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Motivations and origins

Main sources of inspiration

Integrable Systems
Matrix Integrable systems generalized Manakov’s
Bihamiltonian property and Magri-Lenard schemes

Noncommutative algebraic Poisson geometry
Kontsevich NC symplectic geometry
Le Bryun NC@geomerty
"Double" Poisson strucrures and AYBE
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Generalized Manakov’s system

We consider ODE systems of the form
dxα
dt

= Fα(x), x = (x1, ..., xN), (1)

Here xi are m×m -matrices and Fα are (non-commutative)
polynomials. There exist systems (1) integrable for any m.
The system

ut = u2 v − v u2, vt = 0 (2)

is integrable by the Inverse Scattering Method for any size
m of matrices u and v .
If u - such that uT = −u, and v - a constant diagonal
matrix, then (2) is equivalent to the m-dimensional Euler
top. This is the famous S.V. Manakov model (1976).

A.Odesskii, V. Rubtsov, V.Sokolov Non-abelian quadratic Poisson brackets



Introduction
Integrable Systems

Non-Abelian Poisson Brackets
Algebraic characterization

Summary

Generalized Manakov’s system

We consider ODE systems of the form
dxα
dt

= Fα(x), x = (x1, ..., xN), (1)

Here xi are m×m -matrices and Fα are (non-commutative)
polynomials. There exist systems (1) integrable for any m.
The system

ut = u2 v − v u2, vt = 0 (2)

is integrable by the Inverse Scattering Method for any size
m of matrices u and v .
If u - such that uT = −u, and v - a constant diagonal
matrix, then (2) is equivalent to the m-dimensional Euler
top. This is the famous S.V. Manakov model (1976).

A.Odesskii, V. Rubtsov, V.Sokolov Non-abelian quadratic Poisson brackets



Introduction
Integrable Systems

Non-Abelian Poisson Brackets
Algebraic characterization

Summary

Generalized Manakov’s system

We consider ODE systems of the form
dxα
dt

= Fα(x), x = (x1, ..., xN), (1)

Here xi are m×m -matrices and Fα are (non-commutative)
polynomials. There exist systems (1) integrable for any m.
The system

ut = u2 v − v u2, vt = 0 (2)

is integrable by the Inverse Scattering Method for any size
m of matrices u and v .
If u - such that uT = −u, and v - a constant diagonal
matrix, then (2) is equivalent to the m-dimensional Euler
top. This is the famous S.V. Manakov model (1976).

A.Odesskii, V. Rubtsov, V.Sokolov Non-abelian quadratic Poisson brackets



Introduction
Integrable Systems

Non-Abelian Poisson Brackets
Algebraic characterization

Summary

Generalized Manakov’s system

We consider ODE systems of the form
dxα
dt

= Fα(x), x = (x1, ..., xN), (1)

Here xi are m×m -matrices and Fα are (non-commutative)
polynomials. There exist systems (1) integrable for any m.
The system

ut = u2 v − v u2, vt = 0 (2)

is integrable by the Inverse Scattering Method for any size
m of matrices u and v .
If u - such that uT = −u, and v - a constant diagonal
matrix, then (2) is equivalent to the m-dimensional Euler
top. This is the famous S.V. Manakov model (1976).

A.Odesskii, V. Rubtsov, V.Sokolov Non-abelian quadratic Poisson brackets



Introduction
Integrable Systems

Non-Abelian Poisson Brackets
Algebraic characterization

Summary

Bihamiltonian structures

Aim - to construct an integrable generalization of (2) to the
case of arbitrary N using the bi-Hamiltonian approach

Definition
Two Poisson brackets {·, ·}1 and {·, ·}2 are compatible if

{·, ·}λ = {·, ·}1 + λ{·, ·}2 (3)

is a Poisson bracket for any λ.

If the bracket (3) is degenerate then a hierarchy of
integrable Hamiltonian ODE systems can be constructed
via the following result:
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Gelfand-Magri-Zakharevich Theorem-1

Theorem
Let

C(λ) = C0+λC1+λ2C2+· · · , C̄(λ) = C̄0+λC̄1+λ2C̄2+· · · ,

be the Taylor expansion of any two Casimir functions for the
bracket {·, ·}λ. Then the coefficients Ci , C̄j are pairwise
commuting with respect to both brackets {·, ·}1 and {·, ·}2.

A.Odesskii, V. Rubtsov, V.Sokolov Non-abelian quadratic Poisson brackets



Introduction
Integrable Systems

Non-Abelian Poisson Brackets
Algebraic characterization

Summary

Gelfand-Magri-Zakharevich Theorem-2

Otherwise, if, say, the bracket {·, ·}1 is nondegenerate, then the
ratio R = Π2Π−1

1 , (here Πi is the Poisson tensor for {·, ·}i )
defines a recursion operator whose spectrum provides the set
of functions in involution with respect to both brackets. In this
case the formula Πk = Rk Π1 gives us an infinite sequence of
pairwise compatible Poisson brackets.
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"Tensor" interpretations

Origins of NA Poisson brackets

Mikhailov, Olver and Sokolov studied an important class of
Poisson brackets related to systems (1) such that the
corresponding Hamiltonian operator can be expressed in
terms of left and right multiplication operators given by
polynomials inx1, ..., xN .
Such brackets possess the following two properties:

they are GLm-adjoint invariant;
the bracket between traces of any two matrix polynomials
Pi (x1, ..., xN), i = 1,2 is a trace of some other matrix
polynomial P3.

We shall call them non-abelian Poisson brackets. and we
consider the compatible pairs of non-abelian Poisson
brackets, where {·, ·}1 is linear and {·, ·}2 is quadratic.
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"Tensor" interpretations

Coordinate expressions

We consider bilinear brackets of the following form:

{x j
i,α, x

j ′
i ′,β} = bγα,βx j ′

i,γδ
j
i ′ − bγβ,αx j

i ′,γδ
j ′
i , (4)

and

{x j
i,α, x

j ′
i ′,β} = rγεαβx j ′

i,γx j
i ′,ε + aγεαβxk

i,γx j ′
k ,εδ

j
i ′ − aγεβαxk

i ′,γx j
k ,εδ

j ′
i , (5)

where x j
i,α are entries of the matrix xα.
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"Tensor" interpretations

Poisson conditions

Theorem
1) Formula (4) defines a Poisson bracket iff

bµαβbσµγ = bσαµbµβγ ; (6)

2) Formula (5) defines a Poisson bracket iff the following
relations hold:

rσεαβ = −r εσβα, r
λσ
αβ rµνστ + rµσβτ rνλσα + rνστα rλµσβ = 0, (7)

aσλαβaµντσ = aµσταaνλσβ, (8)

aσλαβaµνστ = aµσαβrλντσ + aµνασrσλβτ . (9)

aλσαβaµντσ = aσναβrλµστ + aµνσβrσλτα . (10)
A.Odesskii, V. Rubtsov, V.Sokolov Non-abelian quadratic Poisson brackets
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"Tensor" interpretations

Glm− and trace invariancy

Theorem
Brackets of the form (4) and (5) are both invariant with respect
to GLm-action xα → uxαu−1, where u ∈ GLm. Moreover, these
brackets satisfy the following property: the bracket between
traces of any two matrix polynomials is a trace of a matrix
polynomial. Any linear (respectively quadratic) Poisson bracket
satisfying these two properties has the form (4) (respectively
(5)).

Warning: There are quadratic Poisson brackets that appeared
in the classical version of Inverse Scattering Method (r− matrix
, Drinfeld-Sklyanin etc.) However, these brackets do not satisfy
the properties of our Theorem.
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"Tensor" interpretations

Compatibility of linear and quadratic brackets

A vector µ = (µ1, ..., µm) is an admissible if for any α, β
(aσεαβ − aεσβα + rσεαβ)µσµε = 0.
For any admissible vector the argument shift
xα → xα + µα Id yields a linear Poisson bracket with

bσαβ = (aεσαβ + aσεαβ + rσεαβ)µε,

compatible with the quadratic one.
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"Tensor" interpretations

Poisson conditions: tensor form

Let V be a linear space with a basis vα, α = 1, ...,m. Define
linear operators r , a ∈ End(V ⊗ V ) by

rvα ⊗ vβ = rσεαβvσ ⊗ vε, avα ⊗ vβ = aσεαβvσ ⊗ vε.

Then the identities (7)-(10) can be rewritten in the following
form:

r12 = −r21, r23r12 + r31r23 + r12r31 = 0,

a12a31 = a31a12, σ23a13a12 = a12r23 − r23a12,

a32a12 = r13a12 − a32r13.

Here all operators act in V ⊗ V ⊗ V , by σij we mean
transposition of i-th and j-th component of the tensor product
and aij , r ij mean operators a, r acting in the product of the i-th
and j-th components.

A.Odesskii, V. Rubtsov, V.Sokolov Non-abelian quadratic Poisson brackets
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"Tensor" interpretations

Particular case: a = 0

There is a subclass of brackets (5) that corresponds to zero
tensor a. Relations (7), (8) mean that r is a constant
skew-symmetric solution of the associative Yang-Baxter
equation (Aguiar, Polischshuk, Schedler...):

r12 = −r21, r23r12 + r31r23 + r12r31 = 0.

Theorem
There exists one-to-one correspondence between solutions of
(7), (8) up to equivalence and exact representations of
anti-Frobenius algebras up to isomorphism.

A.Odesskii, V. Rubtsov, V.Sokolov Non-abelian quadratic Poisson brackets



Introduction
Integrable Systems

Non-Abelian Poisson Brackets
Algebraic characterization

Summary

Anti-Frobenius algebras

Definition
An anti-Frobenius algebra is an associative algebra A (not
necessarily with unity) with a non-degenerate anti-symmetric
bilinear form ( , ) satisfying the following relation

(x , yz) + (y , zx) + (z, xy) = 0 (11)

for all x , y , z ∈ A.

In other words the form ( , ) defines a cyclic 1-cocycle on A.

A.Odesskii, V. Rubtsov, V.Sokolov Non-abelian quadratic Poisson brackets
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Example

Example
Let A be associative algebra of N × N-matrices with zero
N-th row, l - a generic element of A∗. Then
(x , y) = l([x , y ]) - a non-degenerate anti-symmetric
bilinear form satisfying (11).
Let (x , y) = trace([x , y ] kT ), where k ∈ A. Put kij = 0, i 6= j ,
kii = µi , where i , j = 1, ...,N − 1, and
kiN = 1, i = 1, ...,N − 1.
The corresponding bracket (5) is given by the following
tensor r :

r ii
Ni = −r ii

iN = 1, r ij
ij = r ji

ij = r ii
ji = −r ii

ij =
1

µi − µj
, (12)

1 ≤ i 6= j ≤ N − 1.A.Odesskii, V. Rubtsov, V.Sokolov Non-abelian quadratic Poisson brackets
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Example-contin.

Example
The bracket (12) is equivalent to

rαβαβ = rβααβ = rααβα = −rαααβ =
1

λα − λβ
, α 6= β, α, β = 1, . . . ,N.

(13)
λ1, . . . , λN are arbitrary pairwise distinct parameters.
For m = 1 we have the following scalar Poisson bracket

{xα, xβ} =
(xα − xβ)2

λβ − λα
, α 6= β, α, β = 1, ...,N.

A.Odesskii, V. Rubtsov, V.Sokolov Non-abelian quadratic Poisson brackets
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M. Van den Bergh’s Double Poisson Structures-1

Let A be a f.g. associative C−algebra
Repm(A) := Hom(A,Matm(C)),

Glm(C) acts by conjugation on Matm(C))

Question (M.VdBergh): "What kind of structures we need
on A in order Repm(A) and Repm(A)Glm(C) possess a
Poisson structure?"

A.Odesskii, V. Rubtsov, V.Sokolov Non-abelian quadratic Poisson brackets
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M. Van den Bergh’s Double Poisson Structures-2

Definition
A double bracket on A is a bilinear map
{{−,−}} : A×A 7→ A⊗A such that:

{{a,b}} = −{{b,a}}◦, where (a⊗ b)◦ = b ⊗ a;

{{−,−}} : is a derivation on its second argument (wrt the
outer bimodule structure on A):
{{a,bc}} = b{{a, c}}+ {{a,b}}c;

{{−,−}} satisfies a sort of Jacobi identity.

A.Odesskii, V. Rubtsov, V.Sokolov Non-abelian quadratic Poisson brackets
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M. Van den Bergh’s Double Poisson Structures-3

Define {−,−} : A×A 7→ A by
{−,−} := µ({{a,b}}) = {{a,b}}′{{a,b}}”

Theorem (M.VdBergh)

Let A, {{−,−}} be a double Poisson algebra. Then
{−,−} is a derivation in its second argument and vanishes
on commutators in its first argument.
{−,−} is anti-symmetric modulo commutators.
{−,−} makes A into a left Loday algebra ({−,−} satisfies
the following version of the Jacobi identity
{a, {b, c}} = {{a,b}, c}+ {b, {a, c}})
{−,−} makes A/[A,A] into a Lie algebra.

A.Odesskii, V. Rubtsov, V.Sokolov Non-abelian quadratic Poisson brackets
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{a, {b, c}} = {{a,b}, c}+ {b, {a, c}})
{−,−} makes A/[A,A] into a Lie algebra.
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Crawley-Boevey’s H0− Poisson Structures-1

Let A be a f.g. associative C−algebra, Der(A) its
derivations and HH0(A) = A/[A,A];
Any ∂ ∈ Der(A - "descends" under the projection
p : A 7→ HH0(A) to the map p(∂) : HH0(A) 7→ HH0(A)
such that p(∂)(p(a)) = p(∂(a));

Definition
HH0− Poisson structure on A is a Lie bracket [−,−] on HH0(A)
such that the map [p(a),−] ∈ EndHH0(A) is induced by some
derivation ∂a : p(∂a) = [p(a),−].
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Crawley-Boevey’s H0− Poisson Structures-2

Example
Any double Poisson structure on A induces an HH0− structure
on A via the multiplication µ:

[p(a),p(b)] := p(µ({{a,b}})).

Theorem (W.Crawley-Boevey)
Each HH0− Poisson structure on A defines a unique Poisson
structure on C[Repm(A)GLm ] such that

{tr(a), tr(b)} = tr([p(a),p(b)]).
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Coordinate expression

Lemma
If A, {{−,−}} is a double Poisson algebra then C[Repm(A)] is a
Poisson algebra, with Poisson bracket given by

{x j
i,α, x

l
k ,β} = {{xα, xβ}}

′j
k {{xα, xβ}}

”l
i (14)

where by convention we write an element x of A⊗A as x ′ ⊗ x ′′

(i.e. we drop the summation sign).
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Example of a classification-1

Theorem
Let A = C < x , y > . There are five non-equivalent
"quadratic" HH0− Poisson structures on A.
There are two non-equivalent "quadratic" double Poisson
algebra structures on A.
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Example of a classification-2

Theorem
This five Poisson structures are given (in terms of their
Hamilton operators) by:

Case 1. r12
11 = −1, r21

11 = 1;

Θ1 =

(
LxRy − LyRx 0

0 0

)
,

Case 2. r21
11 = 1, r12

11 = −1, a22
21 = a12

11 = −1;

Θ2 =

(
LxRy − LyRx − LxLy 0

−LyLy 0

)
,
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Theorem

Case 3. r22
12 = 1, r22

21 = −1;

Θ3 =

(
0 LyRy

−LyRy 0

)
, ,

Case 4. a22
11 = 1.

Θ4 =

(
LyLy 0

0 0

)
,
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Theorem

Case 3. r22
12 = 1, r22

21 = −1;
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)
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Case 4. a22
11 = 1.
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LyLy 0

0 0

)
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Theorem

Case 3. r22
12 = 1, r22

21 = −1;

Θ3 =

(
0 LyRy
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, ,
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Theorem

Case 5. r22
12 = 1, r22

21 = −1, a12
11 = a22

21 = 1.

Θ5 =

(
LxLy LyRy

−LyRy + LyLy 0

)
,
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Back to IS-1

Applying the involution

rγσαβ → rαβγσ , aγσαβ → aαβγσ . (15)

to our first example , we get one more quadratic structure with
zero tensor a:

rαβαβ = rαββα = rβααα = −rαβαα =
1

λα − λβ
, α 6= β, 1 ≤ α, β ≤ N

(16)
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Back to IS-2

In this case any vector (µ1, ..., µN) is admissible.
All entries of the matrix

∑N
1 xα are Casimir functions for

both quardatic Poisson bracket {·, ·}2 and for the
corresponding linear bracket {·, ·}1.
Hamiltonians of the hierarchy commuting with respect to
both {·, ·}2 and {·, ·}1 are given by

tr xk
α, tr xk

α

∑
β 6=α

xβ
λα − λβ

, k = 1,2, ....
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Back to IS-3

The dynamical system corresponding to the simplest
Hamiltonian tr xN and the Poisson structure {·, ·}2 has the
form

dxα
dt

=
xNxα − xαxN

λN − λα
, α = 1, . . . ,N − 1.

There exists the following quadratic Casimir function:

H =
1
2

N∑
α=1

1
µα

tr x2
α.

The non-abelian system corresponding to this Hamiltonian
and the Poisson bracket {·, ·}2 is given by

dxα
dt

=
∑
β 6=α

xαx2
β − x2

βxα
(λα − λβ)µβ

+
∑
β 6=α

xβx2
α − x2

αxβ
(λα − λβ)µα

. (17)
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Back to IS-4

The system (17) can be written in the following bi-Hamiltonian
form:

dx
dt

= {x, grad (tr H)}2 = {x, grad (tr K )}1,

where

K =
1
3

N∑
α=1

1
µ2
α

tr x3
α.

If N = 2 system (17) is equivalent to the Manakov’s (2).
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Summary

There is an interesting connection between linear and
quadratic Poisson structures on representations of
associative algebras and some non-commutative
Hamiltonian integrable systems .
This structures are related to different types of Hochschild
cocycles : cyclic and non-cyclic

Outlook
Quantization of Double Poisson structures.
Dynamical Double Poisson structures, Elliptic Double
Poisson structures...?
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