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Some standard notations

We denote by
- M a smooth, m-dimensional manifold ;
- TM and T ∗M its tangent and its cotangent bundle ;
- C∞(M) the space of smooth functions on M ;
- Vp(M), p ∈ N, the space of smooth sections of

∧p TM, i.e.,
the space of smooth p-vector fields on M ;

- Ωp(M), p ∈ N, the space of smooth sections of
∧p T ∗M,

i.e., the space of smooth p-forms on M.
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Poisson brackets

Poisson brackets, introduced by Siméon Denis Poisson on R2n

[9] and generalized to manifolds of arbitrary dimension by
Sophus Lie [5], have an important role in Hamiltonian
dynamics, fluid dynamics, magnetohydrodynamics and other
fields of mathematical physics.

In modern language

A Poisson bracket on C∞(M) is a bilinear map

{·, ·} : C∞(M)× C∞(M)→ C∞(M)

with the properties :
- {f ,g} = −{g, f} ;
- {f , {g,h}}+ {g, {h, f}}+ {h, {f ,g}} = 0 (Jacobi identity) ;
- {f ,gh} = {f ,g}h + g{f ,h} (biderivation - Leibniz’s rule).

Thus, (C∞(M), {·, ·}) has the structure of a Lie algebra.
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Poisson brackets

By virtue of the above properties, a Poisson bracket {·, ·}
defines a bivector field Λ on M :

Λ(df ,dg) = {f ,g} and [Λ,Λ] = 0.

Reciprocally, any Λ ∈ V2(M) that verifies [Λ,Λ] = 0, defines on
M a Poisson bracket

{f ,g} = Λ(df ,dg).

A such Λ is called Poisson tensor and (M,Λ) Poisson manifold.
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Poisson brackets

Classical examples
Symplectic manifolds
Any symplectic manifold (M, ω), ω is a nondegenerate
closed smooth 2-form on M, is equipped with a Poisson
bracket {·, ·} defined by ω as follows. Since
ω[ : V1(M)→ Ω1(M), X 7→ ω[(X ) = −ω(X , ·) is an
isomorphism, for any f ,g ∈ C∞(M),

{f ,g} = ω
(
ω[

−1
(df ), ω[

−1
(dg)

)
.

The dual of a Lie algebra (G, [·, ·])
Let M = G∗. For any f ,g ∈ C∞(M) and x ∈ G∗, we define

{f ,g}(x) := 〈x , [df (x),dg(x)]〉,

which is a linear Poisson bracket on G∗.
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Poisson brackets

To a given Poisson tensor Λ on M, we can associate :
A homomorphism Λ# : Ω1(M)→ V1(M), α 7→ Λ#(α), such
that, for any β ∈ Ω1(M),

〈β,Λ#(α)〉 = Λ(α, β).

- If α = df , f ∈ C∞(M), the vector field Xf = Λ#(df ) = {f , ·}
is called Hamiltonian vector field of f with respect to Λ.

- The image ImΛ# ⊂ V1(M) defines, as a completely
integrable distribution on M, the symplectic foliation of M
whose leaves are symplectic immersed submanifolds of
(M,Λ).

Its extension Λ# : Ωp(M)→ Vp(M), p ∈ N, defined, for any
ζ ∈ Ωp(M) and α1, . . . , αp ∈ Ω1(M), by

Λ#(ζ)(α1, . . . , αp) = (−1)pζ(Λ#(α1), . . . ,Λ#(αp)).
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Casimir functions

The elements of the center of Lie algebra (C∞(M), {·, ·}), i.e.,
the functions C ∈ C∞(M) such that

{C, ·} = 0⇔ Λ#(dC) = 0,

are called Casimirs of Poisson structure Λ.

They have a very important role in the analysis of Poisson
structures because they are conserved quantities in any
Hamiltonian system Xf of (M,Λ) :

Xf (C) = 〈dC,Xf 〉 = {f ,C} = 0,

and, as such, they play a vital part in reducing the order of Xf
and in its eventual integration.

Also, the symplectic leaves of (M,Λ) can be viewed as the
common level sets of Casimirs of Λ.
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Presentation of our problem

To introduce our problem we remark that, for an arbitrary
function C on R3, the bracket

{x , y} =
∂C
∂z

, {x , z} = −∂C
∂y

and {y , z} =
∂C
∂x

(x , y , z being the coordinates functions of R3) is Poisson and it
admits C as Casimir.

If Ω = dx ∧ dy ∧ dz is the standard volume element on R3, then
the above bracket can be written as

{x , y}Ω = dx ∧ dy ∧ dC ⇔ {x , y} =
dx ∧ dy ∧ dC

Ω
,

{x , z}Ω = dx ∧ dz ∧ dC ⇔ {x , z} =
dx ∧ dz ∧ dC

Ω
,

{y , z}Ω = dy ∧ dz ∧ dC ⇔ {y , z} =
dy ∧ dz ∧ dC

Ω
.
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Presentation of our problem

More generally, for given C1,C2, . . . ,Cl functionally
independent smooth functions on Rl+2 and Ω a volume form on
Rl+2, the formula

{g,h}Ω = dg ∧ dh ∧ dC1 ∧ . . . ∧ dCl ⇔

{g,h} =
dg ∧ dh ∧ dC1 ∧ . . . ∧ dCl

Ω
, (1)

due to H. Flaschka and T. Ratiu, defines a Poisson bracket on
C∞(Rl+2) with C1, . . . ,Cl as Casimir invariants and with
symplectic leaves of dimension at most 2.

J. Grabowski et al. have also proved [4] that : Conversely, the
bracket of any Poisson structure Λ on Rl+2 with symplectic
leaves of dimension at most 2 can be written as in (1).
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Presentation of our problem

The above bracket, called Jacobian Poisson bracket because

{g,h} = det
(∂(g,h,C1, . . . ,Cl)

∂(x1, . . . , xl+2)

)
,

firstly is used by P. Damianou [1, 2] for calculate the transverse
Poisson structures to subregular nilpotent orbits of gl(n,C)
(n ≤ 7). Later, this fact was extended by P. Damianou et al. [3]
to transverse Poisson structures to subregular nilpotent orbits
of any semi-simple Lie algebra G.

Another interesting application of (1) is appeared in [6, 7, 8],
where the polynomial Poisson algebras and their Heisenberg
invariance properties are studied by V. Rubtsov et al..
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Presentation of our problem

In this lecture we are interested to extend formula (1) in the
more general case of higher rank Poisson brackets.

Our problem can be formulated as follows :

For given (m − 2k) smooth functions C1, . . . ,Cm−2k on an
m-dimensional smooth manifold M, functionally independent
almost everywhere, and a volume element Ω on M, how we
must write the (m − 2)-form

Φ = ( ? ) ∧ dC1 ∧ . . . ∧ dCm−2k

such that the bracket {·, ·} on C∞(M) defined by

{h1,h2}Ω = dh1 ∧ dh2 ∧ Φ ⇔ {h1,h2} =
dh1 ∧ dh2 ∧ Φ

Ω

is a Poisson bracket of rank at most 2k with C1, . . . ,Cm−2k as
Casimirs.
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Presentation of our results

We investigate this problem in the case where M is of even and
of odd dimension, separately.

If dimM = 2n
We assume that M is endowed with a suitable almost
symplectic structure ω0 and we denote by Λ0 the corresponding
almost Poisson structure on M. Then, we prove that

Φ =
(
− 1

f
(σ +

g
k − 1

ω0) ∧
ωk−2

0
(k − 2)!

)
∧ dC1 ∧ . . . ∧ dC2n−2k ,

where f satisfies f 2 = det
(
{fi , fj}0

)
6= 0, σ is a 2-form on M

satisfying certain special requirements and g = iΛ0σ.
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Presentation of our results

If dimM = 2n + 1
We assume that M is equipped with a suitable almost
cosymplectic structure (ϑ0,Θ0) and we denote by (Λ0,E0) the
corresponding almost Jacobi structure on M. Then, we show
that

Φ =
(
− 1

f
(σ +

g
k − 1

Θ0) ∧
Θk−2

0
(k − 2)!

)
∧ dC1 ∧ . . . ∧ dC2n+1−2k ,

where f ∈ C∞(M) and f 6= 0 almost everywhere, σ is a 2-form
on M satisfying certain particular conditions and g = iΛ0σ.
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Tools for the demonstration

The key points in the establishment of the above formulas are

the use of the operators Ψ and ∗ ;

the relation which links Ψ and ∗ ;

Lepage’s decomposition theorem for differential forms.
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The operator Ψ

Let M be a m-dimensional smooth manifold. We denote by

iP : Ω(M)→ Ω(M) the interior product of differential forms
by a p-vector field P defined, for any η ∈ Ωq(M), q ≥ p,
and Q ∈ Vq−p(M), by

〈iPη,Q〉 = (−1)(p−1)p/2〈η,P ∧Q〉;

jη : V(M)→ V(M) the interior product of multivector fields
by a q-form η defined, for any P ∈ Vp(M), p ≥ q, and
ζ ∈ Ωp−q(M), by

〈ζ, jηP〉 = 〈ζ ∧ η,P ∧Q〉.

If p = q,
jηP = (−1)(p−1)p/2iPη = 〈η,P〉.
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jη : V(M)→ V(M) the interior product of multivector fields
by a q-form η defined, for any P ∈ Vp(M), p ≥ q, and
ζ ∈ Ωp−q(M), by

〈ζ, jηP〉 = 〈ζ ∧ η,P ∧Q〉.

If p = q,
jηP = (−1)(p−1)p/2iPη = 〈η,P〉.
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The operator Ψ

Then, for a given smooth volume form Ω on M, the interior
product of p-vector fields on M, p = 0, . . . ,m, with Ω yields a
C∞(M)-linear isomorphism

Ψ : Vp(M) → Ωm−p(M)

P 7→ Ψ(P) = ΨP = (−1)(p−1)p/2iPΩ.

Its inverse map is

Ψ−1 : Ωm−p(M) → Vp(M)

η 7→ Ψ−1(η) = jηΩ̃,

where Ω̃ is the dual m-vector field of Ω, i.e., 〈Ω, Ω̃〉 = 1.
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The operator Ψ

We have

Proposition
A bivector field Λ on M is Poisson iff

2iΛdΨΛ + dΨΛ∧Λ = 0.
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The operator ∗

Let
- (M, ω0) be an almost symplectic manifold, i.e., ω0 is a

nondegenerate 2-form on M (so m = 2n) ;
- Λ0 the bivector field on M defined by ω0 ;

- Ω =
ωn

0
n!

the corresponding volume form and Ω̃ =
Λn

0
n!

the
dual 2n-vector field of Ω.

For any ϕ ∈ Ωp(M), we define the adjoint form ∗ϕ of ϕ relative
to ω0, which is a (2n − p)-form, by setting

∗ϕ = (−1)(p−1)p/2 i
Λ#

0 (ϕ)

ωn
0

n!
.
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The operator ∗
The operator ∗ : Ωp(M)→ Ω2n−p(M) has the following
properties :

i) ∗ ∗ = Id ,
ii) for any ϕ ∈ Ωp(M), ψ ∈ Ωq(M),

∗ (ϕ∧ψ) = (−1)(p−1)p/2 i
Λ#

0 (ϕ)
(∗ψ) = (−1)pq+(q−1)q/2i

Λ#
0 (ψ)

(∗ϕ),

iii) ∗
ωk

0
k !

=
ωn−k

0
(n − k)!

(k ≤ n).

Definition : A smooth form ψ ∈ Ω(M) is called effective if
iΛ0ψ = 0 everywhere on M.

The adjoint of an effective p-form ψ (p ≤ n) is

∗ψ = (−1)p(p+1)/2 ψ ∧
ωn−p

0
(n − p)!

.
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The operator ∗

Definition : A smooth form ϕ ∈ Ω(M) is called simple if it can
be written as

ϕ = ψ ∧
ωk

0
k !
,

where ψ is an effective p-form.

The adjoint of ϕ is

∗ϕ = (−1)p(p+1)/2 ψ ∧
ωn−p−k

0
(n − p − k)!

.
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The operator ∗

Lepage’s decomposition theorem

Every p-form ϕ on (M, ω0) (p ≤ n) may be decomposed, in a
unique way, as sum of simples forms :

ϕ = ψp + ψp−2 ∧ ω0 + . . .+ ψp−2q ∧
ωq

0
q!
.

For any s = 0, . . . ,q (q ≤ [p/2]), ψp−2s are effective and may
be calculated from ϕ by means of iteration of the operator iΛ0 .

The adjoint ∗ϕ may be uniquely written as the sum

∗ϕ = (−1)p(p+1)/2
[
ψp − ψp−2 ∧

ω0

n − p + 1
+ . . .+

(−1)q (n − p)!

(n − p + q)!
ψp−2q ∧ ωq

0

]
∧

ωn−p
0

(n − p)!
.
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Relations between Ψ and ∗ on (M, ω0)

Since Λ#
0 : Ωp(M)→ Vp(M), p ∈ N, is an isomorphism, for any

P ∈ Vp(M) there exists a unique σp ∈ Ωp(M) s.t. P = Λ#
0 (σp).

Therefore,
Ψ(P) = ∗σp.

Also, for any ζ ∈ Ωp(M) (p ≤ n), we have

Ψ−1(ζ) = Λ#
0 (∗ζ). (2)
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Relations between Ψ and ∗ on (M, ω0)

Hence, by introducing the codifferential operator δ = ∗d ∗ on
(M, ω0) and by applying the above relations for a bivector field
Λ = Λ#

0 (σ) on (M, ω0), σ ∈ Ω2(M), we prove

Proposition

A bivector field Λ = Λ#
0 (σ) on (M, ω0) is Poisson iff

2σ ∧ δ(σ) = δ(σ ∧ σ).

Remark : When dω0 = 0,

2σ ∧ δ(σ) = δ(σ ∧ σ) ⇔ {σ, σ}0 = 0,

({·, ·}0 being the Koszul bracket on Ω(M)) which means that σ
is a complementary 2-form on (M,Λ0) in the sense of Vaisman
[10].
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Poisson brackets with given Casimirs

Problem : Let M be a m-dimensional smooth manifold and
C1, . . . ,Cm−2k smooth functions on M which are functionally
independent almost everywhere. We want to construct Poisson
structures Λ on M with symplectic leaves of dimension at most
2k which have as Casimirs the given functions C1, . . . ,Cm−2k .

Also, we want its bracket can be written as

{h1,h2}Ω = dh1 ∧ dh2 ∧ Φ ⇔ {h1,h2} =
dh1 ∧ dh2 ∧ Φ

Ω
,

where Ω is a volume element on M and Φ an (m − 2)-form of
type

Φ = ( (2k − 2)− form ) ∧ dC1 ∧ . . . ∧ dCm−2k .

We study our problem, separately, on
even-dimensional manifolds ;
odd-dimensional manifolds.
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On even-dimensional manifolds

We suppose that dim M = 2n and we consider an almost
symplectic structure ω0 on M and its associated almost Poisson
tensor Λ0 such that

f =
〈
dC1 ∧ . . . ∧ dC2n−2k ,

Λn−k
0

(n − k)!

〉
=

〈 ωn−k
0

(n − k)!
, XC1 ∧ . . . ∧ XC2n−2k

〉
6= 0

on an open and dense subset U of M, where XCi = Λ#
0 (dCi).

That means that

f 2 = det
(
{Ci ,Cj}0

)
6= 0 on U .
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tensor Λ0 such that

f =
〈
dC1 ∧ . . . ∧ dC2n−2k ,

Λn−k
0

(n − k)!

〉
=

〈 ωn−k
0

(n − k)!
, XC1 ∧ . . . ∧ XC2n−2k

〉
6= 0

on an open and dense subset U of M, where XCi = Λ#
0 (dCi).

That means that

f 2 = det
(
{Ci ,Cj}0

)
6= 0 on U .
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On even-dimensional manifolds

Let
- D = 〈XC1 , . . . ,XC2n−2k 〉 the distribution on M generated by

the Hamiltonians XCi = Λ#
0 (dCi), i = 1, . . . ,2n − 2k ,

- D◦ its annihilator,
- orthω0D the symplectic orthogonal of D with respect to ω0.

Because det
(
{Ci ,Cj}0

)
= f 2 6= 0 on U , at each point x ∈ U ,

Dx = D ∩ TxM is a symplectic subspace of TxM with respect to
ω0x . Thus,

TxM = Dx ⊕ orthω0x
Dx = Dx ⊕ Λ#

0x
(D◦x ),

T ∗x M = D◦x ⊕ (Λ#
0x

(D◦x ))◦ = D◦x ⊕ 〈df1, . . . ,df2n−2k 〉x .

Proposition

A bivector field Λ = Λ#
0 (σ) on (M, ω0), of rank at most 2k,

admits as unique Casimirs the functions C1, . . . ,C2n−2k if and
only if σ is a smooth section of

∧2 D◦ of maximal rank on U .
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On even-dimensional manifolds

Now, we consider on (M, ω0) the volume form Ω =
ωn

0
n!

, a

smooth section σ of
∧2 D◦ of maximal rank on U such that

2σ ∧ δ(σ) = δ(σ ∧ σ), and the (2n − 2)-form

Φ =
(
− 1

f
(σ +

g
k − 1

ω0) ∧
ωk−2

0
(k − 2)!

)
∧ dC1 ∧ . . . ∧ dC2n−2k ,

where g = iΛ0σ.

We have that

Φ
Ψ−1
7−→ a bivector Λ

and we prove that

∗Φ = σ.
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On even-dimensional manifolds

Thus

Theorem
Under the above assumptions,

Λ = Ψ−1(Φ)
(2)
= Λ#

0 (∗Φ) = Λ#
0 (σ)

is a Poisson tensor, of rank at most 2k, for which C1, . . . ,C2n−2k
are Casimirs. Its bracket can be calculated by

{h1,h2}Ω = dh1 ∧ dh2 ∧ Φ ⇔ {h1,h2} =
dh1 ∧ dh2 ∧ Φ

Ω
.

The converse is also true.
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On odd-dimensional manifolds

Similar results are true on odd-dimensional manifolds.
We remark that

Any Poisson tensor Λ on M (dim M = 2n + 1) of rank at most
2k , admitting C1, . . . ,C2n+1−2k as Casimirs, can be viewed as a
Poisson tensor on M ′ = M × R admitting C1, . . . ,C2n+1−2k and
C2n+2−2k = s (s the canonical coordinate on R) as Casimirs.
So, our purpose is to study our problem in the framework of M ′.

We consider an almost cosymplectic structure (ϑ0,Θ0) on M
(that means ϑ0 ∧Θn

0 6= 0 on M) and its corresponding almost
Jacobi structure (Λ0,E0) such that

f = 〈dC1 ∧ . . . ∧ dC2n+1−2k , E0 ∧
Λn−k

0
(n − k)!

〉 6= 0,

on an open and dense subset U of M.
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On odd-dimensional manifolds

Let ω′0 = Θ0 + ds ∧ ϑ0 and Λ′0 = Λ0 +
∂

∂s
∧ E0 be, respectively,

the almost symplectic and almost Poisson structure on
M ′ = M × R defined by (ϑ0,Θ0). We have

〈dC1 ∧ . . . ∧ dC2n+1−2k ∧ ds,
Λ′0

n+1−k

(n + 1− k)!
〉 = −f 6= 0

on the open and dense subset U ′ = U × R of M ′ = M × R

and

any Λ ∈ V2(M) can be written, in a unique way, as

Λ = Λ′#0 (σ′) = Λ#
0 (σ) + Λ#

0 (τ) ∧ E0,

where σ′ ∈ Ω2(M ′) is of type σ′ = σ + τ ∧ ds with σ and τ
semi-basic forms on M with respect to (Λ0,E0).
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On odd-dimensional manifolds

By applying our results for manifolds of even dimension on
(M ′, ω′0,C1, . . . ,C2n+1−2k , s), we obtain

Theorem

Under the above assumptions, let Ω = ϑ0 ∧
Θn

0
n!

be the volume

form on (M, ϑ0,Θ0), (σ, τ) ∈ V2(M)× V1(M) a pair of semi-
basic forms such that

i) σ′ = σ + τ ∧ ds is a section of
∧2 D′ of maximal rank on U ′

(D′ = 〈X ′C1
, . . . ,X ′C2n+1−2k

,X ′s〉 being the distribution on M ′

generated by the Hamiltonian vector fields X ′Ci
= Λ′#0 (dCi)

and X ′s = Λ′#0 (ds)),
ii) 2σ′ ∧ δ′(σ′) = δ′(σ′ ∧ σ′) (δ′ being the codifferential operator

on M ′),
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On odd-dimensional manifolds

and Φ the (2n + 1− 2)-form

Φ =
(
− 1

f
(σ +

g
k − 1

Θ0) ∧
Θk−2

0
(k − 2)!

)
∧ dC1 ∧ . . . ∧ dC2n+1−2k ,

where g = iΛ0σ. Then, the bracket {·, ·} on C∞(M) given by

{h1,h2}Ω = dh1 ∧ dh2 ∧ Φ ⇔ {h1,h2} =
dh1 ∧ dh2 ∧ Φ

Ω

defines a Poisson structure Λ on M, Λ = Λ#
0 (σ) + Λ#

0 (τ) ∧ E0,
with symplectic leaves of dimension at most 2k for which
C1, . . . ,C2n+1−2k are Casimirs. The converse is also true.
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Remark
We remark that, in both cases (of even dimension m = 2n and
of odd dimension m = 2n + 1), when k = 1, the obtained
brackets are of Jacobian type (1), up to a coefficient function.
Precisely,

{h1,h2}Ω = −g
f

dh1 ∧ dh2 ∧ dC1 ∧ . . . ∧ dCm−2.

Fani Petalidou (joint work with Pantelis A. Damianou) Poisson brackets with prescribed Casimirs



Remark
We remark that, in both cases (of even dimension m = 2n and
of odd dimension m = 2n + 1), when k = 1, the obtained
brackets are of Jacobian type (1), up to a coefficient function.
Precisely,

{h1,h2}Ω = −g
f

dh1 ∧ dh2 ∧ dC1 ∧ . . . ∧ dCm−2.

Fani Petalidou (joint work with Pantelis A. Damianou) Poisson brackets with prescribed Casimirs



Examples

1. Dirac brackets

Let (M, ω0) (Λ0 = ω−1
0 ) be a symplectic manifold, dim M = 2n,

and C1, . . . ,C2n−2k ∈ C∞(M) whose the differentials are
linearly independent at each point in

M0 = {x ∈ M /C1(x) = 0, . . . ,C2n−2k (x) = 0}.

We assume that
(
{Ci ,Cj}0

)
is invertible on an open

neighborhoodW of M0 in M. Let cij be the coefficients of its
inverse matrix which are smooth functions onW such that∑2n−2k

j=1 {Ci ,Cj}0cjk = δik . We consider onW the 2-form

σ = ω0 +
∑
i<j

cijdCi ∧ dCj .
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and C1, . . . ,C2n−2k ∈ C∞(M) whose the differentials are
linearly independent at each point in

M0 = {x ∈ M /C1(x) = 0, . . . ,C2n−2k (x) = 0}.
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(
{Ci ,Cj}0

)
is invertible on an open

neighborhoodW of M0 in M. Let cij be the coefficients of its
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j=1 {Ci ,Cj}0cjk = δik . We consider onW the 2-form
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We can easily prove that σ is a section of
∧2 D◦ (D◦ being the

annihilator of D = 〈XC1 , . . . ,XC2n−2k 〉) of maximal rank onW
which verifies 2σ ∧ δ(σ) = δ(σ ∧ σ). Thus,

Λ = Λ#
0 (σ) = Λ0 +

∑
i<j

cijXfi ∧ Xfj

defines a Poisson structure onW whose corresponding bracket
{·, ·} on C∞(W) is given, for any h1,h2 ∈ C∞(W), by

{h1,h2}Ω =
1
f

dh1 ∧ dh2 ∧
ωk−1

0
(k − 1)!

∧ dC1 ∧ . . . ∧ dC2n−2k . (3)

In the above expression of Λ we recognize the Poisson
structure defined by Dirac on an open neighborhoodW of the
constrained submanifold M0 of M and in (3) a new expression
of the Dirac bracket.
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2. Periodic Toda and Volterra lattices

We consider the linear Poisson structure ΛT associated with the
periodic Toda lattice of n = 3 particles. This Poisson structure
has two well-known Casimir functions. Using our results we
construct another Poisson structure having the same Casimir
invariants with ΛT .
The periodic Toda lattice of n = 3 particles is the system of
ordinary differential equations on R6 which in Flaschka’s
coordinate system (a1,a2,a3,b1,b2,b3) takes the form

ȧi = ai(bi+1−bi), ḃi = 2(a2
i −a2

i−1) (i ∈ Z (ai+3,bi+3) = (ai ,bi)).

It is hamiltonian with respect to the Lie-Poisson structure

ΛT = a1
∂

∂a1
∧(

∂

∂b1
− ∂

∂b2
)+a2

∂

∂a2
∧(

∂

∂b2
− ∂

∂b3
)+a3

∂

∂a3
∧(

∂

∂b3
− ∂

∂b1
),
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which is of rank 4 on U = {(a,b) ∈ R6 /a1a2 + a1a3 + a2a3 6= 0}
and it admits two Casimirs :

C1 = b1 + b2 + b3 and C2 = a1a2a3.

We consider on R6 the symplectic form ω0 =
∑3

i=1 dai ∧ dbi , its

associated Poisson tensor Λ0 =
∑3

i=1
∂

∂ai
∧ ∂

∂bi
, and the

corresponding volume element

Ω =
ω3

0
3!

= da1 ∧ db1 ∧ da2 ∧ db2 ∧ da3 ∧ db3.

We have

f = 〈dC1 ∧ dC2, Λ0〉 = −(a1a2 + a2a3 + a1a3) 6= 0 on U .
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The hamiltonian vector fields of C1 and C2 with respect to Λ0 :

XC1
= −(

∂

∂a1
+

∂

∂a2
+

∂

∂a3
), XC2

= a2a3
∂

∂b1
+a1a3

∂

∂b2
+a1a2

∂

∂b3
.

So, D = 〈XC1
,XC2
〉 and

D◦ =
{ 3∑

i=1

(αidai + βidbi) ∈ Ω1(R6) /

α1 + α2 + α3 = 0 and a1a2β3 + a1β2a3 + β1a2a3 = 0
}
.

The family of 1-forms (σ1, σ2, σ
′
1, σ
′
2),

σ1 = da1 − da2, σ2 = da2 − da3,

σ′1 = a1db1 − a2db2, σ′2 = a2db2 − a3db3,

provides, at every point (a,b) ∈ U , a basis of D◦(a,b).
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The section σT of
∧2 D◦ → U , which corresponds to ΛT via Λ#

0 ,
the function gT = iΛ0σT and the 4-form ΦT are written as

σT = σ1 ∧ (σ′1 + σ′2) + σ2 ∧ σ′2, gT = iΛ0σT = −(a1 + a2 + a3),

ΦT = −f−1(σT + gTω0) ∧ dC1 ∧ dC2

= −a1db1 ∧ da2 ∧ da3 ∧ db3 + a1da2 ∧ db2 ∧ da3 ∧ db3

+a2da1 ∧ db1 ∧ da3 ∧ db3 − a2da1 ∧ db1 ∧ db2 ∧ da3

+a3da1 ∧ da2 ∧ db2 ∧ db3 + a3da1 ∧ db1 ∧ da2 ∧ db2.

Thus,
{a1,b1}T Ω = da1 ∧ db1 ∧ ΦT = a1Ω,
{a1,b2}T Ω = da1 ∧ db2 ∧ ΦT = −a1Ω,
{a2,b2}T Ω = da2 ∧ db2 ∧ ΦT = a2Ω,
{a2,b3}T Ω = da2 ∧ db3 ∧ ΦT = −a2Ω,
{a3,b3}T Ω = da3 ∧ db3 ∧ ΦT = a3Ω,
{a3,b1}T Ω = da3 ∧ db1 ∧ ΦT = −a3Ω,

and all other brackets are zero.
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Now, we consider on R6 the 2-form

σ = σ1 ∧ σ2 + σ′1 ∧ σ′2.

We have 2σ ∧ δ(σ) = δ(σ ∧ σ). So, Λ#
0 (σ) is Poisson of rank 4

on U . Also, g = iΛ0σ = 0 and

Φ = −f−1σ ∧ dC1 ∧ dC2

= −a1a2db1 ∧ db2 ∧ da3 ∧ db3 + a1a3db1 ∧ da2 ∧ db2 ∧ db3

−a2a3da1 ∧ db1 ∧ db2 ∧ db3 − da1 ∧ db1 ∧ da2 ∧ da3

−da1 ∧ da2 ∧ da3 ∧ db3 + da1 ∧ da2 ∧ db2 ∧ da3.
Thus,

{a1,a2}Ω = da1 ∧ da2 ∧ Φ = a1a2Ω,
{a1,a3}Ω = da1 ∧ da3 ∧ Φ = −a1a3Ω,
{a2,a3}Ω = da2 ∧ da3 ∧ Φ = a2a3Ω,
{b1,b2}Ω = db1 ∧ db2 ∧ Φ = Ω,
{b1,b3}Ω = db1 ∧ db3 ∧ Φ = −Ω,
{b2,b3}Ω = db2 ∧ db3 ∧ Φ = Ω,

and all other brackets are zero.
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It turns out that this structure decomposes as a direct sum of
two Poisson structures :

Λ = a1a2
∂

∂a1
∧ ∂

∂a2
− a1a3

∂

∂a1
∧ ∂

∂a3
+ a2a3

∂

∂a2
∧ ∂

∂a3
+

∂

∂b1
∧ ∂

∂b2
− ∂

∂b1
∧ ∂

∂b3
+

∂

∂b2
∧ ∂

∂b3
,

the first of which (involving only the a variables in Flaschka’s
coordinates) is the quadratic Poisson bracket associated to the
Volterra lattice (also known as the KM-system) :

ȧi = ai(ai+1 − ai−1) (i ∈ Z, ai+3 = ai)

with Hamiltonian H = a1 + a2 + a3.
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