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Some standard notations

We denote by
- M a smooth, m-dimensional manifold ;
TM and T*M its tangent and its cotangent bundle ;
C>°(M) the space of smooth functions on M ;
VP(M), p € N, the space of smooth sections of AP TM, i.e.,
the space of smooth p-vector fields on M;
QP(M), p € N, the space of smooth sections of /\p T*M,
i.e., the space of smooth p-forms on M.

Fani Petalidou (joint work with Pantelis A. Damianou) Poisson brackets with prescribed Casimirs



Poisson brackets

Poisson brackets, introduced by Siméon Denis Poisson on R?"
[9] and generalized to manifolds of arbitrary dimension by
Sophus Lie [5], have an important role in Hamiltonian
dynamics, fluid dynamics, magnetohydrodynamics and other
fields of mathematical physics.
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Poisson brackets

Poisson brackets, introduced by Siméon Denis Poisson on R?"
[9] and generalized to manifolds of arbitrary dimension by
Sophus Lie [5], have an important role in Hamiltonian
dynamics, fluid dynamics, magnetohydrodynamics and other
fields of mathematical physics.

In modern language

A Poisson bracket on C>°(M) is a bilinear map
{3 CF(M) x C=(M) — C=(M)

with the properties :

- {f7g} - —{g,f},
- {f.{g9.h}} +{g,{h,f}} + {h,{f,g}} = 0 (Jacobi identity) ;
- {f,gh} = {f,g}h+ g{f, h}  (biderivation - Leibniz’s rule).

Thus, (C>*(M),{-,-}) has the structure of a Lie algebra.

Fani Petalidou (joint work with Pantelis A. Damianou) Poisson brackets with prescribed Casimirs



Poisson brackets

By virtue of the above properties, a Poisson bracket {-, -}
defines a bivector field A on M :

A(df,dg) = {f.g} and [A,A]=0.

Reciprocally, any A € V?(M) that verifies [A, A] = 0, defines on
M a Poisson bracket

{f,g} = A(df, dg).

A such Ais called Poisson tensor and (M, \) Poisson manifold.
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Poisson brackets

Classical examples
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Poisson brackets

Classical examples

@ Symplectic manifolds
Any symplectic manifold (M, w), w is a nondegenerate
closed smooth 2-form on M, is equipped with a Poisson
bracket {-, -} defined by w as follows. Since
W’ VM) = QY (M), X = (X)) = —w(X,-)is an
isomorphism, for any f, g € C>*(M),

{f,9} = w(W’ ' (df)," " (dg)).
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Poisson brackets

Classical examples

@ Symplectic manifolds
Any symplectic manifold (M, w), w is a nondegenerate
closed smooth 2-form on M, is equipped with a Poisson
bracket {-, -} defined by w as follows. Since
W’ VM) = QY (M), X = (X)) = —w(X,-)is an
isomorphism, for any f, g € C>*(M),

{f,9} = w(W’ ' (df)," " (dg)).

@ The dual of a Lie algebra (G, [, ])
Let M = G*. Forany f,g € C>*(M) and x € G*, we define

{f, 93 (x) == (x,[df(x), dg(x)]),

which is a linear Poisson bracket on G*.
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Poisson brackets

To a given Poisson tensor A on M, we can associate :
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Poisson brackets

To a given Poisson tensor A on M, we can associate :
@ A homomorphism A# : Q'(M) — VI(M), a — A#(a), such
that, for any g € Q'(M),

(B, N () = Ma, B).
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Poisson brackets

To a given Poisson tensor A on M, we can associate :
@ A homomorphism A# : Q'(M) — VI(M), a — A#(a), such
that, for any g € Q'(M),

(B, N () = Ma, B).

- If a = df, f € C>(M), the vector field X; = A#(df) = {f, -}
is called Hamiltonian vector field of f with respect to A.
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Poisson brackets

To a given Poisson tensor A on M, we can associate :
@ A homomorphism A# : Q'(M) — VI(M), a — A#(a), such
that, for any g € Q'(M),

(B, N () = Ma, B).

- If a = df, f € C>(M), the vector field X; = A#(df) = {f, -}
is called Hamiltonian vector field of f with respect to A.

- The image ImA* C V'(M) defines, as a completely
integrable distribution on M, the symplectic foliation of M
whose leaves are symplectic immersed submanifolds of

(M, A).
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Poisson brackets

To a given Poisson tensor A on M, we can associate :
@ A homomorphism A# : Q'(M) — VI(M), a — A#(a), such
that, for any g € Q'(M),

(B, N () = Ma, B).

- If a = df, f € C>(M), the vector field X; = A#(df) = {f, -}
is called Hamiltonian vector field of f with respect to A.

- The image ImA* C V'(M) defines, as a completely
integrable distribution on M, the symplectic foliation of M
whose leaves are symplectic immersed submanifolds of

(M, A).
@ lIts extension A : QP(M) — VP(M), p € N, defined, for any
¢ € QP(M) and av, ..., ap € Q'(M), by

N (), ap) = (1PCN (), ..., AP (ap)).
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Casimir functions
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Casimir functions

The elements of the center of Lie algebra (C>*(M),{-,-}), i.e.,
the functions C € C°>°(M) such that

{C,.} =0 < A¥(dC) =0,

are called Casimirs of Poisson structure A.
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Casimir functions

The elements of the center of Lie algebra (C>*(M),{-,-}), i.e.,
the functions C € C°>°(M) such that

{C,.} =0 < A¥(dC) =0,

are called Casimirs of Poisson structure A.

They have a very important role in the analysis of Poisson
structures because they are conserved quantities in any
Hamiltonian system X; of (M, A) :

Xi(C) = (dC, Xg) = {f,C} =0,

and, as such, they play a vital part in reducing the order of X;
and in its eventual integration.
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Casimir functions

The elements of the center of Lie algebra (C>*(M),{-,-}), i.e.,
the functions C € C°>°(M) such that

{C,.} =0 < A¥(dC) =0,

are called Casimirs of Poisson structure A.

They have a very important role in the analysis of Poisson
structures because they are conserved quantities in any
Hamiltonian system X; of (M, A) :

Xi(C) = (dC, Xg) = {f,C} =0,

and, as such, they play a vital part in reducing the order of X;
and in its eventual integration.

Also, the symplectic leaves of (M, A) can be viewed as the
common level sets of Casimirs of A.
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Presentation of our problem
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Presentation of our problem

To introduce our problem we remark that, for an arbitrary
function C on R3, the bracket

oC oC ac
{Xay}:Ea {X’Z}:_W and {y,z}_aix

(x, y, z being the coordinates functions of R3) is Poisson and it
admits C as Casimir.
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Presentation of our problem

To introduce our problem we remark that, for an arbitrary
function C on R3, the bracket

oC oC ac
{Xay}:Ea {X’Z}__W and {y,z}_aix

(x, y, z being the coordinates functions of R3) is Poisson and it
admits C as Casimir.

If Q = dx A dy A dz is the standard volume element on R3, then
the above bracket can be written as

X,y}Q=dxAdyAdC & {ij}_W7
{x,z2})Q=dxAdzAndC <= {X’Z}:L;Adc,
dy 1.02.1.dC

{y,z}Q=dyAdzAdC & {y,z}= =
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Presentation of our problem

More generally, for given Cy, Co, ..., C; functionally
independent smooth functions on R'+2 and Q a volume form on
R/*2, the formula

{9, h}Q=dgndhNdCiA...NdC| &
dgAdhAdC1A.../\dC/

due to H. Flaschka and T. Ratiu, defines a Poisson bracket on
C>(R*2) with Cy,..., C; as Casimir invariants and with

symplectic leaves of dimension at most 2.
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Presentation of our problem

More generally, for given Cy, Co, ..., C; functionally
independent smooth functions on R'+2 and Q a volume form on
R/*2, the formula

{9, h}Q=dgndhNdCiA...NdC| &

dgNdhANdCyA...ANdC
{g.n =% - 3 (1)

due to H. Flaschka and T. Ratiu, defines a Poisson bracket on
C>(R*2) with Cy,..., C; as Casimir invariants and with
symplectic leaves of dimension at most 2.

J. Grabowski et al. have also proved [4] that : Conversely, the
bracket of any Poisson structure A on R'*2 with symplectic
leaves of dimension at most 2 can be written as in (1).
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Presentation of our problem

The above bracket, called Jacobian Poisson bracket because

a(g, h, C1,...,C,))

g,y = det ( (X1, Xi42)

firstly is used by P. Damianou [1, 2] for calculate the transverse
Poisson structures to subregular nilpotent orbits of gl(n, C)

(n < 7). Later, this fact was extended by P. Damianou et al. [3]
to fransverse Poisson structures to subregular nilpotent orbits
of any semi-simple Lie algebra G.
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Presentation of our problem

The above bracket, called Jacobian Poisson bracket because

a(g, h, C1,...,C,))

tg.} = det ( (X1, Xi42)

firstly is used by P. Damianou [1, 2] for calculate the transverse
Poisson structures to subregular nilpotent orbits of gl(n, C)

(n < 7). Later, this fact was extended by P. Damianou et al. [3]
to fransverse Poisson structures to subregular nilpotent orbits
of any semi-simple Lie algebra G.

Another interesting application of (1) is appeared in [6, 7, 8],
where the polynomial Poisson algebras and their Heisenberg
invariance properties are studied by V. Rubtsov et al..
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Presentation of our problem

In this lecture we are interested to extend formula (1) in the
more general case of higher rank Poisson brackets.

Our problem can be formulated as follows :
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Presentation of our problem

In this lecture we are interested to extend formula (1) in the
more general case of higher rank Poisson brackets.

Our problem can be formulated as follows :

For given (m — 2k) smooth functions Cy, ..., Cy_2¢ On an
m-dimensional smooth manifold M, functionally independent
almost everywhere, and a volume element Q on M, how we
must write the (m — 2)-form

¢:( ? )/\dC1/\.../\de_2k

such that the bracket {-, -} on C>*(M) defined by

dhy A dhp A ®
{h1,hp}Q = dhy Adha A ® = {hy, o} = %
is a Poisson bracket of rank at most 2k with Cy, ..., Cy_2k as

Casimirs.
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Presentation of our results

We investigate this problem in the case where M is of even and
of odd dimension, separately.
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Presentation of our results

We investigate this problem in the case where M is of even and
of odd dimension, separately.

If dimM = 2n

We assume that M is endowed with a suitable almost
symplectic structure wg and we denote by Ag the corresponding
almost Poisson structure on M. Then, we prove that

o— (-1 9 o)A B Y AdCi A AdC

= (— ?(U+ ﬁwo) m) 1A 2n—2k>
where f satisfies 2 = det ({f;, f;},) # 0, o is a 2-form on M
satisfying certain special requirements and g = iy,0.
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Presentation of our results

If dimM = 2n+ 1

We assume that M is equipped with a suitable almost
cosymplectic structure (99, ©p) and we denote by (Ag, Ep) the
corresponding almost Jacobi structure on M. Then, we show
that

1 oF2
¢:<—?(a kg ©p) A (k- 2)>/\O’C1 - NdConi1_2k,

where f € C*°(M) and f # 0 almost everywhere, o is a 2-form
on M satisfying certain particular conditions and g = ip 0.

Fani Petalidou (joint work with Pantelis A. Damianou) Poisson brackets with prescribed Casimirs



Tools for the demonstration

The key points in the establishment of the above formulas are
@ the use of the operators ¥ and x;;
@ the relation which links ¥ and x;

@ Lepage’s decomposition theorem for differential forms.
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The operator ¥

Let M be a m-dimensional smooth manifold. We denote by
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The operator ¥

Let M be a m-dimensional smooth manifold. We denote by

@ ip: Q(M) — Q(M) the interior product of differential forms
by a p-vector field P defined, for any n € Q9(M), g > p,
and Q € V9-P(M), by

(ipn, Q) = (=1)P~DP2(n, P A Q);
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The operator ¥

Let M be a m-dimensional smooth manifold. We denote by

@ ip: Q(M) — Q(M) the interior product of differential forms
by a p-vector field P defined, for any n € Q9(M), g > p,
and Q € V9-P(M), by

(ipn, Q) = (=1)P"DP2(n, P A Q);
@ j, : V(M) — V(M) the interior product of multivector fields
by a q-form n defined, for any P € VP(M), p > g, and
¢ € QP9(M), by

(CnP) = (CAN, PAQ).

Fani Petalidou (joint work with Pantelis A. Damianou) Poisson brackets with prescribed Casimirs



The operator ¥

Let M be a m-dimensional smooth manifold. We denote by

@ ip: Q(M) — Q(M) the interior product of differential forms
by a p-vector field P defined, for any n € Q9(M), g > p,
and Q € V9-P(M), by

(ipn, Q) = (=1)P"DP2(n, P A Q);
@ j, : V(M) — V(M) the interior product of multivector fields
by a q-form n defined, for any P € VP(M), p > g, and
¢ € QP-9(M), by

°lfp=aq,
JnP = (=1)PPRipy = (1, P).
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The operator ¥

Then, for a given smooth volume form Q on M, the interior
product of p-vector fields on M, p =0, ..., m, with Q yields a
C°°(M)-linear isomorphism

VVP(M) = QTP(M)
P — W(P)=Wp=(—1)PDP2jq
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The operator ¥

Then, for a given smooth volume form Q on M, the interior
product of p-vector fields on M, p =0, ..., m, with Q yields a
C°°(M)-linear isomorphism
vV VP(M) — QTP(M)
P — W(P)=wp=(-1)PDP2j0

lts inverse map is
v QMP(MY - VP(M)
o V() =

where Q is the dual m-vector field of Q, i.e., (Q,Q) = 1.
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The operator ¥
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The operator ¥

We have

Proposition

A bivector field A on M is Poisson iff

2indWVp + dWasp = 0.
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The operator x
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The operator x

Let

- (M, wp) be an almost symplectic manifold, i.e., wp is a
nondegenerate 2-form on M (so m = 2n);
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The operator x

Let

- (M, wp) be an almost symplectic manifold, i.e., wp is a
nondegenerate 2-form on M (so m = 2n);

- Ao the bivector field on M defined by wy ;
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The operator x

Let

- (M, wp) be an almost symplectic manifold, i.e., wp is a
nondegenerate 2-form on M (so m = 2n);

- Ao the bivector field on M defined by wy ;

Al
- Q= no the corresponding volume form and Q) = no the
dual 2n-vector field of Q.
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The operator x

Let

- (M, wp) be an almost symplectic manifold, i.e., wp is a
nondegenerate 2-form on M (so m = 2n);

- Ao the bivector field on M defined by wy ;

Al
- Q= no the corresponding volume form and Q) = no the
dual 2n-vector field of Q.

For any ¢ € QP(M), we define the adjoint form x ¢ of ¢ relative
fo wop, which is a (2n — p)-form, by setting

xp = (_1)(P—1)P/2,' u 2.
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The operator x
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The operator x

The operator * : QP(M) — Q?"~P(M) has the following
properties :

i) **=Id,

i) forany ¢ € QP(M), ¢ € Q9(M),

* () = (—1 )(p—1)p/2 i/\éﬁ(ip)(* Y) = (-1 )pq+(q—1)q/2i/\#(¢)(* ®),
k n—k

ii) *%: (:’j i k=,
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The operator x

The operator * : QP(M) — Q?"~P(M) has the following
properties :

i) **=Id,

i) forany ¢ € QP(M), ¢ € Q9(M),

* () = (—1 )(p—1)p/2 i/\ff(eo)(* Y) = (-1 )pq+(q—1)q/2i/\#(w)(* ®),
k n—k

ii) *%: (:’j i k=

Definition : A smooth form ¢ € Q(M) is called effective if
In,®) = 0 everywhere on M.
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The operator x

The operator * : QP(M) — Q?"~P(M) has the following
properties :

i) **=Id,

i) forany ¢ € QP(M), ¢ € Q9(M),

F (o) = ()PP (o) = (“1PTHENIRE ),
k n—k

ii) *%: (:’j i k=

Definition : A smooth form ¢ € Q(M) is called effective if
In,®) = 0 everywhere on M.

The adjoint of an effective p-form ¢ (p < n) is

wn_p

(n—p)t

#1p = (—1)PPFD g
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The operator x
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The operator x

Definition : A smooth form ¢ € Q(M) is called simple if it can

be written as

k
o= N2
k!’

where 1 is an effective p-form.
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The operator x

Definition : A smooth form ¢ € Q(M) is called simple if it can

be written as
K
“o

p=vALD
where 1 is an effective p-form.
The adjoint of ¢ is

n—p—k

W
o= COETR A G
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The operator x
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The operator x

Lepage’s decomposition theorem

Every p-form ¢ on (M, wg) (p < n) may be decomposed, in a
unique way, as sum of simples forms :

q
w,
‘P:l/}p"‘wpfz/\wo-i-----i—lﬁp,gq/\??.
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The operator x

Lepage’s decomposition theorem

Every p-form ¢ on (M, wg) (p < n) may be decomposed, in a
unique way, as sum of simples forms :

q
w,
‘P:l/}p"‘wpfz/\wo-i-----i—lﬁp,gq/\??.

Forany s =0,...,q9(q < [p/2]), ¥p—2s are effective and may
be calculated from ¢ by means of iteration of the operator iy, .
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The operator x

Lepage’s decomposition theorem

Every p-form ¢ on (M, wg) (p < n) may be decomposed, in a
unique way, as sum of simples forms :

q
w,
‘P:l/}p"‘wpfz/\wo-i-----i—lﬁp,gq/\??.

Forany s =0,...,q9(q < [p/2]), ¥p—2s are effective and may
be calculated from ¢ by means of iteration of the operator iy, .

The adjoint x ¢ may be uniquely written as the sum

— (1Pt )/2 ) W
sp=(-1) v e IR
n—p
_1\9 (n—p)! q “wo
C =+ gyt Vp2a o) M ()i
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Relations between W and * on (M, wy)
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Relations between W and * on (M, wy)

Since AJ : QP(M) — VP(M), p € N, is an isomorphism, for any
P € VP(M) there exists a unique o, € QP(M) s.t. P =AY (op).
Therefore,

V(P) = xo0p.
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Relations between W and * on (M, wy)

Since AJ : QP(M) — VP(M), p € N, is an isomorphism, for any
P € VP(M) there exists a unique o, € QP(M) s.t. P =AY (op).
Therefore,

V(P) = xo0p.

Also, for any ¢ € QP(M) (p < n), we have

V() = AJ (0). (2)
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Relations between W and * on (M, wy)
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Relations between W and * on (M, wy)

Hence, by introducing the codifferential operator 5 = x d * on
(M, wq) and by applying the above relations for a bivector field
A=A (o) on (M,wp), o € Q(M), we prove
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Relations between W and * on (M, wy)

Hence, by introducing the codifferential operator § = « d « on
(M, wq) and by applying the above relations for a bivector field

A=A (o) on (M,wp), o € Q(M), we prove

Proposition

A bivector field \ = /\gﬁ (o) on (M,wy) is Poisson iff

20 N o(o) =6(o N o).
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Relations between W and * on (M, wy)

Hence, by introducing the codifferential operator 5 = x d * on
(M, wq) and by applying the above relations for a bivector field
A=A (o) on (M,wp), o € Q(M), we prove

Proposition
A bivector field \ = /\Z)éﬁ (o) on (M,wy) is Poisson iff

20 N o(o) =6(o N o).

Remark : When dwg = 0,
20 N6(o) =0(c No) & {o,0},=0,

({-,-}, being the Koszul bracket on 2(M)) which means that o
is a complementary 2-form on (M, Ag) in the sense of Vaisman
[10].
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Poisson brackets with given Casimirs
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Poisson brackets with given Casimirs

Problem : Let M be a m-dimensional smooth manifold and

Cy, ..., Cy_okx smooth functions on M which are functionally
independent almost everywhere. We want to construct Poisson
structures A on M with symplectic leaves of dimension at most
2k which have as Casimirs the given functions Cy, ..., Cy_ok.
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Poisson brackets with given Casimirs

Problem : Let M be a m-dimensional smooth manifold and

Cy, ..., Cy_okx smooth functions on M which are functionally
independent almost everywhere. We want to construct Poisson
structures A on M with symplectic leaves of dimension at most
2k which have as Casimirs the given functions Cy, ..., Cy_ok.

Also, we want its bracket can be written as

{h1,h2}Q = dhy Adha A® < {hy, ho} = W)
where Q is a volume element on M and ¢ an (m — 2)-form of

type
®=( (2k—2)—form )AdCiA...ANdCp_o.
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Poisson brackets with given Casimirs

Problem : Let M be a m-dimensional smooth manifold and

Cy, ..., Cy_okx smooth functions on M which are functionally
independent almost everywhere. We want to construct Poisson
structures A on M with symplectic leaves of dimension at most
2k which have as Casimirs the given functions Cy, ..., Cy_ok.

Also, we want its bracket can be written as

{h1,h2}Q = dhy Adha A® < {hy, ho} = W)
where Q is a volume element on M and ¢ an (m — 2)-form of

type

®=( (2k—2)—form )AdCiA...ANdCp_o.

We study our problem, separately, on
@ even-dimensional manifolds ;
@ odd-dimensional manifolds.
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On even-dimensional manifolds
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On even-dimensional manifolds

We suppose that dim M = 2n and we consider an almost
symplectic structure wg on M and its associated almost Poisson
tensor Ag such that
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On even-dimensional manifolds

We suppose that dim M = 2n and we consider an almost
symplectic structure wg on M and its associated almost Poisson
tensor Ag such that

Nk
T— <dC1 VANAN dCQn—Qka (n_ k)|>
wg_k

= <m, XC1 /\ “ e AXCZH72k> ;é O

on an open and dense subset I/ of M, where X¢, = A#(dC,-).
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On even-dimensional manifolds

We suppose that dim M = 2n and we consider an almost
symplectic structure wg on M and its associated almost Poisson
tensor Ag such that

Nk
T— <dC1/\.../\dCQn—2ka (n—k)'>
wg_k
— (g K he N Koy ) £

on an open and dense subset I/ of M, where X¢, = A#(dc,-).

That means that

f2 —det ({C;,Cj},) #0 on U. ]
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On even-dimensional manifolds
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On even-dimensional manifolds

Let
- D= (Xe,,...,Xc,, ,) the distribution on M generated by
the Hamiltonians Xg, = A} (dC), i =1,...,2n — 2k,
- D¢ its annihilator,
- orth,, D the symplectic orthogonal of D with respect to wy.
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On even-dimensional manifolds

Let

- D= (Xe,,...,Xc,, ,) the distribution on M generated by

the Hamiltonians Xg, = A} (dC), i =1,...,2n — 2k,

- D¢ its annihilator,

- orth,, D the symplectic orthogonal of D with respect to wy.
Because det ({C;, Cj},) = 2 # 0 on U, at each point x € U,
Dy = Dn TxM is a symplectic subspace of TyM with respect to
wo, - Thus,
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On even-dimensional manifolds

Let
- D= (Xe,,...,Xc,, ,) the distribution on M generated by
the Hamiltonians Xg, = A} (dC), i =1,...,2n — 2k,
- D¢ its annihilator,
- orth,, D the symplectic orthogonal of D with respect to wy.

Because det ({C;, Cj},) = 2 # 0 on U, at each point x € U,
Dy = Dn TyM is a symplectic subspace of T,M with respect to

wo, - Thus,
T«M = Dy ® orth,, Dx = Dx & A} (D),
TiM = D5 @ (N} (DR))° = D3 @ (0, ..., dfop_ok)x-
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On even-dimensional manifolds

Let

- D= (Xe,,...,Xc,, ,) the distribution on M generated by

the Hamiltonians Xg, = A} (dC), i =1,...,2n — 2k,

- D¢ its annihilator,

- orth,, D the symplectic orthogonal of D with respect to wy.
Because det ({C;, Cj},) = 2 # 0 on U, at each point x € U,
Dy = Dn TxM is a symplectic subspace of TyM with respect to
wo, - Thus,

T«M = Dy ® orth,, Dx = Dx & A} (D),
TiM = D3 & (A} (D))° = Dy & (dfy, ..., dfan_ok)x-

Proposition
A bivector field A = N} () on (M, wp), of rank at most 2k,
admits as unique Casimirs the functions Cy, . .., Con_oi if and

only if o is a smooth section of /\2 D° of maximal rank on U.
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On even-dimensional manifolds
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On even-dimensional manifolds

n

. w
Now, we consider on (M, wp) the volume form Q = 7? a

smooth section o of A2 D° of maximal rank on I/ such that
20 Nd(o) = d(o No),
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On even-dimensional manifolds

n
. w
Now, we consider on (M, wp) the volume form Q = 7? a

smooth section o of A2 D° of maximal rank on I/ such that
20 N (o) = 6(0 A o), and the (2n — 2)-form

k-2

w,
wo) A (k0—2)!> AdCy A ... A dCop ok,

(1. 9
o= (-l g7

where g = ip,0.
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On even-dimensional manifolds

n
Now, we consider on (M, wp) the volume form Q = % a
smooth section o of A2 D° of maximal rank on ¢ such that

20 N (o) = 6(0 A o), and the (2n — 2)-form

b = (— 1?(0+ %wo) A (:}é;!) ANdCy A ... AN dCop_ok,
where g = ip,0.
We have that
) rw—_1> a bivector A J
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On even-dimensional manifolds

n
Now, we consider on (M, wp) the volume form Q = % a
smooth section o of A2 D° of maximal rank on ¢ such that

20 N (o) = 6(0 A o), and the (2n — 2)-form

b = (— 1?(0+ %wo) A (:}é;!) ANdCy A ... AN dCop_ok,
where g = ip,0.
We have that
) rw—_1> a bivector A J

and we prove that

x® = 0. J
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On even-dimensional manifolds

Thus

Theorem
Under the above assumptions,

A=u1(0) @ AF (5 0) = A (o)

is a Poisson tensor, of rank at most 2k, for which Cy, . .., Cop_ok
are Casimirs. Its bracket can be calculated by
hy A dho A ®
{h1,hx}Q = dhy Adha A® & {hy, ho} = %.
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On even-dimensional manifolds

Thus

Theorem
Under the above assumptions,

A=u1(0) @ AF (5 0) = A (o)

is a Poisson tensor, of rank at most 2k, for which Cy, . .., Cop_ok
are Casimirs. Its bracket can be calculated by
hy A dho A ®
{h1,hx}Q = dhy Adha A® & {hy, ho} = %.

The converse is also true.
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On odd-dimensional manifolds

Similar results are true on odd-dimensional manifolds.
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On odd-dimensional manifolds

Similar results are true on odd-dimensional manifolds.
We remark that

Any Poisson tensor A on M (dim M = 2n + 1) of rank at most
2k, admitting Cy, ..., Coni1_2k as Casimirs, can be viewed as a
Poisson tensor on M’ = M x R admitting Cy, ..., Cony1_24 and
Conio_2k = S (s the canonical coordinate on R) as Casimirs.
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On odd-dimensional manifolds

Similar results are true on odd-dimensional manifolds.
We remark that

Any Poisson tensor A on M (dim M = 2n + 1) of rank at most
2k, admitting Cy, ..., Coni1_2k as Casimirs, can be viewed as a
Poisson tensor on M’ = M x R admitting Cy, ..., Cony1_24 and
Conio_2k = S (s the canonical coordinate on R) as Casimirs.

So, our purpose is to study our problem in the framework of M'.
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On odd-dimensional manifolds

Similar results are true on odd-dimensional manifolds.
We remark that

Any Poisson tensor A on M (dim M = 2n + 1) of rank at most
2k, admitting Cy, ..., Coni1_2k as Casimirs, can be viewed as a
Poisson tensor on M’ = M x R admitting Cy, ..., Cony1_24 and
Conio_2k = S (s the canonical coordinate on R) as Casimirs.

So, our purpose is to study our problem in the framework of M'.

We consider an almost cosymplectic structure (99, ©¢) on M
(that means ¥y A ©F # 0 on M) and its corresponding almost
Jacobi structure (Ag, Ep) such that
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On odd-dimensional manifolds

Similar results are true on odd-dimensional manifolds.
We remark that

Any Poisson tensor A on M (dim M = 2n + 1) of rank at most
2k, admitting Cy, ..., Coni1_2k as Casimirs, can be viewed as a
Poisson tensor on M’ = M x R admitting Cy, ..., Cony1_24 and
Conio_2k = S (s the canonical coordinate on R) as Casimirs.

So, our purpose is to study our problem in the framework of M'.

We consider an almost cosymplectic structure (99, ©¢) on M
(that means ¥y A ©F # 0 on M) and its corresponding almost
Jacobi structure (Ag, Ep) such that

n—k
AO

f=(dCi A...ANdCopi1_2¢, Eo A (n— k)l

) #0,

on an open and dense subset U/ of M.
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On odd-dimensional manifolds
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On odd-dimensional manifolds

0 ,
Let wy = ©g + ds A g and Ay = Ag + 98 A Eg be, respectively,

the almost symplectic and almost Poisson structure on
M’ = M x R defined by (Jg, ©9). We have
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On odd-dimensional manifolds

0 ,
Let wy = ©g + ds A g and Ay = Ag + 95 A Eg be, respectively,

the almost symplectic and almost Poisson structure on
M’ = M x R defined by (Jg, ©9). We have

A/ n+1—k
m
on the open and dense subset i/’ = U x Rof M = M x R

<dC1 VAN dCZn—H _ok N\ dS, > —f#0
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On odd-dimensional manifolds

0 ,
Let wy = ©g + ds A g and Ay = Ag + 95 A Eg be, respectively,

the almost symplectic and almost Poisson structure on
M’ = M x R defined by (Jg, ©9). We have

A6 n+1—k

on the open and dense subset i/’ = U x Rof M = M x R

and
any A € V2(M) can be written, in a unique way, as
A= N (') = NE (o) + N (1) A B,

where ¢’ € Q?(M') is of type ¢/ = o + 7 A ds with o and 7
semi-basic forms on M with respect to (Ag, Ep).
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On odd-dimensional manifolds

By applying our results for manifolds of even dimension on
(M',wp, Cy, ..., Cont1_2k, S), We obtain
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On odd-dimensional manifolds

By applying our results for manifolds of even dimension on
(M',wp, Cy, ..., Cont1_2k, S), We obtain

Theorem

O|

n
Under the above assumptions, let Q = 99 N\ 7") be the volume

form on (M, 99, ©), (o, 7) € VA(M) x V(M) a pair of semi-
basic forms such that
) o/ =0+ 7 Adsis a section of \? D' of maximal rank on U’
(D' = (Xg,:-- - X, ., Xs) being the distribution on M’
generated by the Hamiltonian vector fields X ’,_ = Ag#(dC,-)
and X}, = Aj’ (ds)),

i) 20’ N (0") = (o’ AN o’) (8" being the codifferential operator
on M),
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On odd-dimensional manifolds

and ¢ the (2n+1 — 2)-form

oF 2
(k—2)

g 60)/\

- ) AdCI .. A 0Can1-ak,

<D:<—1?(0+

where g = in,o. Then, the bracket {-,-} on C>(M) given by

{Mm, he}Q = dhy Ndhp A & {h1,h2}zw

defines a Poisson structure A on M, A = N (o) + N (7) A Eo,
with symplectic leaves of dimension at most 2k for which
Ci,...,Coni1_2k are Casimirs. The converse is also true.

Poisson brackets with prescribed Casimirs
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We remark that, in both cases (of even dimension m = 2n and
of odd dimension m = 2n+ 1), when k = 1, the obtained

brackets are of Jacobian type (1), up to a coefficient function.
Precisely,

(hy, b} = —%dm A dhs AdCy A ... A dCm .
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1. Dirac brackets

Let (M, wq) (Ag = w51) be a symplectic manifold, dim M = 2n,
and Cy, ..., Cop_ox € C*°(M) whose the differentials are
linearly independent at each point in

My={xeM/Ci(x)=0,...,Con_ok(x) =0}.

We assume that ({C;, C;},) is invertible on an open
neighborhood W of My in M. Let ¢; be the coefficients of its
inverse matrix which are smooth functions on W such that
212K Cy, Gj}oCik = dik- We consider on W the 2-form

o = wp + Z C,‘ij,' AN dC]

i<j
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We can easily prove that ¢ is a section of /\2 D° (D° being the
annihilator of D = (X¢,, ..., Xc,,_,,)) of maximal rank on W
which verifies 20 A §(c) = d(o A o). Thus,

A= /\0#(0') =N+ ZC,'/‘X)‘,. /\Xf/.
i<j
defines a Poisson structure on VW whose corresponding bracket
{-,-} on C>(W) is given, for any hy, h, € C>*(W), by
k—1
0

1
{h1,h2}Q: —dhy A dho A (k—1)!

f

ANdCy A ... NdCop_ok. (3)
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We can easily prove that ¢ is a section of /\2 D° (D° being the
annihilator of D = (X¢,, ..., Xc,,_,,)) of maximal rank on W
which verifies 20 A §(c) = d(o A o). Thus,

A= /\0#(0') =N+ ZC,'/‘X)‘,. /\Xf/.
i<j
defines a Poisson structure on VW whose corresponding bracket
{-,-} on C>*(W) is given, for any hy, ho € C>*(W), by

k—1
0

1
{h1,h2}Q: —dhy A dho A (k—1)!

7 ANdCy A ... NdCop_ok. (3)

In the above expression of A we recognize the Poisson
structure defined by Dirac on an open neighborhood W of the
constrained submanifold My of M and in (3) a new expression
of the Dirac bracket.
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2. Periodic Toda and Volterra lattices

We consider the linear Poisson structure A, associated with the
periodic Toda lattice of n = 3 particles. This Poisson structure
has two well-known Casimir functions. Using our results we
construct another Poisson structure having the same Casimir
invariants with A .
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2. Periodic Toda and Volterra lattices

We consider the linear Poisson structure A, associated with the
periodic Toda lattice of n = 3 particles. This Poisson structure
has two well-known Casimir functions. Using our results we
construct another Poisson structure having the same Casimir
invariants with A .

The periodic Toda lattice of n = 3 particles is the system of
ordinary differential equations on R® which in Flaschka’s
coordinate system (a1, ao, as, by, bo, bz) takes the form

a = ai(bi1—b), bi=2&-a&,) (i€Z (a3 birz)=(a,b)).
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2. Periodic Toda and Volterra lattices

We consider the linear Poisson structure A, associated with the
periodic Toda lattice of n = 3 particles. This Poisson structure
has two well-known Casimir functions. Using our results we
construct another Poisson structure having the same Casimir
invariants with A .

The periodic Toda lattice of n = 3 particles is the system of
ordinary differential equations on R® which in Flaschka’s
coordinate system (a1, ao, as, by, bo, bz) takes the form

&= aj(bis1—b), b=2(a-a,) (i€Z (ays bira)=(a,b)).
It is hamiltonian with respect to the Lie-Poisson structure

0 0 0 0 0 0 0 0 0

A= a1 Mo " a6, %02, b, b5 @02 bs by
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which is of rank 4 on U = {(a,b) € R® / ajap + aja3 + aras # 0}
and it admits two Casimirs :

Ci=bi+b+bs and Co = aja»as.
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which is of rank 4 on U = {(a,b) € R® / ajap + aja3 + aras # 0}
and it admits two Casimirs :

Ci=bi+b+bs and Co = aja»as.

We consider on R® the symplectic form wy = 2?21 da; A db, its
associated Poisson tensor Ag = 3.3, e A b and the

i i
corresponding volume element

3
Q:%:d&/\db1/\da2/\db2/\da3/\db3.
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which is of rank 4 on U = {(a,b) € R® / ajap + aja3 + aras # 0}
and it admits two Casimirs :

Ci=bi+b+bs and Co = aja»as.
We consider on R® the symplectic form wy = 2?21 da; A db, its
associated Poisson tensor Ag = 3.3, e N+, and the
i

ob;’
corresponding volume element

3
Q:%:deh A dby A dap A dby A dag A dbs.
We have

f=(dCy NdCy, Ng) = —(ajaz + azaz + ajaz) #0 on U.
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The hamiltonian vector fields of C; and C, with respect to Ag :

X ——(i+i+£) X, —aaﬂJraaiqLaai
¢~ \da; dap 0dag” T P%pp, N Bop, 1 ops
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The hamiltonian vector fields of C; and C, with respect to Ag :

X ——(i+i+£) X, —aaﬂJraaiqLaai
¢~ \da; dap 0dag” T P%pp, N Bop, 1 ops

So, D= (X, X;,) and

3
D° = { (a;da; + Bidb;) € Q" (R®) /
i—1
oy +az+a3=0 and ajaxfs+ aifeas + B1axas = 0}.
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The hamiltonian vector fields of C; and C, with respect to Ag :

X ——(i+i+£) X, —aaﬂJraaiqLaai
¢~ \da; dap 0dag” T P%pp, N Bop, 1 ops

So, D= (X, X;,) and
3
D° = { (a;da; + Bidb;) € Q" (R®) /
i=1
oy +az+a3=0 and ajaxfs+ aifeas + B1axas = 0}.
The family of 1-forms (o1, 02,09, 0%),

o1 =day — das, oo = da>, — das,
0'; = a1 db1 — agdbg, 0'/2 = agdbg — a3db3,

provides, at every point (a, b) € U, a basis of Dfa,b)-
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The section o, of A% D° — U, which corresponds to A7 via AY,
the function g, = ix,o, and the 4-form & are written as

o, =01 N0} +05)+o2A0n, g, =ino, =—(a1 + a2+ as),

CDT = —f’1(aT+gTwo)/\dC1 A dCo
= —ajdby ANda> A das A dbs + ajdas A dbo A das A dbs
+aoda; A dby A das A dbs — axday A dby A dbs A das

+asda; A das A dbo A dbs + azda; A dby A das A dbs.
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The section o, of A% D° — U, which corresponds to A7 via AY,
the function g, = ix,o, and the 4-form & are written as

o, =01 N0} +05)+o2A0n, g, =ino, =—(a1 + a2+ as),

o, = —f (o, +g,wo) AdCy AdC,
= —ajdby ANda> A das A dbs + ajdas A dbo A das A dbs
+aoda; A dby A das A dbs — axday A dby A dbs A das
+asda; A das A dbo A dbs + azda; A dby A das A dbs.
Thus,
{81,b1}TQ =daj; A dby A ¢, = aiQ,
{31,b2}TQ = da; AN dbo A o = —aiQ,
{ag, bg}TQ =das A dbs A o, = an l,
{32, bg}TQ = da> N dbz N\ (DT = —ax,
{83, bg}TQ =daz A dbs A ¢, = asl,
{33, b1}TQ = daz N dby A (DT = —az(,
and all other brackets are zero.
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Now, we consider on R® the 2-form
o =01No2+ 0y Aoy

We have 20 A §(c) = (o A o). So, A (o) is Poisson of rank 4

onU. Also, g = ir,0 = 0 and

® = —f'oAndCyAdCs

= —aja.dby A dbs A dasz A dbs + ajasdby A das A dbo A dbg

—acazday N dby A dbo A dbs — daj A dby A das A das
—day N das A das A dbs + day A das A dbs A das.
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Now, we consider on R® the 2-form
o =01No2+ 0y Aoy

We have 20 A §(c) = (o A o). So, A (o) is Poisson of rank 4

onU. Also, g = ir,0 = 0 and

® = —f'oAndCyAdCs

= —aja.dby A dbs A dasz A dbs + ajasdby A das A dbo A dbg

—acazday N dby A dbo A dbs — daj A dby A das A das
—day N das A das A dbs + day A das A dbs A das.

Thus,
{31 , ag}Q = daj ANdas A d = aja,
{31 , 33}9 = daj ANdag AN d = —ajasfl,
{82, 33}9 = da> ANdaz A = arasl,
{b1 , bg}Q = dby Adbo AND=Q,
{b~| , bs}Q = dbjANdbs A =-Q,

{bg, b3} = dbo Adbs Ad =0,
and all other brackets are zero.
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It turns out that this structure decomposes as a direct sum of
two Poisson structures :

AN = aai/\— a 9 /\ﬂ—F 9 0 +
PR PR e R PR A PR P
o o 9 o 9 0

ob: " 9b,  0b, "\ obs T b, " 9y’

the first of which (involving only the a variables in Flaschka’s
coordinates) is the quadratic Poisson bracket associated to the
Volterra lattice (also known as the KM-system) :

aj=aja1—a-) (i€, ay3=a)

with Hamiltonian H = a4 + a» + as.
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