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PLAN OF THE PRESENTATION

• Every symplectic circle action admits either a
momentum map J : M → R or a circle valued mo-
mentum map µ : M → S1 relative to some (pos-
sibly different) invariant symplectic form.

• J : M → R is Morse-Bott and map µ : M → S1 is
Morse-Bott-Novikov. Each connected compo-
nent of the fixed point set has even index.

• Equivariant Darboux; Melbourne-Dellnitz

• Detect Hamiltonian flows by fixed points
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PRELIMINARIES
THE CIRCLE R/Z

Circle S1 ≡ R/Z, π : R 3 t 7→ [t] ∈ R/Z the canonical projection, a
surjective submersive Lie group homomorphism.
T0π : r ∈ R ∼7−→ T0π(r) ∈ T[0](R/Z) isomorphism
Lt, L[t] left (equiv. right) translation on R and R/Z; π ◦Lt = L[t] ◦ π
T[t](R/Z) = {Ttπ(r) | r ∈ R},

(
T[0]L[t] ◦ T0π

)
(0, r) = Ttπ(t, r), t, r ∈ R

π is also the exponential map

Length form λ ∈ Ω1(R/Z) defined by λ([t]) (Ttπ(r)) := r. Since
in local coordinates Ttπ(r) = r ∂∂t ⇒ λ = dt. Therefore,

∫
R/Z λ =∫ 1

0 dt = 1 and λ is left (equivalently, right) invariant.

LOGARITHMIC EXTERIOR DIFFERENTIAL

f : M
C∞−→ R/Z, logarithmic exterior differential δf ∈ Ω1(M)

δf(m)(vm) := Tf(m)L−f(m) (Tmf(vm)) ∈ R
If X ∈ X(M), define 〈δf,X〉 ∈ C∞(M) by 〈δf,X〉 (m) := δf(m)(X(m))
for any m ∈M . δ(fg) = δf + δg.
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Useful formula: f∗λ = δf .

Relation of logarithmic exterior differential to exterior differential

M̃ := {(m, t) ∈ M × R | f(m) = [t]} pull back bundle by f of the
principal Z-bundle π : R → R/Z. So π̃ : M̃ 3 (m, t) 7→ m ∈ M is also
a principal Z-bundle and hence a covering space.

T(m,t)M̃ = {(vm, (t, δf(m)(vm)) | f(m) = [t]}

Canonical lift f̃ : M̃ 3 (m, t) 7→ t ∈ R of f ; π ◦ f̃ = f ◦ π̃, so

(∗) δf(m)(vm) = df̃(m, t) (vm, (t, δf(m)(vm))) , f(m) = [t], vm ∈ TmM

m ∈ M is a critical point of f (Tmf = 0 ⇔ δf(m) = 0) if and
only if all (m, t) ∈ π̃−1(m) ⊂ M̃ are critical points of the real valued
function f̃ .
Crit(f) := {m ∈M | δf(m) = 0} the set of critical points of f .
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HESSIAN

1.) Recall that if f : M → R is smooth and df(m0) = 0, the Hessian
(Hess f)(m0) : (Hess f)(m0) : Tm0M × Tm0M → R is defined by

(Hess f)(m0)(u, v) := £ũ (〈df, ṽ〉) (m0) = 〈d (〈df, ṽ〉) (m0), u〉 ,

∀u, v ∈ Tm0M , where ũ, ṽ are arbitrary local smooth vector fields
in a neighborhood of m0 such that ũ(m0) = u, ṽ(m0) = v. The
Hessian depends only on u, v (not on ũ, ṽ); symmetric bilinear form.

2.) f : M → R/Z smooth and δf(m0) = 0. The Hessian (Hess f)(m0) :
(Hess f)(m0) : Tm0M × Tm0M → R is defined by

(Hess f)(m0)(u, v) := £ũ (〈δf, ṽ〉) (m0) = 〈d (〈δf, ṽ〉) (m0), u〉 ,

∀u, v ∈ Tm0M , ũ, ṽ any local smooth vector fields in a neighborhood
of m0 such that ũ(m0) = u, ṽ(m0) = v. If m0 ∈ Crit(f), then

(Hess f)(m0)(u, v) = (Hess f̃)(m0, t0)
(
(u, (t0,0)), (v, (t0,0))

)
,

for any t0 ∈ R satisfying f(m0) = [t0], u, v ∈ Tm0M .
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Proof: Recall that at any (m, t) ∈ M̃ , the tangent space is

T(m,t)M̃ = {(vm, (t, δf(m)(vm)) | f(m) = [t]}

Thus, if δf(m0) = 0 and (m0, t0) ∈ π̃−1(m0) then

T(m0,t0)M̃ = {
(
vm0, (t0,0

)
| f(m0) = [t0]}

Let v ∈ Tm0M , ṽ arbitrary local smooth vector field defined in a
neighborhood of m0 and satisfying ṽ(m0) = v. Then (ṽ, 〈δf, ṽ〉) is a
smooth local vector field defined in a neighborhood of (m0, t0) ∈ M̃
whose value at (m0, t0) is (v, (t0,0)) ∈ T(m0,t0)M̃ . So, if m(ε) ∈ M
with m(0) = m0 and m′(0) = u,

(Hess f̃)(m0, t0)
(
(u, (t0,0)), (v, (t0,0))

)
=
〈
d
〈
df̃ , (ṽ, 〈δf, ṽ〉)

〉
(m0, t0), (u, (t0,0))

〉
=

d

dε

∣∣∣∣
ε=0

〈
df̃ , (ṽ, 〈δf, ṽ〉)

〉
(m(ε), t0)

(∗)
=

d

dε

∣∣∣∣
ε=0
〈δf, ṽ〉 (m(ε))

= 〈d (〈δf, ṽ〉) (m0), u〉 = (Hess f)(m0)(u, v).

So (Hess f)(m0) is well defined and is a symmetric bilinear form.�
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m0 ∈ M is non-degenerate if (Hess f)(m0) is a non-degenerate
bilinear form. So, m0 is a non-degenerate critical point of f if
and only if all (m0, t0) ∈ π̃−1(m0) ⊂ M̃ are non-degenerate critical
points of f̃ . The Morse Lemma for f̃ and the fact that π̃ : M̃ →M

is a covering space, implies that non-degenerate critical points of
f : M → R/Z are isolated. In particular, if M is compact, then there
are only finitely many non-degenerate critical points of f .

MORSE-BOTT-NOVIKOV MAPS

1.) f : M → R is Morse if all its critical points are non-degenerate.

2.) f : M → R is Morse-Bott if the critical set Crit(f) of f
is a disjoint union of connected submanifolds Ci of M such that
ker(Hess f)(m) = TmCi, for each i and m ∈ Ci.

The index ofm is the number of negative eigenvalues of (Hess f)(m).
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3.) f : M → R/Z isMorse-Bott-Novikov if the critical set Crit(f) :=

{m ∈M | δf(m) = 0} of f is a disjoint union of connected subman-
ifolds Ci of M such that ker(Hess f)(m) = TmCi, for each i and
m ∈ Ci.

The index ofm is the number of negative eigenvalues of (Hess f)(m).
Since Crit(f) is closed, if M is compact, then it has only a finite
number of connected components.

(Hess f̃)(m0, t0)
(
(u, (t0,0)), (v, (t0,0))

)
= (Hess f)(m0)(u, v) implies

that Crit f̃ = π̃−1 (Crit f).

Thus, from δf(m)(vm) = df̃(m, t)
(
vm, (t, δf(m)(vm))

)
, f(m) = [t],

and the above formula for the Hessian, we conclude that:

f : M → R/Z is Morse-Bott-Novikov if and only if f̃ : M̃ → R is
Morse-Bott.
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THE CIRCLE VALUED MOMENTUM MAP

(M,σ) symplectic: σ ∈ Ω2(M) non-degenerate, dσ = 0.

Φ : R/Z×M →M be a smooth action, Φ∗[t]σ = σ, ∀[t] ∈ R/Z.

For r ∈ R, the infinitesimal generator is defined by

rM(x) :=
d

dε

∣∣∣∣
ε=0

Φ[rε](x).

Action Φ is Hamiltonian if there exists a smooth map µ : M → R,
called the momentum map, such that i1Mσ = σ(1M , ·) = dµ.
Existence of µ ⇔ to the exactness of i1Mσ. So, obstruction to Φ

being Hamiltonian lies in H1(M ;R); thus, if H1(M ;R) = 0 is the
trivial group then every symplectic R/Z-action on M is Hamiltonian.

A circle valued momentum map µ : M → R/Z is defined by the
condition µ∗λ = i1Mσ, where λ ∈ Ω1(R/Z) the standard length form.
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Remarks

1.) Φ : G × M → M , Φ∗gσ = σ, is Hamiltonian if ∃J : M → g∗

such that XJξ = ξM , where ξM(m) := d
dt

∣∣∣
t=0

Φexp(tξ)(m) and J is
equivariant relative to the coadjoint action. If G is compact, equiv-
ariance can always be achieved by averaging from some momentum
map. Obstruction to existence: iff the following map vanishes

g/[g, g] = H1(g,R) 3 [ξ] 7−→ [ξM ] ∈ Xω(M)/Ham(M) ∼= H1
deR(M,R)

2.) The definition is equivalent to that of group valued momentum
maps in the case of R/Z because of formula µ∗λ = δµ.

We recall the definition only in the case of Abelian Lie groups
because only this situation is interesting for us. G Abelian Lie
group, g its Lie algebra, (·, ·) bilinear symmetric nondegenerate form
on g, (M,ω) symplectic, G-action is canonical. Then J : M → G is
a G-valued momentum map if for all ξ ∈ g, m ∈M , vm ∈ TmM(

iξMω
)

(m)(vm) =
(
Tm

(
LJ(m)−1 ◦ J

)
(vm), ξ

)
.
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For non-Abelian Lie groups, group valued momentum maps are
defined on spaces that are neither symplectic nor Poisson; theory
of quasi-Hamiltonian spaces.

3.) Notion of cylinder valued momentum map CoDaMo[1988].
(M,ω) connected paracompact symplectic acted upon canonically
by g. π : M × g∗ → M is a principal (g∗,+)-bundle: ν · (m,µ) :=
(m,µ− ν). α ∈ Ω1(M × g∗; g∗) connection one-form defined by

〈α(m,µ) (vm, ν) , ξ〉 :=
(
iξMω

)
(m)(vm)− 〈νξ〉

Vertical bundle: V (m,µ) :=
{

(0, ρ) ∈ T(m,µ)(M × g∗) | ρ ∈ g∗
}

Horizontal bundle:
H(m,µ) :=

{
(vm, ν) ∈ T(m,µ)(M × g∗) |

(
iξMω

)
(m)(vm) = 〈ν, ξ〉 , ∀ξ ∈ g

}
α is a flat connection.

For (x, µ) ∈ M × g∗, let (M × g∗)(z, µ) be the holonomy bundle =
the set of points in M × g∗ which can be joined to z by a horizontal
curve.
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H(z, µ) holonomy group based at (z, µ): horizontally lift a loop
in M to a curve c(t) with c(0) = (z, µ); then c(1) = ν · (z, µ) =
(z, µ− ν). By Ambrose-Singer: H(z, µ) is discrete iff α is flat. This
is equivalent to: horizontal subbundle is an involutive distribution
having the holonomy bundles as maximal integral manifolds. Then
the holonomy reduced bundle π : (M × g∗)(z, µ)→M , a principal
bundle with group H(z, µ), is a covering map.
Denote M̃ := (M × g∗)(z, µ), p̃ := π|

M̃
: M̃ →M , H = H(z, µ).

Let K̃ : M̃ ⊂M × g∗ → g∗ projection.

H closure of H in g∗ =⇒ C := g∗/H ∼= Ra × Tb is a cylinder.

M̃
K̃ //

p̃
��

g∗

πC
��

g∗ K //g∗/H
So K(m) := πC(ν), where ν ∈ g∗ is any element such that (m, ν) ∈
M̃ . K is the cylinder valued momentum map. It has the Noether
property. H is not closed, in general. Action admits a standard
momentum map iff H = 0 and K is it.
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Two holonomy bundles M̃1, M̃2 =
{

(m, ν + τ) | (m, ν) ∈ M̃1

}
for

some τ ∈ g∗. So, K
M̃2

= K
M̃1

+ πC(τ).

Example: (T2,dθ1 ∧ dθ2) and S1 = {eiφ} acts canonically by
eiφ ·

(
eiθ1, eiθ2

)
:=

(
ei(θ1+φ), eiθ2

)
. Holonomy group at any point is

(Z,+) and holonomy bundles are

T̃2τ :=
{((

eiθ1, eiθ2
)
, τ + θ2

)
∈ T2 × R | θ1, θ2

}
So K : T2 3

(
eiθ1, eiθ2

)
7→ eiθ2 ∈ S1 ∼= R/Z is the cylinder valued

momentum map.

4.) Any cylinder valued momentum map for an Abelian Lie al-
gebra action whose associated holonomy group is closed can be
understood as a Lie group valued momentum map. Indeed, f :

g 3 ξ 7→ (ξ, ·) ∈ g∗ is an isomorphism. Let T := f−1(H) ⊂ g. Then
f̄ : g/T 3 ξ+T 7→ (ξ, ·)+H ∈ g∗/H is also an isomorphism of Abelian
Lie groups. Suppose H is closed. Then J := f̄−1 ◦K : M → g/T is
a g/T -valued momentum map.
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Conversely, give hypotheses ensuring that a Lie group valued mo-
mentum map naturally induces a cylinder valued momentum map.

Let G be a connected Abelian Lie group, exp : g → G. Suppose
that ∃A : M → G, group valued momentum map (using (·, ·)).
Then H ⊆ f(ker exp), H = H, H is discrete (because ker exp is).
Let K : M → g∗/H be a cylinder valued momentum map and J :

f̄−1 ◦ K : M → g/T . If f(ker exp) ⊆ H ⇔ f(ker exp) = H, then
T = ker exp and J : M → g/T ∼= G is a G-valued momentum map
that differs from A by a constant in G.

Conversely, if H = f(ker exp), then J : M → g/ker exp ∼= G is a
G-valued momentum map.

All proofs in OrRa[2004].
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THE MAIN THEOREM

Let the circle R/Z act symplectically on the compact symplectic
manifold (M,σ). Denote by MR/Z the fixed point set of the R/Z-
action. Then either the action admits a standard momentum map
or, if not, there exists a R/Z-invariant symplectic form ω on M that
admits a circle valued momentum map µ : M → R/Z. Moreover, µ
is a Morse-Bott-Novikov function and each connected component
of MR/Z = Crit(µ) has even index.

1.) If [σ] ∈ H1(M,Z) =⇒ ω = σ.

2.) ω is close to σ and ∃k ∈ R such that k[i1Mω] ∈ H1(M ; Z) for
some k ∈ R. There is always a corresponding circle valued momen-
tum map µ : M → S1 for any such form kω; due to McDuff[1988].

3.) Frankel’s theorem [1959] implies that the momentum map for
a circle action on a compact Kähler manifold is Morse-Bott and the
index of each connected component of the fixed point set of the
action is even. Second part extends this theorem.
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3.) The first modern definition of the momentum map is due
to Kostant (1965 Phillips lectures at Haverford, written by Dale
Husemoller, and in the 1965 U.S. Japan Seminar [1966]), and a
few months later to Souriau (1965 Marseille lecture notes, [1966])
who recognized its physical significance. “Momentum" versus "mo-
ment"; mistranslation pointed out by Duistermaat. Translation of
Souriau’s book uses "momentum". Look at
http://en.wikipedia.org/wiki/Torque

In physics: torque = moment = moment of momentum

d

dt
momentum = moment

In engineering: "Moment" is the general term for the tendency
of one or more applied forces to rotate an object about an axis (=
“torque = moment" in physics). "Torque" is a special case of this.

A “couple" is a system of forces with a resultant moment but no re-
sultant force, sometimes “pure moment": creates rotation without
translation, or more generally without any acceleration of the center
of mass. The resultant moment of a couple is called a “torque".
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4.) However, Frankel [1959] has the first modern definition of the
momentum map for S1.

5.) If µ : M → R is a standard momentum map for a circle action
on a 2n-dimensional compact symplectic manifold (M,σ), it is well-
known that it has at least n+ 1 critical points or, equivalently, the
circle action has at least n+ 1 fixed points.

Proof: µ is Morse-Bott implies that the connected components Ci
of Crit(µ) are submanifolds of M .

If ∃dimCi > 0 =⇒ infinitely many critical points of µ; result obvious.

If ∀dimCi = 0 =⇒ µ is a Morse function =⇒ µ is perfect (i.e., the
Morse inequalities are equalities) because of classical result: If f is
a Morse function on a compact manifold whose critical points have
only even indices, then it is a perfect Morse function.
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mk(µ) := #critical points of µ of index k

So, total number of critical points of µ equals

2n∑
k=0

mk(µ) =
2n∑
k=0

bk(M),

where bk(M) := dim
(
Hk(M,R)

)
is the kth Betti number of M .

σ symplectic form ⇒ [σk] ∈ H2k(M,R) nontrivial for k = 0, . . . , n,
and hence b2k(M) ≥ 1, which then implies that the total number
of critical points of µ is at least n+ 1. �

6.) Can one get the same result for circle valued momentum maps?
NO! This is one of the outstanding problems in the topology of
the momentum map. Let’s try to see why. Idea: Replace Morse
inequalities by the Novikov inequalities if all critical points are non-
degenerate. Possible because there is a Morse-Bott-Novikov theory.
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Number of critical points of the circle-valued momentum map µ is∑2n
k=0mk(µ) which is estimated from below by

2n∑
k=0

(
b̂k(M) + q̂k(M) + q̂k−1(M)

)
,

where b̂k(M) is the rank of the Z((t))-module Hk(M̃,Z) ⊗Z[t,t−1]

Z((t)), q̂k(M) is the torsion number of this module, and M̃ is the
pull back by µ : M → R/Z of the principal Z-bundle t ∈ R 7→ [t] ∈ R/Z.

Unfortunately, this lower bound can be zero! For example, the circle
action on the two-torus by rotation on the first factor is free and
hence has no fixed points. Farber [2004] §7.3 has more information.

PeTo [2010]: If lower bound is strictly positive, then it must be at
least two. If dim(M) ≥ 8, then if the lower bound is strictly positive,
it must be at least three. Proved using localization in equivariant
cohomology. Lower bound is at least n + 1 provided that the so-
called Chern class map is somewhere injective. No examples our
counterexamples. No universal lower bound for non-Hamiltonian
symplectic circle actions with at least one fixed point is available.
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7.) Many examples of interesting Hamiltonian circle actions; e.g.,
Karshon’s [1999] classification in dimension 4.

Many situations in geometry and dynamical systems when one has
a symplectic circle action (equivalently, a symplectic periodic flow)
on a manifold but the one-form iξMσ is not exact, e.g., consider
any action without fixed points such as a free action.

Duistermaat-Pelayo [2007], Pelayo [2010] give infinitely many ex-
amples of compact connected symplectic manifolds in any dimen-
sion equipped with symplectic free torus actions that are hence not
Hamiltonian. Famous example is the Kodaira variety [1964], also
known as the Kodaira-Thurston manifold (Example 3.8 on page 88
of McDuff-Salamon [1998]), which was pointed out by Thurston
[1978] dtto be a non-Kähler symplectic manifold.
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TECHNICAL LEMMA

Φ : (R/Z) × M → M smooth action, ϕ : R/Z → N smooth map.
Define ψ : (R/Z)× (R/Z)→ N by

ψ([s], [t]) := Φ[t] (ϕ ([s])) .

Then, if α ∈ Ω2(M)R/Z (i.e., (R/Z)-invariant 2-forms), we have∫
(R/Z)×(R/Z)

ψ∗α = −
∫
R/Z

ϕ∗(i1Mα).

Proof: Let β ∈ Ω2((R/Z)× (R/Z)). Denote by [s] the elements of
the first circle and by [t] those of the second. Let ∂/∂t ∈ X(R/Z)

be the left (equivalently, right) invariant vector field whose value
at [0] is 1. Let dt ∈ Ω1(R/Z) be the one-form dual to ∂/∂t, i.e.,
〈dt, ∂/∂t〉 = 1. Direct verification

β = −i ∂
∂t
β ∧ dt.
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Let Λ[u]([s], [t]) := ([s], [t + u]). If Λ∗[u]β = β, ∀[u] ∈ R/Z =⇒

Λ∗[u]

(
i ∂
∂t
β

)
= i ∂

∂t
β, ∀[u] ∈ R/Z =⇒ i ∂

∂t
β depends only on [s] =⇒

∫
(R/Z)×(R/Z)

β = −
∫
R/Z

ι∗1i ∂
∂t
β, (∗)

ι1 : (R/Z) 3 [s] 7−→ ([s], [0]) ∈ (R/Z)× (R/Z) standard embedding.

Compute

T([s],[t])ψ

(
a
∂

∂s
, b
∂

∂t

)
= Tϕ([s])Φ[t]

(
aT[s]ϕ

(
∂

∂s

)
+ b1M(ϕ([s]))

)
T([s],[t])Λ[u]

(
a
∂

∂s
, b
∂

∂t

)
=
(
a
∂

∂s
, b
∂

∂t

)
([s], [t+ u]),

and conclude from ψ ◦ Λ[u] = Φ[u] ◦ ψ and (R/Z)-invariance of α ∈
Ω2(M)R/Z that Λ∗[u]ψ

∗α = ψ∗Φ∗[u]α = ψ∗α, ∀[u] ∈ R/Z.

Thus we can apply formula (*) for β = ψ∗α. LHS is what we want.
Compute RHS.
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(
ι∗1i ∂

∂t
ψ∗α

)
([s])

(
a
∂

∂s

)
=
(
i ∂
∂t
ψ∗α

)
([s], [0])

(
a
∂

∂s
,0
)

= (ψ∗α)([s], [0])
((

0,
∂

∂t

)
,

(
a
∂

∂s
,0
))

= α (ψ([s], [0]))
(
T([s],[0])ψ

(
0,
∂

∂t

)
, T([s],[0])ψ

(
a
∂

∂s
,0
))

= α (ϕ([s]))
(

1M(ϕ([s])), aT[s]ϕ

(
∂

∂s

))
=
(
i1Mα

)
(ϕ([s]))

(
T[s]ϕ

(
a
∂

∂s

))
= ϕ∗

(
i1Mα

)
([s])

(
a
∂

∂s

)
,

i.e., ι∗1i ∂
∂t
ψ∗α = ϕ∗

(
i1Mα

)
which proves the formula. �
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PROOF OF EXISTENCE OF µ

If R/Z-action does not admit a momentum map, the action is not
trivial, because trivial action has 0 as a momentum map. So, as-
sume that the action is not Hamiltonian. Then i1Mσ is not exact.

Recall: X compact manifold. A rational cohomology class in
Hk(X;R) is real cohomology class in image of Hk(X;Q)→ Hk(X;R).
Similarly, when Q is replaced by Z for integral cohomology class.

Step 1. Existence of the circle valued momentum map when [σ] ∈
H2(M ;Z). Lemma shows that

[
i1Mσ

]
∈ H1(M ;Z). Pick a point

m0 ∈ M , let γm be an arbitrary smooth path connecting m0 to m

in M , and define the smooth map µ : M → R/Z by

µ(m) :=

[∫
γm

i1Mσ

]
.
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µ is well defined: γ̃m another path connecting m0 to m, then γm ∗
(−γ̃m) closed loop. i1Mσ ∈ H

1(M ;Z) ⇒ all its periods are integral,
i.e.,

∫
γm∗(−γ̃m) i1Mσ =: k ∈ Z. Thus
∫
γm

i1Mσ =
∫
γ̃m

i1Mσ + k ⇒
[∫
γm

i1Mσ

]
=

[∫
γ̃m

i1Mσ

]
.

∀vm ∈ TmM ⇒ Tmµ(vm) = T∫
γm

i1Mσ
π
(
i1Mσ(m)(vm)

)
⇒ (µ∗λ)(m)(vm) = λ(µ(m)) (Tmµ(vm)) =

(
i1Mσ

)
(m)(vm),

by definition of λ. Thus, σ admits the circle valued momentum
map µ.

Step 2. Existence of the circle valued momentum map when [σ] ∈
H2(M ;Q). Lemma shows that

[
i1Mσ

]
∈ H1(M ;Q). Thus there is a

k ∈ N such that
[
i1M(kσ)

]
= k

[
i1Mσ

]
∈ H1(M ;Z). Since the R/Z-

action clearly preserves kσ, by Step 1, the symplectic form kσ on
M admits a circle valued momentum map on M .
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Step 3. Existence of the circle valued momentum map when [σ] ∈
H2(M ;R) is irrational. Recall de Rham theorem for G-invariant
forms: let G be a connected compact Lie group acting smoothly on
a compact manifold X. Let Ω∗(X)G denote the set of G-invariant
forms. Then the inclusion map i : Ω∗(X)G → Ω∗(X) induces an
isomorphism H∗(X;R)G ∼= H∗(X;R) in real cohomology.

Our case: H2(M ;R)R/Z ∼= H2(M ;R) by the compactness of M ;
m := dimR

(
H2(M ;R)

)
= dimQ

(
H2(M ;Q)

)
second Betti number.

Choose a Q-basis of H2(M ;Q); then it is also a R-basis of H2(M ;R) ∼=
H2(M ;Q) ⊗Q R and hence H2(M ;Q) ∼= Qm as Q-vector spaces,
H2(M ;R) ∼= Rm as R-vector spaces. Endow H2(M ;R) with the
topology induced by this linear isomorphism ⇒ H2(M ;Q) is dense
in H2(M ;R) ∼= H2(M ;R)R/Z.

Since 0 6= [σ] ∈ H2(M ;R)R/Z because σ is a symplectic form, we
can complete to a basis {[σ], [ω1], . . . [ωm−1]} of H2(M ;R)R/Z.
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So, σ, ω1, . . . , ωm−1 ∈ Ω2
closed(M)R/Z are linearly independent and

hence V := spanR{σ, ω1, . . . ωm−1} is a m-dimensional vector sub-
space of Ω2

closed(M)R/Z isomorphic to H2(M ;R)R/Z, the isomor-
phism being given by its values on the basis: σ 7→ [σ], ωk 7→ [ωk], for
k = 1, . . . ,m − 1. Embed by this isomorphism the Q-vector space
H2(M ;Q) in V ; its image U is a dense Q-vector subspace of V .

Because non-degeneracy is an open condition, it follows that the
set of R/Z-invariant symplectic forms in V is open and also non-
empty since σ ∈ V . Because U is dense in V , it follows that we
can find a form ω ∈ U , hence necessarily closed and R/Z-invariant,
so close to σ ∈ V that it is symplectic. The problem has now been
reduced to the situation studied in Step 2 with σ replaced by ω.
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PROOF THAT µ IS MORSE-BOTT-NOVIKOV

This is equivalent to showing that the standard lift µ̃ : M̃ 3 (m, t) 7→
t ∈ R is Morse-Bott, where M̃ = {(m, t) ∈M × R | µ(m) = [t]}.

• Let ω ∈ Ω2(M)R/Z be the R/Z-invariant symplectic form just
constructed. Since π̃ : M̃ 3 (m, t) 7→ m ∈ M is a covering space it
follows that π̃∗ω ∈ Ω2

(
M̃
)
is a symplectic form on M̃ .

• R/Z acts on M̃ by Ψ[s](m, t) := (Φ[s](m), t); this is in M̃ because
µ is (R/Z)-invariant. To see this, note that it suffices to prove that
Tmµ(1M(m)) = 0, which follows from the following computation:

Tµ(m)L−µ(m)Tmµ(1M(m)) = δµ(m)(1M(m)) (def of log. der.)

= (µ∗λ)(m)(1M(m))

=
(
i1Mω

)
(m)(1M(m)) (def of µ)

= ω(m) (1M(m),1M(m)) = 0.
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• π̃ ◦Ψ[s] = Φ[s] ◦ π̃ and R/Z-invariance of ω implies that the R/Z-
action Ψ on M̃ is symplectic.

• µ̃ : M̃ 3 (m, t) 7→ t ∈ R is a momentum map of Ψ. Indeed, since
1
M̃

(m, t) = (1M(m), (t,0)), so 1
M̃

and 1M are π̃-related, for any
m ∈M , vm ∈ TmM , t ∈ R, and r = (δf)(m)(vm), we have

i1
M̃

(π̃∗ω)(m, t)(vm, (t, r)) = i1Mω(m)(vm) = (µ∗λ)(m)(vm)

= δµ(m)(vm) = dµ̃(m, t)(vm, (t, r)).

• µ̃ ◦Ψ[s] = µ̃, i.e., µ is (R/Z)-invariant.

Thus, the problem is reduced to showing that the standard invariant
momentum map of a circle action is Morse-Bott; well-known.

• Recall the full proof. GIVEN: (M,ω) compact symplectic, Φ :

(R/Z) ×M → M symplectic action with invariant momentum map
J : M → R.
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First: Fixed point manifold MR/Z equals Crit(J). R/Z is connected,
so it is generated by a neighborhood of the identity; so m ∈ MR/Z

if and only if 1M(m) = 0. But ω(m)(1M(m), vm) = dJ(m)(vm),
∀vm ∈ TmM , so (ω non-degenerate) 1M(m) = 0⇐⇒ dJ(m) = 0.

Second: Computation of Hess(J). m0 ∈ F ⊂ Crit(J), u, v ∈ Tm0M ,
and take vector fields ũ, ṽ such that ũ(m0) = u, ṽ(m0) = v. Thus,

Hess(J)(m0) = £ũ (〈dJ, ṽ〉) (m0) = £ũ (ω (1M , ṽ)) (m0)

= (£ũω) (m0) (1M(m0), v) + ω(m0) ([ũ,1M ] (m0), v)

+ ω(m0) (1M(m0), [ũ, ṽ] (m0))

= ω(m0) (v, [1M , ũ] (m0))

= ω(m0)
(
v,
d

dt

∣∣∣∣
t=0

(
TΦ[−t] ◦ ũ ◦Φ[t]

)
(m0)

)
= ω(m0)

(
v,
d

dt

∣∣∣∣
t=0

Tm0Φ[−t](u)
)
.
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However, Tm0Φ[t] : Tm0M → Tm0M is the flow of the linearized
vector field 1′M(m0) : Tm0M → Tm0M and hence

(HessJ)(m0)(u, v) = ω(m0)
(
v,−1′M(m0)(u)

)
= ω(m0)

(
1′M(m0)(u), v

)
.

Recall that the symplectic representation Tm0Φ[t] : (Tm0M,ω(m0))→
(Tm0M,ω(m0)) of R/Z admits an invariant momentum map L :

Tm0M → R whose expression is

L(v) =
1

2
ω(m0)

(
1′M(m0)(v), v

)
, ∀v ∈ Tm0M

and hence (HessJ)(m0)(u, u) = 2L(u) for all u ∈ Tm0M .

Third: Each connected component F of MR/Z = Crit(J) has even
index. Obviously, if u ∈ Tm0F , both the Hessian and L vanish. So
we need to compute the Hessian on a subspace transversal to Tm0F

in order to determine the index of F . Since Tm0F = Tm0

(
MR/Z

)
=(

Tm0M
)R/Z is a symplectic vector subspace of (Tm0M,ω(m0)), its

ω(m0)-orthogonal complement W is also a symplectic subspace of
(Tm0M,ω(m0)) and we have Tm0M =

(
Tm0M

)R/Z ⊕W .
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So, compute (HessJ)(m0)|W×W . Only fixed point of the R/Z-
symplectic representation on W is 0. Well-known linear algebra:
R/Z-symplectic representation space W ⇒ W = ⊕kj=1Wj, where
dimWj = 2, ω(m0)-orthogonal sum, Wj irreducible representations.
For any irreducible symplectic representation of R/Z on a two-

dimensional symplectic vector space (U,dq ∧ dp), the associated
momentum map has the expression U 3 (q, p) 7→ a

2(q2 + p2) ∈ R,
where a ∈ R is the weight of the representation.
So, if w1 + · · ·+ wk ∈ ⊕kj=1Wj, we get

(HessJ)(m0)(w1 + · · ·+ wk, w1 + · · ·+ wk)

=
k∑

j=1

(HessJ)(m0)(wj, wj) =
k∑

j=1

2L(wj, wj) =
k∑

j=1

aj
(
q2
j + p2

j

)
,

where aj ∈ R are the weights of the irreducible R/Z-representations
and (qj, pj) are the symplectic coordinates of wj ∈Wj, j = 1, . . . , k.
Lemma above and this formula show that J is Morse-Bott and that
the index of the connected component F ⊂ CritJ equals twice the
number of the negative weights aj ∈ R, so is even. �
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EQUIVARIANT DARBOUX
VIA MELBOURNE AND DELLNITZ

WARNING: There are proofs in the literature that invoke the equiv-
ariant Darboux theorem. They are incomplete, because the equiv-
ariant Darboux theorem is stated incorrectly. First time noted by
Montaldi, Roberts, Stewart [1988]. This important remark is due to
Melbourne and Dellnitz [1993], who correct the statements in the
literature by doing much more: they give an equivariant Williamson
theorem for compact representations, i.e., they give a normal form
for infinitesimally symplectic matrices commuting with the symplec-
tic representation of a compact Lie group.

G-relative Darboux: ω0, ω1 ∈ Ω2(M) symplectic, no hypotheses
on M . G Lie group acting properly on M and symplectically with
respect to both ω0 and ω1. Assume ω0(g ·m)(u, v) = ω1(g ·m)(u, v),
∀g ∈ G and u, v ∈ Tg·mM . Then there exist two G-invariant neigh-
borhoods U0 and U1 of G ·m and a G-equivariant diffeomorphism
Ψ : U0 → U1 such that Ψ|G·m = Id and Ψ∗ω1 = ω0.
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Now let (M,ω) symplectic and m0 ∈ MG. Take a neighborhood
in which ω is constant by the usual Darboux theorem. Take its
orbit, so get an open G-invariant set U containing m0. Let ω0 be
the constant symplectic form on U which at m0 equals ω(m0); it is
trivially G-invariant. Apply theorem to ω|U and ω0:

There is an open G-invariant neighborhood V ⊂ U of m0 and a G-
equivariant diffeomorphism Ψ : V → Ψ(V ) ⊂ U such that Ψ(m0) =

m0 and Ψ∗ω = ω0.

The problem is that on Tm0M , the G-invariant symplectic forms
do NOT coincide with dqi ∧ dpi. There are many of them and
they depend on the nature of the symplectic representation: real,
complex, quaternionic. In many books, the conclusion is that ω0 =

dqi∧dpi which is FALSE. E.g., Theorem 22.2 in Guillemin-Sternberg
is false, as pointed out by Melbourne and Dellnitz. This mistake
then propagates, e.g., A. Cannas da Silva’s Spinger LNM [2001].
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Example: Non-isomorphic symplectic forms on R2.

R2 ∼= C, SO(2) acts by isometries by eiθ · z := eiθz and so it is
symplectic relative to both symplectic forms

ω1(z, w) := Im(iz̄w), ω2(z, w) := − Im(iz̄w)

Recall that a symplectic form ω on R2 is SO(2)-invariant if

ω(eiθz, eiθw) = ω(z, w), ∀θ ∈ R, ∀z, w ∈ C.

ω1 and ω2 are SO(2)-equivariantly symplectically isomorphic if
there is an invertible linear equivariant map P : R2 → R2 such that
ω1(Pz, Pw) = ω2(z, w), ∀z, w ∈ C. So we must have Pz = keiθz, for
some fixed θ ∈ R and k > 0. Therefore

ω1(Pz, Pw) = Im
(
iPzPw

)
= Im

(
ikeiθzkeiθw

)
= Im

(
ik2e−iθz̄eiθw

)
= k2 Im (iz̄w) = k2ω1(Pz, Pw)

This shows that ω1 and ω2 are never isomorphic.
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ELEMENTARY REPRESENTATION THEORY

ρ : G → Aut(V ) a left representation of the compact Lie group G
on a finite dimensional vector space V .

LG(V ) := {T ∈ L(V ) | ρ(g) ◦ T = T ◦ ρ(g), ∀g ∈ G}
Vector subspace U ⊂ V is irreducible if G · U ⊂ U and it has no
proper invariant subspaces. If U is irreducible, then LG(V ) is a
ral division ring and hence isomorphic to R, C, or H. We have
V = U1⊕· · ·⊕Uk, each Ui irreducible. Sum up all those Ui that are G-
isomorphic to obtain the isotypic decomposition V = W1⊕· · ·⊕Wp.
The isotypic decomposition is unique and each Wj is invariant under
all elements of LG(V ).

Let W = U ⊕ · · ·U be an isotypic component, m summands of an
irrep U , so LG(U) ∼= F = R,C,H, so LG(U) ∼= L(Fm) = gl(m,F).
So, think of W as Fm. Then the isotypic component Fm is real,
complex, or quaternionic according to F = R,C, or H.

A symplectic form on Fm is a non-degenerate bilinear skew-symmetric
bilinear map ω : Fm × Fm → R.
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Two symplectic forms ω0 and ω1 on Fm are isomorphic over F if
there exists a F-linear map T : Fm → Fm such that ω0(Tv, Tw) =

ω1(v, w). In this case T is necessarily isomorphic.

Let ω be a G-invariant symplectic form on V , ωi := ω|Wi×Wi
. Then

ωi is a G-invariant symplectic form on Wi. Any two G-invariant
symplectic forms ω0, ω1 on V are G-isomorphic iff all ω0i and ω1i

are G-isomorphic for each i.

W be an isotypic component of G-representation, so LG(V ) ∼= Fm,
F a division ring. Then there is a bijective correspondence between
real G-invariant symplectic forms on W and symplectic forms on
Fm. Two G-invariant real symplectic forms on W are isomorphic iff
the corresponding symplectic forms on Fm are isomorphic over F.

Poisson Geometry and Applications, June 13 - June 16, 2011

37



CLASSIFICATION OF SYMPLECTIC FORMS
OVER REAL DIVISION RINGS

W = Fm isotypic component. Coordinates: (x1, . . . , xm) ∈ Rm,
(z1, . . . , zm) ∈ Cm, (w1, . . . , wm) ∈ Hm.

ω a real symplectic form on Fm. Then ω is isomorphic to one of
the following canonical symplectic forms:
• F = R :

∑n
j=1 dxj ∧ dxj+n, where m = 2n.

• F = C : Re
∑n
j=1 dzj ∧ dzj+n + 1

2ρ
∑m
k=2n+1 dzk ∧ idz̄k, where

0 ≤ n ≤ m/2, ρ = ±1.
• F = H: Re

∑n
j=1 dwj ∧ dwj+n, if m = 2n

Re
∑n
j=1 dwj ∧ dwj+n + 1

2dwm ∧ idw̄m, if m = 2n+ 1

There are m+ 1 non-isomorphic symplectic forms on each complex
isotypic component of complex dimension m.
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Example: R10 ∼= R2 × C4. SO(2) acts symplectically by

eiθ · (x1, x2, z1, z2, z3, z4) := (x1, x2, e
iθz1, e

iθz2, e
iθz3, e

iθz4)

There are two isotypic components:
• R2, two trivial representations of SO(2) on R
• C4, four standard representations of SO(2) on C
By the Melbourne-Dellnitz theorem, there are five canonical sym-
plectic forms on R10: the direct sum of dx1 ∧ dx2 on R2 with one
of the symplectic forms on C4:

±
1

2
(dz1 ∧ idz̄1 + dz2 ∧ idz̄2 + dz3 ∧ idz̄3 + dz4 ∧ idz̄4)

Redz1 ∧ dz2 ± (dz3 ∧ idz̄3 + dz4 ∧ idz̄4)

Re (dz1 ∧ dz3 + dz2 ∧ dz4)
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DETECT HAMILTONIAN FLOWS
BY FIXED POINTS

(M,ω) symplectic manifold. (ω, g, J) is a compatible triple on
(M,ω) if g is a Riemannian metric and J is an almost complex
structure (i.e., a vector bundle automorphism J : TM → TM sat-
isfying J2 = − Identity) such that g(·, ·) = ω(·, J·). The standard
construction of a compatible triple from a symplectic form imme-
diately extends to the G-invariant case.

L2
ρ is the Hilbert space of square integrable functions relative the

the measure ρ.

Let G be a compact Lie group acting on a symplectic manifold
(M,ω) by means of symplectomorphisms. Let (ω, g, J) be a G-
invariant compatible triple. Let λ be a measure on M such that the
Radon-Nikodym derivative of λ relative to the Riemannian measure
is a bounded function on M and denote by δλ the formal adjoint of
d relative to the L2

λ inner product. Prove the following result:
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Assume that each L2
λ closed one-form decomposes L2

λ-orthogonally
as a sum of the differential of a L2

λ smooth function and a harmonic
L2
λ one-form (i.e., in kerd∩ ker δλ) and that each cohomology class

of a closed one-form in L2
λ has a unique harmonic representative. If

J preserves harmonic one-forms and the G-action has fixed points
on every connected component, then the action is Hamiltonian.
Implied by G = S1; every point of compact G is on a maximal torus.

Proof: First, if true for S1, then true for any Tk := (S1)k, k ∈ N
(momentum map of a product = sum of the momentum maps).
Second, let G be compact Lie group whose symplectic action on M
has at least a fixed point. If ξ ∈ g, then exp ξ necessarily lies in a
maximal torus and the restriction of the action to the torus has fixed
points. Since statement true for symplectic torus actions ⇒ this
restricted action has an invariant momentum map ⇒ ∃fξ ∈ C∞(M)
such that diξMω = dfξ, ∀ξ ∈ g. Let {e1, . . . , er} basis of g and define
µ : M → g∗ by µξ := ξ1fe1 + · · · + ξrfer, where ξ = ξ1e1 + · · · +
ξrer. Then iξMω = dµξ ⇒ µ : M → g∗ defined by 〈µ, ξ〉 := µξ is a
momentum map. G is compact ⇒ can modify µ to an equivariant
momentum map. �
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Remark: Assumption that action has fixed points is essential. S1-
action on (T2,dθ1∧θ2) given by e2iϕ·(e2iθ1, e2iθ2) := (e2iθ1, e2i(θ2+ϕ))
is symplectic, free, T2 is Kähler, hence no fixed points. If ∃J : T2 →
R, then ker TtJ = Lie(T2)ωt , ∀t ∈ T2 (Reduction Lemma). Since T2

is compact ⇒ J has a critical point, i.e., ker TtJ 6= {0}, impossible.
So, this action does not admit a momentum map. ♦

M Kähler ⇒ J preserves the space of harmonic one-forms. M com-
pact⇒ ∃ Hodge decomposition relative to measure ωn, 2n = dimM .

(M,ω) compact symplectic G-manifold, G compact Lie group. As-
sume that the the space of harmonic one-forms is invariant under
J (true if M is Kähler). If the G-action has fixed points on every
connected component of M then it is Hamiltonian. (Will prove it.)

(M,ω) complete connected Kähler 2n G-manifold, G compact. If
iξMω ∈ L2

ωn, ∀ξ ∈ g and action has fixed points then it is Hamiltonian.

Frankel [1959]: M compact connected Kähler S1-manifold. If sym-
plectic S1-action has fixed points, then it must be Hamiltonian.
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McDuff [1988]: Any symplectic circle action on a compact con-
nected symplectic 4-manifold having fixed points is Hamiltonian.
But the result is false in higher dimensions: example of a compact
connected symplectic 6-manifold with a symplectic circle action
which has fixed points (formed by tori), but is not Hamiltonian.

Tolman-Weitsman [2000]: If S1-action on a compact connected
symplectic manifold having fixed points is semifree (i.e., free off the
fixed point set), then it is Hamiltonian.

Feldman [2001]: obstruction for a symplectic S1-action on a com-
pact manifold to be Hamiltonian. Deduced McDuff and Tolman-
Weitsman theorems. Showed that the Todd genus of a manifold
admitting a symplectic circle action with isolated fixed points is
equal either to 0, in which case the action is non-Hamiltonian, or
to 1, in which case the action is Hamiltonian. Any symplectic circle
action on a manifold with positive Todd genus is Hamiltonian. No
known examples of symplectic S1-actions on compact connected
symplectic manifolds that are not Hamiltonian but have at least
one isolated fixed point.
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Giacobbe [2005]: Symplectic action of Tn-torus on a 2n compact
connected symplectic manifold with fixed points is Hamiltonian.

Ginzburg [1992]: (M,ω) symplectic G-manifold. The action is
cohomologically free if Lie algebra homomorphism Λ : g 3 ξ 7→
[iξMω] ∈ H1(M,R) is injective; H1(M,R) is Abelian Lie algebra.

• If Tk, k ∈ N, acts symplectically, then ∃0 ≤ r < k such that Tr-
action is cohomologically free, and Tk−r-action is Hamiltonian. Λ

vanishes iff Tk-action admits a momentum map.

• G compact⇒ ∃ finite covering Tk×K → G, K semisimple compact
⇒ ∃ symplectic action of Tk×K on (M,ω). K-action is Hamiltonian,
since K is semisimple. Previous result applied to Tk ⇒ ∃ finite
covering Tr × (Tk−r × K) → G such that the (Tk−r × K)-action is
Hamiltonian and the Tr-action is cohomologically free. The Lie
algebra of Tk−r ×K is ker

(
Λ : ξ 7→ [iξMω]

)
.
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PROOF OF THEOREM

• Preliminaries: (M,ω) symplectic G-manifold, G compact. Given
is G-invariant compatible triple (ω, g, J) and λ a measure on M such
that the Radon-Nikodym derivative of the Riemannian measure with
respect to λ is a bounded function on M . δλ formal adjoint:∫

M
〈〈dα, β〉〉λ =

∫
M
〈〈α, δλβ〉〉λ, ∀α ∈ Ωq(M), β ∈ Ωq+1(M),

where 〈〈 , 〉〉 is the inner product on forms. By assumption we have:
(i) α ∈ Ω1(M), ‖α‖L2

λ
< ∞, dα = 0 ⇒ α = df + χ uniquely and

L2
λ-orthogonally, where f ∈ C

∞(M), df ∈ L2
λ(M), dχ = 0, δλχ = 0,

χ ∈ L2
λ(∧1M, g) ∩ Ω1(M), i.e., χ is harmonic. Let H denote the

space of harmonic one-forms.
(ii) If [α] ∈ H1(M,R), ‖α‖L2

λ
< ∞ has a harmonic representative, it

is necessarily unique.
(iii) JH ⊂ H.

Condition (ii) can be reformulated as:
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(ii’) If f ∈ C∞(M), ‖df‖L2
λ
<∞, and δλdf = 0 then f is a constant

function on each connected component of M .

Proof: Suppose (ii’) holds and let α and β be two harmonic rep-
resentatives of the same cohomology class with finite L2

λ-norm;
then α − β = df for some f ∈ C∞(M), ‖df‖L2

λ
< ∞. Therefore

δλdf = δλ(α−β) = 0
(ii′)
=⇒ f constant on each connected component

of M ⇒ α = β. Conversely, if ‖df‖L2
λ
<∞ and δλdf = 0, then df is

a smooth L2
λ harmonic one-form representing the zero cohomology

class so, by (ii), f is constant on each connected component of M .

• Step 1: Vanishing of harmonic one-forms along infinitesimal gen-
erators. Show: α ∈ Ω1(M) harmonic and ‖α‖L2

λ
< ∞ ⇒ £ξM

α = 0.

This is standard for δ (Killing vector fields preserve harmonic one-
forms). But we have δλ so we give the proof.

Note: If ϕ : M →M satisfies ϕ∗g = g and ϕ∗(λ) = λ, then

ϕ∗ (〈〈ν, ρ〉〉λ) = 〈〈ϕ∗ν, φ∗ρ〉〉λ, ∀ν, ρ ∈ Ω1(M)
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Ft := Φexp(tξ) flow of ξM , isometry of (M, g). dα = 0 ⇒ dF ∗t α =

F ∗t dα = 0. Show that Ft commutes with δλ. ∀β, γ ∈ Ω1(M)⇒

〈δλF ∗t β, γ〉L2
λ

=
∫
M
〈〈F ∗t β,dγ〉〉λ =

∫
M
F ∗t (〈〈β, (Ft)∗dγ〉〉λ)

=
∫
M
〈〈β,d(Ft)∗γ〉〉λ =

∫
M
〈〈δλβ, (Ft)∗γ〉〉λ

=
∫
M

(Ft)∗
(
〈〈F ∗t δλβ, γ〉〉λ

)
= 〈F ∗t δλβ, γ〉L2

λ

i.e., δλF ∗t β = F ∗t δλβ. In particular, δλα = 0⇒ δλF
∗
t α = F ∗t δλα = 0.

So, α harmonic ⇒ F ∗t α is also harmonic. Thus, in H1(M,R), we
have [F ∗t α] = F ?t [α] = [α] since Ft is isotopic to the identity;
F ?t isomorphism induced by diffeo Ft on cohomology. But then
[F ∗t α] = [α] ⇒ F ∗t α = α since both F ∗t α and α are harmonic and
each cohomology class has a unique harmonic representative by
hypothesis (ii).

Taking the t-derivative implies that £ξM
α = 0, as stated.
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• Step 2: Using the existence of fixed points. α ∈ Ω1(M) harmonic
and ‖α‖L2

λ
< ∞ ⇒ 0 = £ξM

α = iξMdα + diξMα = diξMα, by Step 1.

Thus α(ξM) is constant on each connected component of M . Since
the group action has at least one fixed point on each connected
component of M ⇒ α(ξM) = 0 on M . Therefore,〈

ξ[M , α
〉

L2
λ

=
∫
M
α(ξM)λ = 0, where ξ[M := g(ξM , ·) ∈ Ω1(M).

• Step 3: Applying the existence of a Hodge decomposition. We
have diξMω = 0 and ‖iξMω‖L2

λ
<∞; so, by hypothesis (i) ⇒ iξMω =

dfξ + χξ, where fξ ∈ C∞(M), χξ ∈ Ω1(M) harmonic, ‖dfξ‖L2
λ
<∞,

and ‖χξ‖L2
λ
<∞. Now show that χξ = 0.

Recall definition of J on Ω1(M): (Jβ)(X) = β(JX), β ∈ Ω1(M),
X ∈ X(M). So, for any Y ∈ X(M) we have

(iξMω)(Y ) = ω(ξM , Y ) = −ω(ξM , J(JY )) = −g(ξM , JY )

= −ξ[M(JY ) = −(Jξ[M)(Y ) ⇐⇒ iξMω = −Jξ[M .
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Let α ∈ Ω1(M) be arbitrary harmonic, ‖α‖L2
λ
<∞. Then

〈
iξMω, α

〉
L2
λ

=
〈
−Jξ[M , α

〉
L2
λ

= −
∫
M

〈〈
Jξ[M , α

〉〉
λ

= −
∫
M

〈〈
ξ[M , Jα

〉〉
λ = −

〈
ξ[M , Jα

〉
L2
λ

.

Hypothesis (iii) ⇒ Jα is harmonic ⇒
〈
ξ[M , Jα

〉
L2
λ

= 0 by Step 2

⇒ iξMω ⊥L2
λ
H ⇒ χξ = 0 by hypothesis (i). Therefore

iξMω = dfξ, ∀ξ ∈ g and both sides of this identity are linear in ξ ∈ g.

• Step 3: Construction of an equivariant momentum map. {e1, . . . , er}
basis of g, define µ : M → g∗ by µξ := ξ1fe1 + · · · + ξrfer, where
ξ = ξ1e1 + · · · + ξrer. Clearly, iξMω = dµξ which proves that
µ : M → g∗, defined by the requirement that its ξ-component is
µξ for each ξ ∈ g, is a momentum map of the G-action.

Since G is compact, one can construct out of µ an equivariant mo-
mentum map by averaging.
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PROOF OF THE FIRST COROLLARY

M Kähler G-manifold, i.e., (ω, g, J) is G-invariant compatible triple.
For Kähler: ωn = n!µg, where µg is the g-volume form and hence
L2
µg = L2

ωn. Take λ = µg ⇒ δλ = δ usual codifferential defined by g.

Repeat proof. Step 1: if a cohomology class has a harmonic L2
µg

representative, then it is unique. In the hypotheses of the corollary,
this is implied by the weak L2

µg-Hodge decomposition (holds for all
complete non-compact Riemannian manifolds) and ξM is Killing.
Step 2 is unchanged. Step 3 follows from the weak L2

µg-Hodge
decomposition: By hypothesis, the closed one-form iξMω ∈ L2

µg,
∀ξ ∈ g ⇒ iξMω = dfξ + χξ uniquely and L2

µg-orthogonally, where
fξ ∈ C∞(M) and χξ ∈ Ω1(M) is harmonic, ‖dfξ‖L2

µg
<∞, ‖χξ‖L2

µg
<

∞. As before, iξMω = Jξ[M and for any harmonic α ∈ Ω1(M),

‖α‖L2
µg

< ∞, we have
〈
iξMω, α

〉
L2
µg

= −
〈
ξ[M ,Jα

〉
L2
µg

. Since M is

Kähler, Jα is also harmonic. Thus, by Step 2,
〈
ξ[M ,Jα

〉
L2
λ

= 0,

which shows that χξ = 0. Step 4 is unchanged.
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