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Introduction

Motivations and origins

Main sources of inspiration

@ Integrable Systems
e Matrix Integrable systems generalized Manakov’s
e Bihamiltonian property and Magri-Lenard schemes
@ Noncommutative algebraic Poisson geometry

e Kontsevich NC symplectic geometry
e Le Bryun NC@geomerty
e "Double" Poisson strucrures and AYBE
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Integrable Systems

Generalized Manakov’s system

@ We consider ODE systems of the form
ax,

== Fo(X), X=(X1,...,Xn), (1)
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Integrable Systems

Generalized Manakov’s system

@ We consider ODE systems of the form
ax,
E - FO[(X)‘, X = (X‘Iv"‘vXN)a (1)

@ Here x; are m x m -matrices and F,, are (non-commutative)
polynomials. There exist systems (1) integrable for any m.
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Integrable Systems

Generalized Manakov’s system

@ We consider ODE systems of the form
ax,
E - FO[(X)‘, X = (X‘Iv"‘vXN)a (1)

@ Here x; are m x m -matrices and F,, are (non-commutative)
polynomials. There exist systems (1) integrable for any m.
@ The system
ur =P v — vz, vi =0 (2)

is integrable by the Inverse Scattering Method for any size
m of matrices v and v.
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Integrable Systems

Generalized Manakov’s system

@ We consider ODE systems of the form
P R0, x= (61w, (1)
@ Here x; are m x m -matrices and F,, are (non-commutative)
polynomials. There exist systems (1) integrable for any m.
@ The system

ur =P v — vz, vi =0 (2)

is integrable by the Inverse Scattering Method for any size
m of matrices v and v.

@ If u-suchthat u” = —u, and v - a constant diagonal
matrix, then (2) is equivalent to the m-dimensional Euler
top. This is the famous S.V. Manakov model (1976).
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Integrable Systems

Bihamiltonian structures

@ Aim - to construct an integrable generalization of (2) to the
case of arbitrary N using the bi-Hamiltonian approach
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Integrable Systems

Bihamiltonian structures

@ Aim - to construct an integrable generalization of (2) to the
case of arbitrary N using the bi-Hamiltonian approach

Definition
Two Poisson brackets {-. -} and {-, -}, are compatible if

{'7 '})\ - { '}1 + )‘{ '}2 (3)

is a Poisson bracket for any .
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Integrable Systems

Bihamiltonian structures

@ Aim - to construct an integrable generalization of (2) to the
case of arbitrary N using the bi-Hamiltonian approach

Definition
Two Poisson brackets {-. -} and {-, -}, are compatible if

{'7 '})\ - { '}1 + )‘{ '}2 (3)

is a Poisson bracket for any .

@ If the bracket (3) is degenerate then a hierarchy of
integrable Hamiltonian ODE systems can be constructed
via the following result:
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Integrable Systems

Gelfand-Magri-Zakharevich Theorem-1

Theorem
Let
C\\) = Co+/\C1+)\ZCQ+"' ; C(/\) = Co+/\a1+)\262+"' ;

be the Taylor expansion of any two Casimir functions for the
bracket {-.-} . Then the coefficients C;. C; are pairwise
commuting with respect to both brackets {-, -}y and {-,-}».
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Integrable Systems

Gelfand-Magri-Zakharevich Theorem-2

Otherwise, if, say, the bracket {-, -} is nondegenerate, then the
ratio R = |‘|2|'|1*1, (here I; is the Poisson tensor for {-,-}; )
defines a recursion operator whose spectrum provides the set
of functions in involution with respect to both brackets. In this
case the formula I, = R*T; gives us an infinite sequence of
pairwise compatible Poisson brackets.
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Non-Abelian Poisson Brackets "Tensor" interpretations

Origins of NA Poisson brackets

@ Mikhailov, Olver and Sokolov studied an important class of
Poisson brackets related to systems (1) such that the
corresponding Hamiltonian operator can be expressed in
terms of left and right multiplication operators given by
polynomials inxy, ..., Xy.
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Non-Abelian Poisson Brackets "Tensor" interpretations

Origins of NA Poisson brackets

@ Mikhailov, Olver and Sokolov studied an important class of
Poisson brackets related to systems (1) such that the
corresponding Hamiltonian operator can be expressed in
terms of left and right multiplication operators given by
polynomials inxy, ..., Xy.

@ Such brackets possess the following two properties:

e they are GL,-adjoint invariant;

o the bracket between traces of any two matrix polynomials
Pi(x1,...,xn), = 1,2is atrace of some other matrix
polynomial Ps.
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Non-Abelian Poisson Brackets "Tensor" interpretations

Origins of NA Poisson brackets

@ Mikhailov, Olver and Sokolov studied an important class of
Poisson brackets related to systems (1) such that the
corresponding Hamiltonian operator can be expressed in
terms of left and right multiplication operators given by
polynomials inxy, ..., Xy.

@ Such brackets possess the following two properties:

e they are GL,-adjoint invariant;

o the bracket between traces of any two matrix polynomials
Pi(x1,...,xn), = 1,2is atrace of some other matrix
polynomial Ps.

@ We shall call them non-abelian Poisson brackets. and we
consider the compatible pairs of non-abelian Poisson
brackets, where {-,-}{ is linear and {-, -}, is quadratic.
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Non-Abelian Poisson Brackets "Tensor" interpretations

Coordinate expressions

We consider bilinear brackets of the following form:
(Xl X =07 x5, —b) 4)
ia //,6 — Mo,y B,a I/ ~
and
./ i i’
/'y /s ve ok I s
{ ia I/ B r ’3X X + au 3X X 5 a/%ole'/,”/xk,e(si ’ (5)

«

where x{_& are entries of the matrix x,,.
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Non-Abelian Poisson Brackets "Tensor" interpretations

Poisson conditions

1) Formula (4) defines a Poisson bracket iff

bl b, = bg,bh (6)

(7 QL

2) Formula (5) defines a Poisson bracket iff the following
relations hold:

oe v vo )\/L
r(yﬂ r?(y r()/3rﬂ +r [7’7— aoz + Fral o T 0 (7)
A
aada“l/ - aggaZ’ﬁ7 (8)
W MO )\u vV O\
aao’al - a()ﬂ TO + agUrJT . (9)

W __ A0V A 0z g,\
ufal —a 3’r M+309 TO "

Rubtsov, V.Sokolov Non-al quadratic Poisson brackets

a




Non-Abelian Poisson Brackets "Tensor" interpretations

Gln— and trace invariancy

Theorem
Brackets of the form (4) and (5) are both invariant with respect
to GLny,-action x,, — ux,u~ ', where u € GL,. Moreover, these

brackets satisfy the followmg property: the bracket between
traces of any two matrix polynomials is a trace of a matrix
polynomial. Any linear (respectively quadratic) Poisson bracket
satisfying these two properties has the form (4) (respectively

(5))-

There are quadratic Poisson brackets that appeared
in the classical version of Inverse Scattering Method (r— matrix
, Drinfeld-Sklyanin etc.) However, these brackets do not satisfy
the properties of our Theorem.
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Non-Abelian Poisson Brackets "Tensor" interpretations

Compatibility of linear and quadratic brackets

@ Avector i = (i1, ..., um) is an admissible if for any «, 5
(agg —ag, + rjg)/z/ap,s =0.
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Non-Abelian Poisson Brackets "Tensor" interpretations

Compatibility of linear and quadratic brackets

@ Avector i = (i1, ..., um) is an admissible if for any «, 5
(&% — ag, +195)Hope = 0.

@ For any admissible vector the argument shift
Xo — Xo + j1,, 1d yields a linear Poisson bracket with

bis = (&35 + aus + ras)e,

compatible with the quadratic one.
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Non-Abelian Poisson Brackets "Tensor" interpretations

Outline

Q Non-Abelian Poisson Brackets
@ "Tensor" interpretations
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Non-Abelian Poisson Brackets "Tensor" interpretations

Poisson conditions: tensor form

Let V be a linear space with a basis v, « =1, ..., m. Define
linear operators r, a € End(V @ V) by

Vo ® Vg = (jgv(, Q@ Ve, avp Vg = agf@v(, R V.

Then the identities (7)-(10) can be rewritten in the following
form:
P12 = 21 2812 81,23 L 12,31

a12a31 _ 331312, 023313812 _ a12r23 o f23812,

332812 — I’13312 _ 332,,13.

Here all operators actin V@ V @ V, by ¢/ we mean
transposition of /-th and j-th component of the tensor product
and a’, r/ mean operators a, r acting in the product of the i-th
and j-th components.
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Non-Abelian Poisson Brackets "Tensor" interpretations

Particular case: a=0

There is a subclass of brackets (5) that corresponds to zero
tensor a. Relations (7), (8) mean that r is a constant
skew-symmetric solution of the associative Yang-Baxter
equation (Aguiar, Polischshuk, Schedler...):

r12 _ _r21, r23r12 + r31r23 + r12r31 —-0.

There exists one-to-one correspondence between solutions of
(7), (8) up to equivalence and exact representations of
anti-Frobenius algebras up to isomorphism.
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Algebraic characterization

Anti-Frobenius algebras

Definition

An anti-Frobenius algebra is an associative algebra A (not
necessarily with unity) with a non-degenerate anti-symmetric
bilinear form ( , ) satisfying the following relation

(x.y2) + (v, 2) + (2,xy) = 0 (11)

forall x,y,z € A.

In other words the form (, ) defines a cyclic 1-cocycle on A.
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Algebraic characterization

@ Let A be associative algebra of N x N-matrices with zero
N-th row, / - a generic element of A*. Then
(x,y) = I([x.y]) - a non-degenerate anti-symmetric
bilinear form satisfying (11).
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Algebraic characterization

@ Let A be associative algebra of N x N-matrices with zero
N-th row, / - a generic element of A*. Then
(x,y) = I([x.y]) - a non-degenerate anti-symmetric
bilinear form satisfying (11).

@ Let (x,y) = trace([x, y] kT), where k € A. Put kj = 0,i # j,
kij = pj, where i,j=1,.... N —1, and
kiy=1,i=1,...N—1.
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Algebraic characterization

@ Let A be associative algebra of N x N-matrices with zero
N-th row, / - a generic element of A*. Then
(x,y) = I([x,y]) - a non-degenerate anti-symmetric
bilinear form satisfying (11).

@ Let (x,y) = trace([x, y] kT), where k € A. Put kj = 0,i # j,
kij = pj, where i,j=1,.... N —1, and
kiy=1,i=1,...N—1.

@ The corresponding bracket (5) is given by the following
tensor r:

i Ij_ Ji i i
INi = — /N*1r i = fﬂ*—f/j*r_ﬂjv (12)
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Algebraic characterization

Example-contin.

Example
The bracket (12) is equivalent to

‘ 1
af Ba ao o —
op =lop =M = ~Tas =3 3 @#f =1 N
(13)

A, ..., Ay are arbitrary pairwise distinct parameters.
For m = 1 we have the following scalar Poisson bracket

2
(X, X5} = w a8, a,B=1,.N.
B T N\«
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Algebraic characterization

M. Van den Bergh’s Double Poisson Structures-1

@ Let A be af.g. associative C—algebra
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Algebraic characterization

M. Van den Bergh’s Double Poisson Structures-1

@ Let A be af.g. associative C—algebra
® Rep,,(A) := Hom(A, Mat;,(C)),
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Algebraic characterization

M. Van den Bergh’s Double Poisson Structures-1

@ Let A be af.g. associative C—algebra
® Rep,,(A) := Hom(A, Mat;,(C)),
@ GIy(C) acts by conjugation on Mat,(C))
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Algebraic characterization

M. Van den Bergh’s Double Poisson Structures-1

@ Let A be af.g. associative C—algebra
® Rep,,(A) := Hom(A, Mat;,(C)),
@ GIy(C) acts by conjugation on Mat,(C))

@ Question (M.VdBergh): "What kind of structures we need
on A in order Rep,,(A) and Rep,,(A)%(©) possess a
Poisson structure?"
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Algebraic characterization

M. Van den Bergh'’s Double Poisson Structures-2

A double bracket on A is a bilinear map
f—, -3} : Ax A— A® Asuch that:

o {a,b} = —{b,a}°, where (a® b)° = b® a;
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Algebraic characterization

M. Van den Bergh'’s Double Poisson Structures-2

A double bracket on A is a bilinear map
f—, -3} : Ax A— A® Asuch that:

o {a b} = —{b,a}}°, where (a® b)° = b® a;
@ {—,—J} :is aderivation on its second argument (wrt the
outer bimodule structure on A):

{a, bc} = b{a,c} + {a bj}c;

A.Odesskii, V. Rubtsov, V.Sokolov Non-abelian quadratic Poisson brackets



Algebraic characterization

M. Van den Bergh'’s Double Poisson Structures-2

A double bracket on A is a bilinear map
f—, -3} : Ax A— A® Asuch that:

o {a b} = —{b,a}}°, where (a® b)° = b® a;
@ {—,—J} :is aderivation on its second argument (wrt the
outer bimodule structure on A):

{a, bc} = b{a,c} + {a bj}c;

o {—, | satisfies a sort of Jacobi identity.
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Algebraic characterization

M. Van den Bergh'’s Double Poisson Structures-3

Define {—,—} : Ax A+ Aby
{— —}:=u({a b}) = {a b} {a b}’

Theorem (M.VdBergh)

Let A, {—,—}} be a double Poisson algebra. Then

@ {—, —} is a derivation in its second argument and vanishes
on commutators in its first argument.
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Algebraic characterization

M. Van den Bergh'’s Double Poisson Structures-3

Define {—,—} : Ax A+ Aby
{— —}:=u({a b}) = {a b} {a b}’

Theorem (M.VdBergh)

Let A, {—,—}} be a double Poisson algebra. Then

@ {—, —} is a derivation in its second argument and vanishes
on commutators in its first argument.

@ {—, —} is anti-symmetric modulo commutators.
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Algebraic characterization

M. Van den Bergh'’s Double Poisson Structures-3

Define {—,—} : Ax A+ Aby
{— —}:=u({a b}) = {a b} {a b}’

Theorem (M.VdBergh)

Let A, {—,—}} be a double Poisson algebra. Then

@ {—, —} is a derivation in its second argument and vanishes
on commutators in its first argument.

@ {—, —} is anti-symmetric modulo commutators.

@ {—,—} makes A into a left Loday algebra ({—., —} satisfies
the following version of the Jacobi identity

{a {b,c}} = {{a,b},c} +{b,{a,c}})
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Algebraic characterization

M. Van den Bergh'’s Double Poisson Structures-3

Define {—,—} : Ax A+ Aby
{— —}:=u({a b}) = {a b} {a b}’

Theorem (M.VdBergh)

Let A, {—,—}} be a double Poisson algebra. Then

@ {—, —} is a derivation in its second argument and vanishes
on commutators in its first argument.

@ {—, —} is anti-symmetric modulo commutators.

@ {—,—} makes A into a left Loday algebra ({—., —} satisfies
the following version of the Jacobi identity
{a,{b,c}} ={{a b} c} +{b,{a c}})

@ {—,—} makes A/[A, A| into a Lie algebra.
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Algebraic characterization

Crawley-Boevey’s Hy— Poisson Structures-1

@ Let A be af.g. associative C—algebra, Der(A) its
derivations and HHy(A) = A/[A,Al;
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Algebraic characterization

Crawley-Boevey’s Hy— Poisson Structures-1

@ Let A be af.g. associative C—algebra, Der(A) its
derivations and HHy(A) = A/[A,Al;

@ Any 0 € Der(A - "descends" under the projection
p: A~ HHy(A) to the map p(9) : HHy(A) — HHy(A)
such that p(9)(p(a)) = p(d(a));
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Algebraic characterization

Crawley-Boevey’s Hy— Poisson Structures-1

@ Let A be af.g. associative C—algebra, Der(A) its
derivations and HHy(A) = A/[A,Al;

@ Any 0 € Der(A - "descends" under the projection
p: A~ HHy(A) to the map p(9) : HHy(A) — HHy(A)
such that p(9)(p(a)) = p(d(a));

Definition

HHy— Poisson structure on A is a Lie bracket [—, —] on HHy(.A)
such that the map [p(a), —] € EndHH(.A) is induced by some
derivation 0, : p(92) = [p(a), —].
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Algebraic characterization

Crawley-Boevey’s Hy— Poisson Structures-2

Any double Poisson structure on A induces an HHy— structure
on A via the multiplication

[p(a), p(b)] := p(u(fa, b}))-

Theorem (W.Crawley-Boevey)

Each HHy— Poisson structure on A defines a unique Poisson
structure on C|[Rep,,(A)] such that

{1r(a),r(b)} = 1r([p(a), p(D)])-
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Algebraic characterization

Coordinate expression

If A, {—,—1} is a double Poisson algebra then C[Rep,,(A)] is a
Poisson algebra, with Poisson bracket given by

(XXt 5} = % X3} Xa x5} (14)

where by convention we write an element x of A © A as x’ © x”
(i.e. we drop the summation sign).
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Algebraic characterization

Example of a classification-1

@ Let A=C < x,y > . There are five non-equivalent
"quadratic" HHy— Poisson structures on A.
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Algebraic characterization

Example of a classification-1

@ Let A=C < x,y > . There are five non-equivalent
"quadratic" HHy— Poisson structures on A.

@ There are two non-equivalent "quadratic" double Poisson
algebra structures on A.
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Algebraic characterization

Example of a classification-2

This five Poisson structures are given (in terms of their
Hamilton operators) by:

@Case 1. rl2=-1r3=1;

LR, — L,Rx O
@1:<Xy0yxo>7
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Algebraic characterization

Example of a classification-2

This five Poisson structures are given (in terms of their
Hamilton operators) by:

@Case 1. rl2=-1r3=1;

- < LR, — L, Ry o)
1= 5

®

0 0
@ Case 2. r2l=1,rl2=-1 a2=al?=-1;
2 = < “LL, 0 )
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Algebraic characterization

@ Case 3. rZ=1,r2=-1,

([ 0 LR
(S )

Rubtsov, V.Sokolov Non i ic Poisson brackets



Algebraic characterization
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Algebraic characterization
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Algebraic characterization

Theorem

@ Case 4. a7=1.

LL, 0
@4:< 0 o)’
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Algebraic characterization

@Case 5 r2=1r2=-1al2=2a2=1.
LyL L,R

@5< xLy y y>7
LR +LL, O
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Algebraic characterization

Back to 1S-1

Applying the involution

e — roB a’, — a’. (15)
!

af Yo of

to our first example , we get one more quadratic structure with
zero tensor a:

raﬂ _ raﬂ _ rﬁa _ _ra;ﬁ _

af Ba o ao )\a — )\37 « 7£ ﬁ, 1 < «, ﬁ < N

(16)
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Algebraic characterization

Back to 1S-2

@ In this case any vector (u1, ..., ) is admissible.
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Algebraic characterization

Back to 1S-2

@ In this case any vector (u1, ..., ) is admissible.

e All entries of the matrix >" x,, are Casimir functions for
both quardatic Poisson bracket {-, -}, and for the
corresponding linear bracket {-, - }1.
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Algebraic characterization

Back to 1S-2

@ In this case any vector (u1, ..., ) is admissible.

@ All entries of the matrix "/ x,, are Casimir functions for
both quardatic Poisson bracket {-, -}, and for the
corresponding linear bracket {-, - }1.

@ Hamiltonians of the hierarchy commuting with respect to
both {-,-}» and {-, -} are given by

X3

k
trXx, s
o o )\3

tr xX

(o3

k=12, ...
B4a leY
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Algebraic characterization

Back to 1S-3

@ The dynamical system corresponding to the simplest
Hamiltonian tr x and the Poisson structure {-, -}» has the

form
dX(,y o XNXo — Xa XN

dt A=)
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Algebraic characterization

Back to 1S-3

@ The dynamical system corresponding to the simplest
Hamiltonian tr x and the Poisson structure {-, -}» has the

form
dX(,y o XNXo — Xa XN

a  AN—Da
@ There exists the following quadratic Casimir function:

2 Z —trx

M(l
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Algebraic characterization

Back to 1S-3

@ The dynamical system corresponding to the simplest
Hamiltonian tr x and the Poisson structure {-, -}» has the

form d
Xo XNXa — Xa XN
= — =1,..., N -1
ot wW—a |
@ There exists the following quadratic Casimir function:
N
1 1
H=_ —tr x2.

2 o

@ The non-abelian system corresponding to this Hamiltonian
and the Poisson bracket {-. -}» is given by

dX()/ X[3X2 o X2X5
at B#a B#a ()\O’, - )\@)ua

X(,yxg - XEX(X
(Ao = Ag)ns
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Algebraic characterization

Back to 1S-4

The system (17) can be written in the following bi-Hamiltonian
form:

C;); = {x,grad (tr H) }» = {x, grad (tr K) }1,

where
N o
53

If N = 2 system (17) is equivalent to the Manakov’s (2).

CD \
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Summary

Summary

@ There is an interesting connection between linear and
quadratic Poisson structures on representations of
associative algebras and some non-commutative
Hamiltonian integrable systems .

@ This structures are related to different types of Hochschild
cocycles : cyclic and non-cyclic

@ Outlook
@ Quantization of Double Poisson structures.
e Dynamical Double Poisson structures, Elliptic Double
Poisson structures...?
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