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Overview

...based on joint work with C. Arias Abad (University of Zurich)

Plan:
1 Representations up to homotopy
2 Differentiation
3 Integration
4 Torsion
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Rep. up to homotopy – Why?

(A Lie algebroid, G Lie groupoid, both over M)

representation of A := flat A-connection ∇ on vector bundle E

representation of G := smooth functor λ : G → gl(E)

; good Lie theory

drawback: too few objects!

e.g.:
for A = TM, topological obstructions,
no good candidate for ad(A) (ad(G)) as a rep. of A (G)!
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Rep. up to homotopy – Definition

; relax notion of representation...

notice:

representation of A on E ↔ differential on Ω•(A,E)

representation of G on E ↔ differential on C•(G,E)

Definition
representations up to homotopy

:=
same as RHS above, but allow E to be graded vector bundle
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Rep. up to homotopy – Examples

Fundamental examples of rep. up to homotopy:

(ordinary) representations,

flat Z-graded connections,

∃ essentially unique and well-behaved ad(A) and ad(G)
(see work by Arias Abad and Crainic)
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Differentiation – van Est’s Theorem

from now on: A = Lie(G)

differentiation ⇒

Theorem
∃ natural (dg-) functor ψ

(rep. up to homotopy of G) → (rep. up to homotopy of A).

Corresponding chain map

ψ : C•(G,E) → Ω•(A,E)

induces isomorphism on cohomology in certain degrees.

(generalizing work of van Est, Weinstein/Xu, Crainic,...)
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Differentiation – Remarks

implication (conjectured by Crainic/Moerdijk):

Corollary
Second deformation cohomology of Lie algebroid integrating to
a proper source-2-connected Lie groupoid vanishes.

(generalizing H2(g, g) = 0 for g semi-simple of compact type)

for (ordinary) representations:
G s-1- connected ⇒ differentiation functor is surjective

this fails for rep.s up to homotopy ;

how to integrate? where to?
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Integration – Tangent bundle

consider A = TM

integration functor
∫

(flat connection on E) → (representations of π1(M)),
in terms of holonomies

K. Igusa extended ∇ 7→ Hol∇ to Z-graded connections,

crucial: holonomies for higher dim. simplices appear!

flatness of Z-graded connection D ⇒

coherence equations for HolD,

e.g.

Florian Schätz Lie theory for representations up to homotopy



Integration – Formalization

formalization of Igusa’s construction:

replace π1(M) by simplicial set π∞(M) with k -simplices

{σ : ∆k → M},

replace rep. (of π1(M)) by rep. up to homotopy (of π∞(M)):

rep. up to homotopy can be defined in terms of nerve NG

; def. generalizes to simplicial sets

; notion of rep. up to homotopy of π∞(M)

Igusa’s construction as a map

(rep.s up to homotopy of TM) → (rep.s up to homotopy of π∞(M))
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Integration – The result

extending to morphisms and arbitrary Lie algebroids yields

Theorem
∃ natural A∞-functor of dg-categories∫

: (rep.s up to homotopy of A) → (rep. up to homotopy of π∞(A)),

generalizing usual integration

(representations of A) → (representations of G = π1(A)).

Here π∞(A) := simplicial set with k-simplices {σ : T ∆k → A}.

main contributions: K. Igusa, Block / Smith, Arias Abad / S.,

relying on work of: K.T. Chen, V.K.A.M. Gugenheim
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Torsion – Basics

classical invariant in topology (distinguishes lens spaces)

focus on closed manifold M of odd dimension

real coefficients ; torsion comes in two flavours:

Ray-Singer torsion Reidemeister torsion
nature: norm τ1 on det H(M) norm τ2 on det H(M)
flavour: analytic combinatorial
uses: Hodge-theory for Ω(M) Hodge-theory for C•K (M)

crucial: ζ-regularized det. of ∆ smooth triangulation K

Theorem of Cheeger-Müller: τ1 = τ2.
Def. and Theorem extend to non-trivial coefficents
systems, i.e. vector bundles with flat connections.
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Torsion – For flat superconnections

extensions to flat Z- or Z2-graded connections:

Analytic approach:
analytic approach extended to flat Z-graded connections
early on (Quillen, Bismuth/Lott,...)
Z2-graded case more subtle, Mathai/Wu (2008),
e.g. H closed 3-form on M ;

twisted cohomology H(Ω(M),d + H∧)

Combinatorial approach:

using integration result for rep.s up to homotopy ;

input: triangulation K and flat superconnection D on E

output: finite-dim. complex CK (M,E) computing H(M,E)

applying Hodge-theory to CK (M,E) ;

combinatorial torsion for flat superconnections
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THE END

Thank you!
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