lie algebroid determines some
dynamical properties as well as the geometric structures associated to it
(e.g. Symplectic structure). Provides a natural way to use quasi-velocities

in Mechanics.



Lie Algebroids

A Lie algebroid structure on a vector bundle 7: E — M is given by
O a Lie algebra structure (Sec(E), [, ]) on the set of sections of E,
o,mn € Sec(E) = [0,m] € Sec(E)
[0 a morphism of vector bundles p: E — T M over the identity, such that

[0, fn] = flo,n] + (o(a)F) 7,

where p(c)(m) = p(o(m)). The map p is said to be the anchor.
As a consequence of the Jacobi identity

p([o,n]) = [p(0), p(n)]



SENES

Tangent bundle.

E=TM,
p =id,
[, ] = bracket of vector fields.

Tangent bundle and parameters.

E=TMxN— MxA,
p: TMXN—TMxTA, o (v, \) = (v,0y),

[, ] = bracket of vector fields (with parameters).



Integrable subbundle.

E C T M, integrable distribution

o = I, canonical inclusion
[, ] = restriction of the bracket to vector fields in E.
Lie algebra.

E =g — M = {e}, Lie algebra (fiber bundle over a point)
p = 0, trivial map (since TM = {0.})
[, ] = the bracket in the Lie algebra.



Atiyah algebroid.

Let m: Q@ — M a principal G-bundle.

E=TQ/G— M=Q/G, (Sections are equivariant vector fields)
o([v]) = Tw(v) induced projection map

[, ] = bracket of equivariant vector fields (is equivariant).

Transformation Lie algebroid.

Let ®: g — X(M) be an action of a Lie algebra g on M.
E=Mxg— M,

o(m, &) = ®(&€)(m) value of the fundamental vector field
[, ] = induced by the bracket on g.



Lie algebroid associated to a Poisson structure.

Let (M, ) a Poisson manifold;
T T"MxT*M—=R

{f, g} = n(df, dg)
E=T"M—>M

o T*M = TM; p(a) =7(, )
[, ] is the Koszul bracket

[0, B] = LB — Loy — d(m(e, B)).
They are determined by the relations
p(df) = X,

[df . dg] = d{f, g}



Structure functions

A local coordinate system (x') in the base manifold M and a local basis of sections

(eq) of E, determine a local coordinate system (x', y*) on E,

The anchor and the bracket are locally determined by the local functions pf, (x) and
Cg,(x) on M given by
; 0
plea) = Py
[€a. €3] = Clﬁ &y

called the structure functions.



The functions p, and Cg‘,y satisfy some relations due to the compatibility condition
and the Jacobi identity which are called the structure equations:

[o(€a). p(ep)] = p([ea; es])

Gpﬁ
Pa OxJ

dpl, -
’Oéaxj = ’,Y af

le. [e5. &y]] + [es. [y, €al] + ey, [€a, €3]] = O

acy
> [p; af,'* +Ch Ch| =0.

cyclic(a,B,y)




Exterior calculus

Let of T: E — M be a Lie algebroid and consider the exterior algebra AE* — M

of its dual.

If we think of a Lie algebroid as an alternative tangent bundle, we should think of

a section of A E* as an alternative differential form.

Sections of APE* are called E-differential forms or just E-forms. As usual, a 0-form

is just a function on the base.

A Lie algebroid structure on E is equivalent to the existence of a differential operator
d taking k-forms into (k + 1)-forms and satisfying

[0 d is a graded derivation of degree 1
d(0Aw) = do Aw+ (—1)%9eeOg A doy.

O dod=0.
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Exterior differential

On 0-forms

On p-forms (p > 0)

b1
=> (-1)*p(o)w(oy, ..., Giv. oo Opi1)
=1

> D) w0, 00,01, v G O pr)
i<j
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Poisson bracket

The dual E* of a Lie algebroid carries a canonical Poisson structure. In terms of
linear and basic functions, the Poisson bracket is defined by

{6.7} =[o.7]
{6.9} =p(o)g
{f.gr=0
for f, g functions on M and o, m sections of E.
Basic and linear functions are defined by
Fu) = f(m)
R for u € E;,.
6(u) = (p,o(m))

In coordinates

{x',x}=0 {ta, X'} = 0l {ta, et = Clﬁ“”}"
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Mechanics on Lie algebroids

Lie algebroid E — M.
L e C>®(E)or He C>®(E*)

O E =TM — M Standard classical Mechanics

O E=D C TM — M (integrable) System with holonomic constraints

O E=TQ/G— M=Q/G System with symmetry (eg. Classical particle on a
Yang-Mills field)

O E =g — {e} System on a Lie algebra (eg. Rigid body)
O E =M x g— M System on a semidirect product (eg. Heavy top)
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Hamilton equations

E* is a poisson manifold, so that, given H € C*°(E*) we have a dynamical system
F ={F, H}.

In coordinates, Hamilton equations are

dx' . 6H
dt _p°‘6p,a

die 5 OH ; OH
dt (“”Caﬁap,ﬁ“aaxf)'
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Lagrange’s equations

(Weinstein 1996)

Given a function L € C*(E), we define a dynamical system on E by means of a

system of differential equations, which in local coordinates reads

d(@L)_l_aLCq, 5 0L

dt \ay= ) T gy e’ T Pagy
x'=ply*.

The equation x' = pLy® is the local expression of the admissibility condition: A
curve a: R — E is said to be admissible or an E-path if

poa:%(Toa).

15



Variational description



Formal variational description

Consider the action functional

S(a) = /tl L(a(b)) dt

to
defined on curves on E with fixed base endpoints, which are moreover constrained
to be E-paths.

But we also have to constraint the variations to be of the form

ox' = plo® oy =0%+ Cg,yaﬁa“’
for some curve o(t) such that 7(a(t)) = 7(o(t)) and o(ty) = o(t1) = 0.
Variation vector fields are of the form

; 0 _ 0
:a(O') = p&aaw + [Ua + ngaﬁa”]ay—a.
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E-Homotopy

(Crainic and Fernandes 2003)
Let / =[0,1] and J = [to, t1], and (s, t) coordinates in R2.

Two E-paths ag and a; are said to be E-homotopic if there exists a morphism of
Lie algebroids ®: T/ x TJ — E such that
)=
(s.,t0)

0 0
@ (a\m)) = ao(t) @ (&
0 0
® (&‘(M)) = a?) @ (& (s,t1)> =0

In other words

® = as(t)dt + bs(t)ds
with bs(tp) = 0 and bs(t;) = 0. The curves as are the deformation of ag, and the

'vector' bs controls the variation. We have that
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Homotopy foliation

The set of E-paths

d
A(J E) = {a: J—E 'poa:dt(Toa)}
is a Banach submanifold of the Banach manifold of Cl-paths whose base path is
C2. Every E-homotopy class is a smooth Banach manifold and the partition into
equivalence classes is a smooth foliation. The distribution tangent to that foliation
is given by a € A(J, E) — F; where

Fa={=Z.(0) € TLA(JE) |o(ty)) =0 and o(t;)=0}.

and the codimension of F is equal to dim(E). The E-homotopy equivalence relation
is regular if and only if the Lie algebroid is integrable (i.e. it is the Lie algebroid of
a Lie groupoid).
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Variational description

The E-path space with the appropriate differential structure is

|P(J.E) = A(J E)r |

Fix mg, my € M and consider the set of E-paths with such base endpoints
PUE) = {aePUE) | T(a(to)) = my and 7(a(ts)) = my}.
It is a Banach submanifold of P(J, E).
Theorem

Let L € C*°(E) be a Lagrangian function on the Lie algebroid £ and fix two
points mg, m; € M. Consider the action functional S: P(J, E) — R given
by S(a) = tl L(a(t))dt. The critical points of S on the Banach manifold
P E) are precisely those elements of that space which satisfy Lagrange's
equatlons
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Morphisms and reduction

Given a morphism of Lie algebroids ®: £ — E’ the induced map ®: P(J, E) —

P(J, E") given by ®(a) = ® o ais smooth and TH(=,(0)) = Zgea(P 0 7).

O If & is fiberwise surjective then ® is a submersion.

O If & is fiberwise injective then ® is a immersion.

Consider two Lagrangians L € C*(E), L' € C*(E’) and ®: E — E’ a morphism
of Lie algebroids such that L' o® = L.

Then, the action functionals S on P(J, E) and S’ on P(J, E’) are related by &,
that is

~

Sod =S5

21



Reduction

Theorem

Let ®: E — E’ be a fiberwise surjective morphism of Lie algebroids. Consider
a Lagrangian L on E and a Lagrangian L’ on E’ such that L = L' o ®. If a
is a solution of Lagrange's equations for L then & = ® o a is a solution of
Lagrange’s equations for L’.

Proof
From S’ o ® = S we get
(dS(a),v) = (dS'(®(a), T,d(v)) = (dS'(a), T.d(v)).

Since T,®(v) surjective, if dS(a) =0 then dS’(a’) = 0.
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Reconstruction

Theorem

Let ®: E — E’ be a morphism of Lie algebroids. Consider a Lagrangian L
on E and a Lagrangian L’ on E’ such that L = [’ o ®. If ais an E-path and
a = ®oais a solution of Lagrange's equations for L’ then a itself is a solution
of Lagrange's equations for L.

Proof

We have
(dS(a),v) = (dS'(a'), T,d(v)).

If dS'(a’) =0 then dS(a) = 0.
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Reduction by stages

Theorem

Let ®;: E — E’ and ®,: E' — E” be fiberwise surjective morphisms of
Lie algebroids. Let L, L’ and L” be Lagrangian functions on E, E’ and E”,
respectively, such that L' o ®; = L and L” o ®, = L’. Then the result of
reducing first by ®; and later by ®, coincides with the reduction by ¢ =
¢2 o (D]_.
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Examples.

Group actions.

G Lie group acting free and properly on a manifold Q, so that the quotient map

mT: Q — M is a principal bundle.

E = TQ the standard Lie algebroid
E'=TQ/G — M Atiyah algebroid
®: E — E', d(v) = [v] the quotient map

® is a fiberwise bijective Lie algebroid morphism.

Every G-invariant Lagrangian on TQ defines uniquely a Lagrangian L’ on E’ such
that Lo ® = L.

Thus, the Euler-Lagrange equations on T Q reduce to the Lagrange-Poincaré equa-
tions on TQ/G.
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Actions of Lie algebras (e.g. semidirect products).
Let G be a Lie group acting from the right on a manifold M.

E=TGxM— G x M where M is a parameter manifold
E'" = g x M — M transformation Lie algebroid

®(vg, m) = (g vy, mg) is a fiberwise surjective morphism of Lie algebroids.

Consider a Lagrangian L on TG depending on the elements of M as parameters
which is invariant by the joint action L(g~'g, mg) = L(g, m), and the reduced
Lagrangian L' on E' by L'(§, m) = L(és(e), m), so that L' o ® = L.

Euler-Lagrange equations on the group, with parameters, reduce to Euler-Poincaré

equations with advected parameters.
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Abelian Routh reduction.

A Lagrangian L € C*(TQ) with cyclic coordinates 6 and denote by g the other
coordinates The Lagrangian L on TQ projects to a Lagrangian L’ on TQ/G with
the same coordinate expression. The solutions for L obviously project to solutions
for L'

The momentum p = 25(q, ¢, 6) is conserved and we can find 6 = ©(q, 4, ). The
Routhian R(q,d, 1) = L(q,¢,9(q,d, ) — ub when restricted to a level set of
the momentum p = ¢ defines a function L” on T(Q/G) which is just L"(q, q) =

R(q. 4, c).

Thus L"(q,¢) = L(q,9,©(q,4,¢c)) — %(C@), i,e. L and L” differ on a total
derivative. Lagrange equations reduce to T(Q/G).
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Hamilton’s phase space variational principle



Hamilton’s phase space principle: standard case

Standard case.

Consider curves u(t) = (¢'(t), pi(t)) € T*M and the functional

Sk(u) = / o0 (£) — HG(2), pi(1)] dt.

to

Solutions of Hamilton's differential equations are critical points of Sy on the set of
curves with fixed base endpoints (but free values of p).

Alternatively, we can 'rephrase’ the above as follows: look for critical points
(u(t), v(t)) € T*"M & T M of the functional

S(uov) = [ [Ge), v(e)) = HOx(e)] d.

with the restriction: v(t) = d(t) = ZTm(v(t)) (i.e. v is an admissible curve).
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Hamilton’s phase space principle: general case

Look for curves (u(t), a(t)) € E* & E which are critical points of the functional

S a) = [ [(a(0). a(6)) = H(a(0)] o,

to
where the curve a must be admissible with fixed base endpoints: 7(a(ty)) = mg

and 7(a(ty)) = ms.

Problem: E* & E is not a Lie algebroid.

Solution: Take (a(t), u(t)) instead of (a(t), u(t)). It takes value in the space
TEE*={(a,v) € EXTE" | Tm(v) =p(a), and 7(a)=7(7e(v))}

which is a Lie algebroid over E*.

Admissible curves on TEE* are precisely those of the form (a(t), 1(t)) and two
curves (a, 1), (&, @) are TEE*-homotopic if and only if u, ' are homotopic (in
the standard sense) and a, &’ are E-homotopic.
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Therefore we consider the manifold P(J, TEE*)%. Vector tangent to it are of the
form

NG 9 5} RG]
oL % . g
0% o (cr +Cg,do )aya oz~ g
with o(ty) =0, o(ty) =

In a more classical notation

ox' = plo*
6y = 6%+ Cg,d0”
e = Ca

(and 6fiq = €, When needed).

Critical points of S on P(J, TEE*)™

OH OH

a

! [ —
oxi Pa® Olig

t1
(dS(u,a),v) = / [a"‘(a + o (do‘ + Cgﬂ,aﬁcﬂ) — (ol dt.

to
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Integrating by parts and taking into account that o(ty) =0, o(t;) = 0 we get
f oH , OH
(a5 = [ (5= S0) ot (o b Gt — Shek ) o° .
Since o and ( are arbitrary

_oH
Ol

. OH

(e}
a -
*ox!

fa + /-M’Cgﬁa6 =P

We deduce that the curve (u(t), a(t)) is the solution of the differential equations

. JOH ., OH , 0H
X TP, Bt Cang, = g
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Reduction and reconstruction

Similar to the Lagrangian case.

Can be easily generalized to optimal control theory.
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Prolongation

Given a Lie algebroid 7: E — M and a submersion v: P — M we construct the
E-tangent to P (the prolongation of P with respect to E). It is the vector bundle
TE . TEP — P where the fiber over p € P is

TEP={(bV) € EnxT,P | Tu(V)=p(b)}

Redundant notation: (p, b, V) for the element (b, V) € TFP.

The bundle 7P can be endowed with a structure of Lie algebroid.
The anchor p': TEP — TP is just the projection onto the third factor p!(p, b, V) =
V. The bracket is given in terms of projectable sections (o, X), (n,Y)

[(0. X), (0. Y)] = (lo. n]. [X. Y]).

The projection onto the second factor Tv(p, b, V) = b is a morphism of Lie alge-

broids.
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Local basis

Local coordinates (x/, u*) on P and a local basis {e,} of sections of E, define a
local basis {X,, Va} of sections of TEP by

p) and Va(p) = (p, 0, %’p).

Xa(p) = (p. ea(ﬂ(p)),p&%

The Lie brackets of the elements of the basis are
[Xo, Xs] = Cgﬁ Xy, [Xa. VB] =0 and Va, Vg] =0,
and the exterior differential is determined by
dx' = pLx?, dut = V4,
dXY = —%Cgﬁxa NXP, dV* =0,

where {X%, VA} is the dual basis corresponding to {X,, Va}.
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Prolongation of maps

If W: P — P"is abundle map over ¢o: M — M’ and ®: E — E’ is an admissible
map over the same map ¢ then we can define a map 7°W: TEP — TE P by
means of

TOW(p, b, v) = (W(p), ®(b), ToW(V)).

Theorem

Let ® be an admissible map. Then, 7®WV is a morphism of Lie algebroids if
and only if @ is a morphism of Lie algebroids.
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The E-tangent to £

In particular, for P = E we have the E-tangent to E

TEE={(bv) € EnxT,E | TT(v) = p(b)}.

The rank of this bundle is even: Rank(TEE) = 2Rank(E) and has the following
canonical structures:

O The vertical endomorphism S: TEE — TEE
S(a,b,v)=(a,0,b)),

[0 The Liouville section which is the vertical section corresponding to the Liou-
ville dilation vector field:
A(a) =(a,0,a}).
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Geometric Lagrangian Mechanics

Form the Lagrangian L we define the section 6, of (TEE)*, by 8, = dL oS, that

is
(6.,(a,b,V)) = %L(a—I— sb) o

Define the 2-form w; by

w, = —db,,
and the energy
E, =dpl — L.
and the Hamiltonian section [}
irw, = dE;

When the Lagrangian is regular, w; is symplectic and the integral curves of the
Hamiltonian vector field p*(/”) are admissible curves.
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Local expressions

Liouville section and vertical endomorphism

A= y*V, and S=V,0 X%

Cartan forms

oL
= —Xa

0, ay5
w =L X a4 L oL oL LRGPP
LT ayeayb 2\ oxiayaPB ~ axigyBPa T gy s '

Energy
L
EL = a—yo‘ — L.

Oy«
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Symplectic Hamiltonian formalism

Consider the prolongation 75 E* of the dual bundle w: E* — M:
TEE ={(n,aW) e E* xEXTE* | p=1e-(W) p(a)=Tm(W)}.

There is a canonical symplectic structure w = —df, where the 1-form 0 is defined
by
(6. (waW)) = (u.a).

In coordinates
0 = o X%,

and )
W=X*NPy+ = MC"* XA XP.
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The Hamiltonian dynamics is given by the vector field p(/y) associated to the

section [y solution of the symplectic equation
ir,w = dH.

In coordinates, Hamilton equations are

dx’ - OH dite oH - OH
i = ( ’YCZﬁ% + P:l 8Xi>

E_po‘ép,a dt

The canonical Poisson bracket on E* can be re-obtained by means of
w(dF,dG) ={F,G}

for F,G € C®(E*).
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Momentum conservation



Momentum in local coordinates

Assume E regular, i.e. the rank of p is constant.

Take an adapted basis {e;, ea} where {ea} is a basis of sections of K = Ker(p),
and hence we have the dual basis {e?, e*} and linear coordinates (x', 4., a) for
E*.

The anchor is given by
o(es) = bt ples) =0
b baxl‘ 1 B 1
and the brackets of the sections in the basis {e,, ea} are

[ea, eg] = Cagep
[ea., eg] = Clzep (1)

les,ep] = Clpec + CaneD.
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In this class of coordinates, Hamilton differential equations are

dx'  OH

dt _paaua

du,  ;OH ., OH
gt = Pagx Mty
d/J,A oH

2 = —ugCl.—.
dt He Aﬁ@ug

Question: What is the intrinsic meaning of the last group of equations?

dua

dt

OH

— B B ; _
= —upCrzy with y® = —.

Solution: Evolution of momenta, obviously.
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The momentum equation

General case: E Lie algebroid, not necessarily regular.

Consider an ideal of E: a subalgebroid /: K — E
o €Sec(E) and neSec(K) = [£ 1] € Sec(K).

It follows that K is a bundle of Lie algebras, i.e., p|x = 0.
Definition

Let i: K — E be the canonical inclusion of an ideal K into E. The momentum
map J, with respect to K, is the dual map J=/7*: E* — K*.

Explicitly, the momentum map J: E* — K* is the bundle map over the identity in
M, given by
(J(w) k)= (. k), peEE, keK

45



The momentum equation

There exists a canonical linear E-connection on the vector bundle K — M:

Ven = [€n], € € Sec(E), n € Sec(K).

It is flat connection (i.e. a representation):

Ve Ve, =V, Ve, = Vg, g

Theorem
For any Hamiltonian function H € C*°(E*), the momentum map satisfies the

momentum equation:
Vr,J=0.
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Reduction

Since V is a representation, it defines an orbit foliation of K*. From V,J =0, we

have that the inverse image by J of an orbit is invariant under the dynamics.
In particular the zero section is one of such orbits,
JHO)={peE [ J(u)=0}=K"

The dual bundle to K° is canonically identified with the quotient vector bundle
E/K, and this last inherits a Lie algebroid structure from E, because K is an ideal
in E.

We consider the quotient Lie algebroid F = E/K — M and identify J~1(0) = F*.

We denote by p: E — F = E/K the quotient projection and by j its adjoint map
Jj=p*: F* — E*, which is but the canonical inclussion of J~1(0) into E*.
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Canonical symplectic forms wf in TEE* and w” on 77 F*
Hamiltonian functions H € C*(E*) and H = Hoj € C®(F*),
Hamiltonian sections [y € Sec(TEE*) and g € Sec(TFF*).

To relate this objects we consider the maps P = TPid: TEF* — TFF* and
| =79 TEF* — TEE* given by

P(v,a,w) = (v,p(a), w) and I(v,a,w)=(i(v),a, Tjw)),
which are morphisms of Lie algebroids

TE F* / TE E*

|

TF F*
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TE F* / TE E*

|

TFF*
Theorem
O Pwf = I"wE.
O P*(dl-_/) = [*(dH)

Od Therfz exists [ section of TEF such that /o[y = o, and 5 =
Po /—H-
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Summarizing

@ We can describe Lagrangian and Hamiltonian systems on Lie algebroids by

means of a variational formalism.

Very appropriate for reduction.
Momentum maps defined by ideals (but there are other alternatives).
Momentum map is covariantly constant, with respect to a flat connection.

Reduction at zero momentum value.

M To do: Reduction by stages.
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Thank you!



Splittings

The quotient vector bundle has an induced Lie algebroid structure, so that we have
0—K-SELF—o0
Take a spitting s: F — E and identify £ with F & K by
(a, k) ~s(a) + i(k),
with the bracket

[(01.m). (o2, M) e = (101, 02le M1 M2l + V(o2 = Vo + 201,02)),

Induces a splitting TEE = TFF x THKK.
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Canonical forms

Theorem

Let Q be the map whose value at the point (v, 1) € F* & K* is the bilinear
form Q) : TFF x TFF — R given by

Qo ((b1, V1), (b2, V5)) = (1, Qu (b1, b2) ).
Then we have
wE (o1, 92) = W (¢1, &) + Wi (71, 72) + Q¢ &)

where @1, > are sections of TEE* such that ®op; = ((;,y:)o¢ for i =1,2.

53



It follows that the Hamilton equations are
. = AN : K _
irp(w” — Q) = deH and irsw” = dxH

where ® o [y = (If;, I) o ¢ and deH and dxH are the components of dH, that
is d*(deH, dH) = dEH.
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